[Mlir-commits] [mlir] [mlir][gpu] Add 'cluster_stride' attribute to gpu.subgroup_reduce (PR #107142)

llvmlistbot at llvm.org llvmlistbot at llvm.org
Tue Sep 3 11:57:22 PDT 2024


llvmbot wrote:


<!--LLVM PR SUMMARY COMMENT-->

@llvm/pr-subscribers-mlir

Author: Andrea Faulds (andfau-amd)

<details>
<summary>Changes</summary>

Follow-up to 7aa22f013e24d20291aad745368ff907baa9dfa4, adding an additional attribute needed in some applications.

---

Patch is 23.50 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/107142.diff


8 Files Affected:

- (modified) mlir/include/mlir/Dialect/GPU/IR/GPUOps.td (+23-9) 
- (modified) mlir/lib/Conversion/GPUToNVVM/LowerGpuOpsToNVVMOps.cpp (+1-1) 
- (modified) mlir/lib/Conversion/GPUToSPIRV/GPUToSPIRV.cpp (+1-1) 
- (modified) mlir/lib/Dialect/GPU/IR/GPUDialect.cpp (+6) 
- (modified) mlir/lib/Dialect/GPU/Transforms/SubgroupReduceLowering.cpp (+76-57) 
- (modified) mlir/test/Dialect/GPU/canonicalize.mlir (+1-1) 
- (modified) mlir/test/Dialect/GPU/invalid.mlir (+18-2) 
- (modified) mlir/test/Dialect/GPU/subgroup-reduce-lowering.mlir (+35-12) 


``````````diff
diff --git a/mlir/include/mlir/Dialect/GPU/IR/GPUOps.td b/mlir/include/mlir/Dialect/GPU/IR/GPUOps.td
index d2a5e5d77ad843..6098eb34d04d52 100644
--- a/mlir/include/mlir/Dialect/GPU/IR/GPUOps.td
+++ b/mlir/include/mlir/Dialect/GPU/IR/GPUOps.td
@@ -1200,10 +1200,12 @@ def GPU_SubgroupReduceOp : GPU_Op<"subgroup_reduce", [SameOperandsAndResultType]
     The `subgroup_reduce` op reduces the values of lanes (work items) across a
     subgroup.
 
-    The subgroup is divided into clusters of `cluster_size` contiguous lanes
-    each, and a reduction is done for every lane of each cluster (in parallel).
-    The result is equal for all lanes in a cluster. When `cluster_size` is
-    omitted, there is a single cluster covering the entire subgroup.
+    The subgroup is divided into clusters starting at lane index 0. Within each
+    cluster, there are `size` lanes, and the lane index advances by `stride`.
+    A reduction is done for each cluster in parallel: every lane in the cluster
+    is reduced, and the result is equal for all lanes in the cluster. If `size`
+    is omitted, there is a single cluster covering the entire subgroup. If
+    `stride` is omitted, the stride is 1 (the cluster's lanes are contiguous).
 
     When the reduced value is of a vector type, each vector element is reduced
     independently. Only 1-d vector types are allowed.
@@ -1213,7 +1215,8 @@ def GPU_SubgroupReduceOp : GPU_Op<"subgroup_reduce", [SameOperandsAndResultType]
     ```mlir
     %1 = gpu.subgroup_reduce add %a : (f32) -> f32
     %2 = gpu.subgroup_reduce add %b : (vector<4xf16>) -> vector<4xf16>
-    %3 = gpu.subgroup_reduce add %c cluster_size(4) : (f32) -> f32
+    %3 = gpu.subgroup_reduce add %c cluster(size = 4) : (f32) -> f32
+    %3 = gpu.subgroup_reduce add %c cluster(size = 4, stride = 2) : (f32) -> f32
     ```
 
     If `uniform` flag is set either none or all lanes of a subgroup need to execute
@@ -1230,7 +1233,8 @@ def GPU_SubgroupReduceOp : GPU_Op<"subgroup_reduce", [SameOperandsAndResultType]
     AnyIntegerOrFloatOr1DVector:$value,
     GPU_AllReduceOperationAttr:$op,
     UnitAttr:$uniform,
-    OptionalAttr<I32Attr>:$cluster_size
+    OptionalAttr<I32Attr>:$cluster_size,
+    DefaultValuedAttr<I32Attr,"1">:$cluster_stride
   );
   let results = (outs AnyIntegerOrFloatOr1DVector:$result);
 
@@ -1238,19 +1242,29 @@ def GPU_SubgroupReduceOp : GPU_Op<"subgroup_reduce", [SameOperandsAndResultType]
     OpBuilder<(ins "Value":$value,
                "::mlir::gpu::AllReduceOperation":$op,
                "bool":$uniform), [{
-      build($_builder, $_state, value, op, uniform, /*cluster_size=*/ nullptr);
+      build($_builder, $_state, value, op, uniform, std::nullopt);
     }]>,
     OpBuilder<(ins "Value":$value,
                "::mlir::gpu::AllReduceOperation":$op,
                "bool":$uniform,
                "std::optional<uint32_t>":$cluster_size), [{
-      build($_builder, $_state, value, op, uniform, cluster_size ? $_builder.getI32IntegerAttr(*cluster_size) : nullptr);
+      build($_builder, $_state, value, op, uniform,
+            cluster_size ? $_builder.getI32IntegerAttr(*cluster_size) : nullptr);
+    }]>,
+    OpBuilder<(ins "Value":$value,
+               "::mlir::gpu::AllReduceOperation":$op,
+               "bool":$uniform,
+               "std::optional<uint32_t>":$cluster_size,
+               "uint32_t":$cluster_stride), [{
+      build($_builder, $_state, value, op, uniform,
+            cluster_size ? $_builder.getI32IntegerAttr(*cluster_size) : nullptr,
+            cluster_stride);
     }]>
   ];
 
   let assemblyFormat = [{ custom<AllReduceOperation>($op) $value
                           (`uniform` $uniform^)?
-                          (`cluster_size` `(` $cluster_size^ `)`)?
+                          (`cluster` `(` `size` `=` $cluster_size^ (`,` `stride` `=` $cluster_stride^)? `)`)?
                           attr-dict
                           `:` functional-type(operands, results) }];
 
diff --git a/mlir/lib/Conversion/GPUToNVVM/LowerGpuOpsToNVVMOps.cpp b/mlir/lib/Conversion/GPUToNVVM/LowerGpuOpsToNVVMOps.cpp
index 9b1be198f77a82..b013826c02b97b 100644
--- a/mlir/lib/Conversion/GPUToNVVM/LowerGpuOpsToNVVMOps.cpp
+++ b/mlir/lib/Conversion/GPUToNVVM/LowerGpuOpsToNVVMOps.cpp
@@ -102,7 +102,7 @@ struct GPUSubgroupReduceOpLowering
 
   matchAndRewrite(gpu::SubgroupReduceOp op, OpAdaptor adaptor,
                   ConversionPatternRewriter &rewriter) const override {
-    if (op.getClusterSize())
+    if (op.getClusterSize() || op.getClusterStride() != 1)
       return rewriter.notifyMatchFailure(
           op, "lowering for clustered reduce not implemented");
 
diff --git a/mlir/lib/Conversion/GPUToSPIRV/GPUToSPIRV.cpp b/mlir/lib/Conversion/GPUToSPIRV/GPUToSPIRV.cpp
index a8ff9247e796ab..f775e29d2738a9 100644
--- a/mlir/lib/Conversion/GPUToSPIRV/GPUToSPIRV.cpp
+++ b/mlir/lib/Conversion/GPUToSPIRV/GPUToSPIRV.cpp
@@ -579,7 +579,7 @@ class GPUSubgroupReduceConversion final
   LogicalResult
   matchAndRewrite(gpu::SubgroupReduceOp op, OpAdaptor adaptor,
                   ConversionPatternRewriter &rewriter) const override {
-    if (op.getClusterSize())
+    if (op.getClusterSize() || op.getClusterStride() != 1)
       return rewriter.notifyMatchFailure(
           op, "lowering for clustered reduce not implemented");
 
diff --git a/mlir/lib/Dialect/GPU/IR/GPUDialect.cpp b/mlir/lib/Dialect/GPU/IR/GPUDialect.cpp
index a59952228ef6ea..165e92482b1ec6 100644
--- a/mlir/lib/Dialect/GPU/IR/GPUDialect.cpp
+++ b/mlir/lib/Dialect/GPU/IR/GPUDialect.cpp
@@ -629,6 +629,12 @@ LogicalResult gpu::SubgroupReduceOp::verify() {
     }
   }
 
+  uint32_t stride = getClusterStride();
+  if (!llvm::isPowerOf2_32(stride)) {
+    return emitOpError() << "cluster stride " << stride
+                         << " is not a power of two";
+  }
+
   return success();
 }
 
diff --git a/mlir/lib/Dialect/GPU/Transforms/SubgroupReduceLowering.cpp b/mlir/lib/Dialect/GPU/Transforms/SubgroupReduceLowering.cpp
index 288f7ab9f30222..2117c30c5ddd94 100644
--- a/mlir/lib/Dialect/GPU/Transforms/SubgroupReduceLowering.cpp
+++ b/mlir/lib/Dialect/GPU/Transforms/SubgroupReduceLowering.cpp
@@ -50,8 +50,6 @@ struct BreakDownSubgroupReduce final : OpRewritePattern<gpu::SubgroupReduceOp> {
 
   LogicalResult matchAndRewrite(gpu::SubgroupReduceOp op,
                                 PatternRewriter &rewriter) const override {
-    std::optional<uint32_t> clusterSize = op.getClusterSize();
-
     auto vecTy = dyn_cast<VectorType>(op.getType());
     if (!vecTy || vecTy.getNumElements() < 2)
       return rewriter.notifyMatchFailure(op, "not a multi-element reduction");
@@ -97,7 +95,8 @@ struct BreakDownSubgroupReduce final : OpRewritePattern<gpu::SubgroupReduceOp> {
       }
 
       Value reduce = rewriter.create<gpu::SubgroupReduceOp>(
-          loc, extracted, op.getOp(), op.getUniform(), clusterSize);
+          loc, extracted, op.getOp(), op.getUniform(), op.getClusterSize(),
+          op.getClusterStride());
       if (numElems == 1) {
         res = rewriter.create<vector::InsertOp>(loc, reduce, res, startIdx);
         continue;
@@ -129,8 +128,6 @@ struct ScalarizeSingleElementReduce final
 
   LogicalResult matchAndRewrite(gpu::SubgroupReduceOp op,
                                 PatternRewriter &rewriter) const override {
-    std::optional<uint32_t> clusterSize = op.getClusterSize();
-
     auto vecTy = dyn_cast<VectorType>(op.getType());
     if (!vecTy || vecTy.getNumElements() != 1)
       return rewriter.notifyMatchFailure(op, "not a single-element reduction");
@@ -140,44 +137,75 @@ struct ScalarizeSingleElementReduce final
     Location loc = op.getLoc();
     Value extracted = rewriter.create<vector::ExtractOp>(loc, op.getValue(), 0);
     Value reduce = rewriter.create<gpu::SubgroupReduceOp>(
-        loc, extracted, op.getOp(), op.getUniform(), clusterSize);
+        loc, extracted, op.getOp(), op.getUniform(), op.getClusterSize(),
+        op.getClusterStride());
     rewriter.replaceOpWithNewOp<vector::BroadcastOp>(op, vecTy, reduce);
     return success();
   }
 };
 
-/// Emits a subgroup reduction using a sequence of shuffles. Uses the `packFn`
-/// and `unpackFn` to convert to the native shuffle type and to the reduction
-/// type, respectively. For example, with `input` of type `f16`, `packFn` could
-/// build ops to cast the value to `i32` to perform shuffles, while `unpackFn`
-/// would cast it back to `f16` to perform arithmetic reduction on. Assumes that
-/// the subgroup is `subgroupSize` lanes wide and divides it into clusters of
-/// `clusterSize` lanes, reducing all lanes in each cluster in parallel.
-static Value createSubgroupShuffleReduction(
-    OpBuilder &builder, Location loc, Value input, gpu::AllReduceOperation mode,
-    unsigned clusterSize, unsigned subgroupSize,
-    function_ref<Value(Value)> packFn, function_ref<Value(Value)> unpackFn) {
-  assert(llvm::isPowerOf2_32(clusterSize));
-  assert(llvm::isPowerOf2_32(subgroupSize));
-  assert(clusterSize <= subgroupSize);
-  // Lane value always stays in the original type. We use it to perform arith
-  // reductions.
-  Value laneVal = input;
-  // Parallel reduction using butterfly shuffles.
-  for (unsigned i = 1; i < clusterSize; i <<= 1) {
-    Value shuffled = builder
-                         .create<gpu::ShuffleOp>(loc, packFn(laneVal), i,
-                                                 /*width=*/subgroupSize,
-                                                 /*mode=*/gpu::ShuffleMode::XOR)
-                         .getShuffleResult();
-    laneVal = vector::makeArithReduction(builder, loc,
-                                         gpu::convertReductionKind(mode),
-                                         laneVal, unpackFn(shuffled));
-    assert(laneVal.getType() == input.getType());
+struct ClusterInfo {
+  unsigned clusterStride;
+  unsigned clusterSize;
+  unsigned subgroupSize;
+  LogicalResult getAndValidate(gpu::SubgroupReduceOp op,
+                               unsigned subgroupSize) {
+    this->subgroupSize = subgroupSize;
+
+    std::optional<uint32_t> clusterSize = op.getClusterSize();
+    if (clusterSize && *clusterSize > subgroupSize)
+      return op.emitOpError()
+             << "cluster size " << *clusterSize
+             << " is greater than subgroup size " << subgroupSize;
+    this->clusterSize = clusterSize.value_or(subgroupSize); // effective size
+
+    clusterStride = op.getClusterStride();
+    if (clusterStride >= subgroupSize)
+      return op.emitOpError()
+             << "cluster stride " << clusterStride
+             << " is not less than subgroup size " << subgroupSize;
+
+    return success();
   }
+  /// Emits a subgroup reduction using a sequence of shuffles. Uses the `packFn`
+  /// and `unpackFn` to convert to the native shuffle type and to the reduction
+  /// type, respectively. For example, with `input` of type `f16`, `packFn`
+  /// could build ops to cast the value to `i32` to perform shuffles, while
+  /// `unpackFn` would cast it back to `f16` to perform arithmetic reduction on.
+  /// Assumes that the subgroup is `subgroupSize` lanes wide and divides it into
+  /// clusters of `clusterSize` lanes starting at lane 0 with a stride of
+  /// `clusterStride` for lanes within a cluster, reducing all lanes in each
+  /// cluster in parallel.
+  Value
+  createSubgroupShuffleReduction(OpBuilder &builder, Location loc, Value input,
+                                 gpu::AllReduceOperation mode,
+                                 function_ref<Value(Value)> packFn,
+                                 function_ref<Value(Value)> unpackFn) const {
+    assert(llvm::isPowerOf2_32(clusterStride));
+    assert(llvm::isPowerOf2_32(clusterSize));
+    assert(llvm::isPowerOf2_32(subgroupSize));
+    assert(clusterStride < subgroupSize);
+    assert(clusterSize <= subgroupSize);
+    // Lane value always stays in the original type. We use it to perform arith
+    // reductions.
+    Value laneVal = input;
+    // Parallel reduction using butterfly shuffles.
+    for (unsigned i = clusterStride; i < clusterStride * clusterSize; i <<= 1) {
+      Value shuffled =
+          builder
+              .create<gpu::ShuffleOp>(loc, packFn(laneVal), i,
+                                      /*width=*/subgroupSize,
+                                      /*mode=*/gpu::ShuffleMode::XOR)
+              .getShuffleResult();
+      laneVal = vector::makeArithReduction(builder, loc,
+                                           gpu::convertReductionKind(mode),
+                                           laneVal, unpackFn(shuffled));
+      assert(laneVal.getType() == input.getType());
+    }
 
-  return laneVal;
-}
+    return laneVal;
+  }
+};
 
 /// Lowers scalar gpu subgroup reductions to a series of shuffles.
 struct ScalarSubgroupReduceToShuffles final
@@ -190,12 +218,9 @@ struct ScalarSubgroupReduceToShuffles final
 
   LogicalResult matchAndRewrite(gpu::SubgroupReduceOp op,
                                 PatternRewriter &rewriter) const override {
-    std::optional<uint32_t> clusterSize = op.getClusterSize();
-    if (clusterSize && *clusterSize > subgroupSize)
-      return op.emitOpError()
-             << "cluster size " << *clusterSize
-             << " is greater than subgroup size " << subgroupSize;
-    unsigned effectiveClusterSize = clusterSize.value_or(subgroupSize);
+    ClusterInfo clusterInfo;
+    if (clusterInfo.getAndValidate(op, subgroupSize).failed())
+      return failure();
 
     Type valueTy = op.getType();
     unsigned elemBitwidth =
@@ -208,10 +233,9 @@ struct ScalarSubgroupReduceToShuffles final
     // Since this is already a native shuffle scalar, no packing is necessary.
     if (elemBitwidth == shuffleBitwidth) {
       auto identityFn = [](Value v) { return v; };
-      rewriter.replaceOp(op, createSubgroupShuffleReduction(
+      rewriter.replaceOp(op, clusterInfo.createSubgroupShuffleReduction(
                                  rewriter, loc, op.getValue(), op.getOp(),
-                                 effectiveClusterSize, subgroupSize, identityFn,
-                                 identityFn));
+                                 identityFn, identityFn));
       return success();
     }
 
@@ -231,9 +255,8 @@ struct ScalarSubgroupReduceToShuffles final
     };
 
     rewriter.replaceOp(
-        op, createSubgroupShuffleReduction(rewriter, loc, op.getValue(),
-                                           op.getOp(), effectiveClusterSize,
-                                           subgroupSize, packFn, unpackFn));
+        op, clusterInfo.createSubgroupShuffleReduction(
+                rewriter, loc, op.getValue(), op.getOp(), packFn, unpackFn));
     return success();
   }
 
@@ -253,12 +276,9 @@ struct VectorSubgroupReduceToShuffles final
 
   LogicalResult matchAndRewrite(gpu::SubgroupReduceOp op,
                                 PatternRewriter &rewriter) const override {
-    std::optional<uint32_t> clusterSize = op.getClusterSize();
-    if (clusterSize && *clusterSize > subgroupSize)
-      return op.emitOpError()
-             << "cluster size " << *clusterSize
-             << " is greater than subgroup size " << subgroupSize;
-    unsigned effectiveClusterSize = clusterSize.value_or(subgroupSize);
+    ClusterInfo clusterInfo;
+    if (clusterInfo.getAndValidate(op, subgroupSize).failed())
+      return failure();
 
     auto vecTy = dyn_cast<VectorType>(op.getType());
     if (!vecTy)
@@ -308,9 +328,8 @@ struct VectorSubgroupReduceToShuffles final
       return rewriter.create<vector::BitCastOp>(loc, extendedVecTy, asIntVec);
     };
 
-    Value res = createSubgroupShuffleReduction(rewriter, loc, extendedInput,
-                                               op.getOp(), effectiveClusterSize,
-                                               subgroupSize, packFn, unpackFn);
+    Value res = clusterInfo.createSubgroupShuffleReduction(
+        rewriter, loc, extendedInput, op.getOp(), packFn, unpackFn);
 
     if (vecBitwidth < shuffleBitwidth) {
       res = rewriter.create<vector::ExtractStridedSliceOp>(
diff --git a/mlir/test/Dialect/GPU/canonicalize.mlir b/mlir/test/Dialect/GPU/canonicalize.mlir
index 469c03c9460df1..d342ae9df10eea 100644
--- a/mlir/test/Dialect/GPU/canonicalize.mlir
+++ b/mlir/test/Dialect/GPU/canonicalize.mlir
@@ -255,7 +255,7 @@ func.func @subgroup_reduce_cluster_size_1() {
   gpu.launch blocks(%arg0, %arg1, %arg2) in (%arg6 = %0#0, %arg7 = %0#1, %arg8 = %0#2)
     threads(%arg3, %arg4, %arg5) in (%arg9 = %0#3, %arg10 = %0#4, %arg11 = %0#5) {
     %1 = "test.test2"() : () -> i32
-    %2 = gpu.subgroup_reduce add %1 cluster_size(1) : (i32) -> (i32)
+    %2 = gpu.subgroup_reduce add %1 cluster(size=1) : (i32) -> (i32)
     "test.test3"(%2) : (i32) -> ()
     gpu.terminator
   }
diff --git a/mlir/test/Dialect/GPU/invalid.mlir b/mlir/test/Dialect/GPU/invalid.mlir
index 20c1c4cf8a2d0b..a6fa202c7ce3c2 100644
--- a/mlir/test/Dialect/GPU/invalid.mlir
+++ b/mlir/test/Dialect/GPU/invalid.mlir
@@ -335,7 +335,7 @@ func.func @reduce_invalid_op_type_maximumf(%arg0 : i32) {
 
 func.func @subgroup_reduce_zero_cluster_size(%arg0 : vector<4xf32>) {
   // expected-error at +1 {{cluster size 0 is not a power of two}}
-  %res = gpu.subgroup_reduce add %arg0 cluster_size(0) : (vector<4xf32>) -> vector<4xf32>
+  %res = gpu.subgroup_reduce add %arg0 cluster(size = 0) : (vector<4xf32>) -> vector<4xf32>
   return
 }
 
@@ -343,7 +343,23 @@ func.func @subgroup_reduce_zero_cluster_size(%arg0 : vector<4xf32>) {
 
 func.func @subgroup_reduce_npot_cluster_size(%arg0 : vector<4xf32>) {
   // expected-error at +1 {{cluster size 3 is not a power of two}}
-  %res = gpu.subgroup_reduce add %arg0 cluster_size(3) : (vector<4xf32>) -> vector<4xf32>
+  %res = gpu.subgroup_reduce add %arg0 cluster(size = 3) : (vector<4xf32>) -> vector<4xf32>
+  return
+}
+
+// -----
+
+func.func @subgroup_reduce_zero_cluster_stride(%arg0 : vector<4xf32>) {
+  // expected-error at +1 {{cluster stride 0 is not a power of two}}
+  %res = gpu.subgroup_reduce add %arg0 cluster(size = 4, stride = 0) : (vector<4xf32>) -> vector<4xf32>
+  return
+}
+
+// -----
+
+func.func @subgroup_reduce_npot_cluster_stride(%arg0 : vector<4xf32>) {
+  // expected-error at +1 {{cluster stride 3 is not a power of two}}
+  %res = gpu.subgroup_reduce add %arg0 { cluster_stride = 3 : i32 } : (vector<4xf32>) -> vector<4xf32>
   return
 }
 
diff --git a/mlir/test/Dialect/GPU/subgroup-reduce-lowering.mlir b/mlir/test/Dialect/GPU/subgroup-reduce-lowering.mlir
index 37608ce4cfed76..9f2aa1be52fc37 100644
--- a/mlir/test/Dialect/GPU/subgroup-reduce-lowering.mlir
+++ b/mlir/test/Dialect/GPU/subgroup-reduce-lowering.mlir
@@ -34,14 +34,14 @@ gpu.module @kernels {
     %sum1 = gpu.subgroup_reduce mul %arg0 uniform : (vector<5xf16>) -> (vector<5xf16>)
     "test.consume"(%sum1) : (vector<5xf16>) -> ()
 
-    // CHECK-SUB-COUNT-3: gpu.subgroup_reduce mul {{.+}} cluster_size(4)
+    // CHECK-SUB-COUNT-3: gpu.subgroup_reduce mul {{.+}} cluster(size = 4)
     // CHECK-SUB: "test.consume"
-    %sum2 = gpu.subgroup_reduce mul %arg0 cluster_size(4) : (vector<5xf16>) -> (vector<5xf16>)
+    %sum2 = gpu.subgroup_reduce mul %arg0 cluster(size = 4) : (vector<5xf16>) -> (vector<5xf16>)
     "test.consume"(%sum2) : (vector<5xf16>) -> ()
 
-    // CHECK-SUB-COUNT-3: gpu.subgroup_reduce mul {{.+}} uniform cluster_size(4)
+    // CHECK-SUB-COUNT-3: gpu.subgroup_reduce mul {{.+}} uniform cluster(size = 4, stride = 2)
     // CHECK-SUB: "test.consume"
-    %sum3 = gpu.subgroup_reduce mul %arg0 uniform cluster_size(4) : (vector<5xf16>) -> (vector<5xf16>)
+    %sum3 = gpu.subgroup_reduce mul %arg0 uniform cluster(size = 4, stride = 2) : (vector<5xf16>) -> (vector<5xf16>)
     "test.consume"(%sum3) : (vector<5xf16>) -> ()
 
     // CHECK-SUB: gpu.return
@@ -65,14 +65,15 @@ gpu.module @kernels {
     %sum1 = gpu.subgroup_reduce add %arg0 uniform : (vector<1xf32>) -> (vector<1xf32>)
     "test.consume"(%sum1) : (vector<1xf32>) -> ()
 
-    // CHECK-SUB: gpu.subgroup_reduce add {{.+}} cluster_size(8) : (f32) -> f32
+    // Note stride is dropped because it is == 1.
+    // CHECK-SUB: gpu.subgroup_reduce add {{.+}} cluster(size = 8) : (f32) -> f32
     // CHECK-SUB: "test.consume"
-    %sum2 = gpu.subgroup_reduce add %arg0 cluster_size(8) : (vector<1xf32>) -> (vector<1xf32>)
+    %sum2 = gpu.subgroup_reduce add %arg0 cluster(size = 8, stride = 1) : (vector<...
[truncated]

``````````

</details>


https://github.com/llvm/llvm-project/pull/107142


More information about the Mlir-commits mailing list