[Mlir-commits] [mlir] ac4bd74 - [mlir] Add apply_patterns.linalg.pad_vectorization TD Op (#112504)
llvmlistbot at llvm.org
llvmlistbot at llvm.org
Fri Oct 25 10:39:30 PDT 2024
Author: Andrzej WarzyĆski
Date: 2024-10-25T10:39:26-07:00
New Revision: ac4bd74190fedfbe025ef757ff308dd184a507f5
URL: https://github.com/llvm/llvm-project/commit/ac4bd74190fedfbe025ef757ff308dd184a507f5
DIFF: https://github.com/llvm/llvm-project/commit/ac4bd74190fedfbe025ef757ff308dd184a507f5.diff
LOG: [mlir] Add apply_patterns.linalg.pad_vectorization TD Op (#112504)
This PR simply wraps `populatePadOpVectorizationPatterns` into a new
Transform Dialect Op: `apply_patterns.linalg.pad_vectorization`.
This change makes it possible to run (and test) the corresponding
patterns _without_:
`transform.structured.vectorize_children_and_apply_patterns`.
Note that the Op above only supports non-masked vectorisation (i.e. when
the inputs are static), so, effectively, only fixed-width vectorisation
(as opposed to scalable vectorisation). As such, this change is required
to construct vectorization pipelines for tensor.pad targeting scalable
vectors.
To test the new Op and the corresponding patterns, I added
"vectorization-pad-patterns.mlir" - most tests have been extracted from
"vectorization-with-patterns.mlir".
Added:
mlir/test/Dialect/Linalg/vectorization-pad-patterns.mlir
Modified:
mlir/include/mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.td
mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp
mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
mlir/test/Dialect/Linalg/vectorization-with-patterns.mlir
Removed:
################################################################################
diff --git a/mlir/include/mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.td b/mlir/include/mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.td
index 040c04b0410ecf..abf446887c5442 100644
--- a/mlir/include/mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.td
+++ b/mlir/include/mlir/Dialect/Linalg/TransformOps/LinalgTransformOps.td
@@ -84,6 +84,26 @@ def ApplyFoldAddIntoDestPatternsOp : Op<Transform_Dialect,
let assemblyFormat = "attr-dict";
}
+def ApplyPadVectorizationPatternsOp : Op<Transform_Dialect,
+ "apply_patterns.linalg.pad_vectorization",
+ [DeclareOpInterfaceMethods<PatternDescriptorOpInterface>]> {
+ let description = [{
+ Apply patterns that vectorize tensor.pad.
+
+ These patterns rewrite tensor.pad Ops using vector.transfer_read and
+ vector.transfer_write operations. This is done either by:
+ 1. Folding tensor.pad with an existing vector.transfer_read /
+ vector.transfer_write Op (generated prior to running these patterns).
+ 2. Rewriting it (when matched together with q tensor.insert_slice
+ consumer Op) as a vector.transfer_read + vector.transfer_write pair.
+
+ In both cases, these patterns look at producers and consumers for the
+ matched tensor.pad Op to find opportunities for vectorization.
+ }];
+
+ let assemblyFormat = "attr-dict";
+}
+
//===----------------------------------------------------------------------===//
// BufferizeToAllocationOp
//===----------------------------------------------------------------------===//
diff --git a/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp b/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp
index 1f1d8ad89ae2b9..3d3f0a93a3829b 100644
--- a/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp
+++ b/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp
@@ -253,6 +253,11 @@ void transform::ApplyFoldAddIntoDestPatternsOp::populatePatterns(
linalg::populateFoldAddIntoDestPatterns(patterns);
}
+void transform::ApplyPadVectorizationPatternsOp::populatePatterns(
+ RewritePatternSet &patterns) {
+ linalg::populatePadOpVectorizationPatterns(patterns);
+}
+
//===----------------------------------------------------------------------===//
// BufferizeToAllocationOp
//===----------------------------------------------------------------------===//
diff --git a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
index e1b97fbf985df8..0a2457176a1d47 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
@@ -2712,6 +2712,9 @@ struct PadOpVectorizationWithInsertSlicePattern
void mlir::linalg::populatePadOpVectorizationPatterns(
RewritePatternSet &patterns, PatternBenefit baseBenefit) {
+ // TODO: The following pattern implements "decomposition" and
+ // optional "vectorization". Seperate "decomposition" into a sepereate
+ // pre-processing pattern group.
patterns.add<GenericPadOpVectorizationPattern>(patterns.getContext(),
baseBenefit);
// Try these specialized patterns first before resorting to the generic one.
diff --git a/mlir/test/Dialect/Linalg/vectorization-pad-patterns.mlir b/mlir/test/Dialect/Linalg/vectorization-pad-patterns.mlir
new file mode 100644
index 00000000000000..2aa4638af3f0f3
--- /dev/null
+++ b/mlir/test/Dialect/Linalg/vectorization-pad-patterns.mlir
@@ -0,0 +1,274 @@
+// RUN: mlir-opt %s -transform-interpreter -split-input-file | FileCheck %s
+
+///----------------------------------------------------------------------------------------
+/// [Pattern: PadOpVectorizationWithTransferReadPattern]
+///----------------------------------------------------------------------------------------
+// CHECK-LABEL: func @pad_and_transfer_read
+// CHECK-SAME: %[[ARG0:.*]]: tensor<5x6xf32>
+// CHECK-NOT: tensor.pad
+// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
+// CHECK-DAG: %[[C5:.*]] = arith.constant 5.0
+// CHECK: %[[RESULT:.*]] = vector.transfer_read %[[ARG0]][%[[C0]], %[[C0]]], %[[C5]] : tensor<5x6xf32>, vector<7x9xf32>
+// CHECK: return %[[RESULT]]
+func.func @pad_and_transfer_read(%arg0: tensor<5x6xf32>) -> vector<7x9xf32> {
+ %c0 = arith.constant 0 : index
+ %c5 = arith.constant 5.0 : f32
+ %c6 = arith.constant 6.0 : f32
+ %0 = tensor.pad %arg0 low[0, 0] high[5, 7] {
+ ^bb0(%arg1: index, %arg2: index):
+ tensor.yield %c5 : f32
+ } : tensor<5x6xf32> to tensor<10x13xf32>
+ %1 = vector.transfer_read %0[%c0, %c0], %c6
+ : tensor<10x13xf32>, vector<7x9xf32>
+ return %1 : vector<7x9xf32>
+}
+
+module attributes {transform.with_named_sequence} {
+ transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
+ %func_op = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.op<"func.func">
+
+ transform.apply_patterns to %func_op {
+ transform.apply_patterns.linalg.pad_vectorization
+ } : !transform.op<"func.func">
+ transform.yield
+ }
+}
+
+// -----
+
+///----------------------------------------------------------------------------------------
+/// [Pattern: PadOpVectorizationWithTransferWritePattern]
+///----------------------------------------------------------------------------------------
+func.func private @make_vector() -> vector<7x9xf32>
+
+// CHECK-LABEL: func @pad_and_transfer_write_static_low_and_high
+// CHECK-SAME: %[[ARG0:.*]]: tensor<5x6xf32>
+// CHECK-NOT: tensor.pad
+// CHECK: %[[C0:.*]] = arith.constant 0 : index
+// CHECK: %[[VEC0:.*]] = call @make_vector() : () -> vector<7x9xf32>
+// CHECK: %[[RESULT:.*]] = vector.transfer_write %[[VEC0]], %[[ARG0]][%[[C0]], %[[C0]]] : vector<7x9xf32>, tensor<5x6xf32>
+// CHECK: return %[[RESULT]]
+func.func @pad_and_transfer_write_static_low_and_high(
+ %arg0: tensor<5x6xf32>) -> tensor<5x6xf32> {
+ %c0 = arith.constant 0 : index
+ %c5 = arith.constant 5.0 : f32
+ %0 = tensor.pad %arg0 low[0, 0] high[5, 7] {
+ ^bb0(%arg2: index, %arg3: index):
+ tensor.yield %c5 : f32
+ } : tensor<5x6xf32> to tensor<10x13xf32>
+ %1 = call @make_vector() : () -> vector<7x9xf32>
+ %2 = vector.transfer_write %1, %0[%c0, %c0]
+ : vector<7x9xf32>, tensor<10x13xf32>
+ %3 = tensor.extract_slice %2[0, 0] [5, 6] [1, 1] : tensor<10x13xf32> to tensor<5x6xf32>
+ return %3 : tensor<5x6xf32>
+}
+
+module attributes {transform.with_named_sequence} {
+ transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
+ %func_op = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.op<"func.func">
+
+ transform.apply_patterns to %func_op {
+ transform.apply_patterns.linalg.pad_vectorization
+ } : !transform.op<"func.func">
+ transform.yield
+ }
+}
+
+// -----
+
+func.func private @make_vector() -> vector<7x9xf32>
+
+// CHECK-LABEL: func @pad_and_transfer_write_static_low_dynamic_high
+// CHECK-SAME: %[[ARG0:.*]]: tensor<?x?xf32>, %[[SIZE:.*]]: index, %[[PADDING:.*]]: index
+// CHECK-NOT: tensor.pad
+// CHECK: %[[C0:.*]] = arith.constant 0 : index
+// CHECK: %[[SUB:.*]] = tensor.extract_slice %[[ARG0]][0, 0] [%[[SIZE]], 6] [1, 1] : tensor<?x?xf32> to tensor<?x6xf32>
+// CHECK: %[[VEC0:.*]] = call @make_vector() : () -> vector<7x9xf32>
+// CHECK: %[[RESULT:.*]] = vector.transfer_write %[[VEC0]], %[[SUB]][%[[C0]], %[[C0]]] : vector<7x9xf32>, tensor<?x6xf32>
+// CHECK: return %[[RESULT]]
+func.func @pad_and_transfer_write_static_low_dynamic_high(
+ %arg0: tensor<?x?xf32>, %size: index, %padding: index) -> tensor<?x6xf32> {
+ %c0 = arith.constant 0 : index
+ %c5 = arith.constant 5.0 : f32
+ %s = tensor.extract_slice %arg0[0, 0] [%size, 6] [1, 1]
+ : tensor<?x?xf32> to tensor<?x6xf32>
+ %0 = tensor.pad %s low[0, 0] high[%padding, 7] {
+ ^bb0(%arg2: index, %arg3: index):
+ tensor.yield %c5 : f32
+ } : tensor<?x6xf32> to tensor<?x13xf32>
+ %1 = call @make_vector() : () -> vector<7x9xf32>
+ %2 = vector.transfer_write %1, %0[%c0, %c0]
+ : vector<7x9xf32>, tensor<?x13xf32>
+ %3 = tensor.extract_slice %2[0, 0] [%size, 6] [1, 1] : tensor<?x13xf32> to tensor<?x6xf32>
+ return %3 : tensor<?x6xf32>
+}
+
+module attributes {transform.with_named_sequence} {
+ transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
+ %func_op = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.op<"func.func">
+
+ transform.apply_patterns to %func_op {
+ transform.apply_patterns.linalg.pad_vectorization
+ } : !transform.op<"func.func">
+ transform.yield
+ }
+}
+
+
+// -----
+
+///----------------------------------------------------------------------------------------
+/// [Pattern: PadOpVectorizationWithInsertSlicePattern]
+///----------------------------------------------------------------------------------------
+
+func.func private @make_vector() -> tensor<12x13xf32>
+
+// CHECK-LABEL: func @pad_and_insert_slice_source
+// CHECK-SAME: %[[ARG0:.*]]: tensor<5x6xf32>
+// CHECK-NOT: tensor.pad
+// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
+// CHECK-DAG: %[[C5:.*]] = arith.constant 5.0
+// CHECK: %[[VEC0:.*]] = call @make_vector() : () -> tensor<12x13xf32>
+// CHECK: %[[READ:.*]] = vector.transfer_read %[[ARG0]][%[[C0]], %[[C0]]], %[[C5]] : tensor<5x6xf32>, vector<7x9xf32>
+// CHECK: %[[WRITE:.*]] = vector.transfer_write %[[READ]], %[[VEC0]][%[[C0]], %[[C0]]] {in_bounds = [true, true]} : vector<7x9xf32>, tensor<12x13xf32>
+// CHECK: return %[[WRITE]]
+func.func @pad_and_insert_slice_source(
+ %arg0: tensor<5x6xf32>) -> tensor<12x13xf32> {
+ %c0 = arith.constant 0 : index
+ %c5 = arith.constant 5.0 : f32
+ %0 = tensor.pad %arg0 low[0, 0] high[2, 3] {
+ ^bb0(%arg2: index, %arg3: index):
+ tensor.yield %c5 : f32
+ } : tensor<5x6xf32> to tensor<7x9xf32>
+ %1 = call @make_vector() : () -> tensor<12x13xf32>
+ %r = tensor.insert_slice %0 into %1[0, 0][7, 9][1, 1] : tensor<7x9xf32> into tensor<12x13xf32>
+ return %r : tensor<12x13xf32>
+}
+
+module attributes {transform.with_named_sequence} {
+ transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
+ %func_op = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.op<"func.func">
+
+ transform.apply_patterns to %func_op {
+ transform.apply_patterns.linalg.pad_vectorization
+ } : !transform.op<"func.func">
+ transform.yield
+ }
+}
+
+
+// -----
+
+///----------------------------------------------------------------------------------------
+/// tensor::PadOp -> tensor::EmptyOp + linalg::FillOp/tensor::GenerateOp + tensor::InsertSliceOp
+/// [Pattern: GenericPadOpVectorizationPattern]
+///----------------------------------------------------------------------------------------
+
+func.func private @make_vector() -> tensor<12x13xf32>
+
+// Same as @pad_and_insert_slice_dest in vectorization-with-patterns.mlir, but
+// over here linalg::fill is not vectorized (patterns for linalg.fill are not
+// included here)
+// CHECK-LABEL: func.func @pad_and_insert_slice_dest(
+// CHECK-SAME: %[[ARG_0:.*]]: tensor<1x5x6xf32>) -> tensor<1x12x13xf32> {
+// CHECK-NOT: tensor.pad
+// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
+// CHECK-DAG: %[[PAD:.*]] = arith.constant 5.000000e+00 : f32
+// CHECK: %[[EMPTY:.*]] = tensor.empty() : tensor<1x12x13xf32>
+// CHECK: %[[FILL:.*]] = linalg.fill ins(%[[PAD]] : f32) outs(%[[EMPTY]] : tensor<1x12x13xf32>) -> tensor<1x12x13xf32>
+// CHECK: %[[READ:.*]] = vector.transfer_read %[[ARG_0]]{{\[}}%[[C0]], %[[C0]], %[[C0]]], %[[PAD]] {in_bounds = [true, true, true]} : tensor<1x5x6xf32>, vector<1x5x6xf32>
+// CHECK: %[[WRITE:.*]] = vector.transfer_write %[[READ]], %[[FILL]]{{\[}}%[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true, true, true]} : vector<1x5x6xf32>, tensor<1x12x13xf32>
+// CHECK: %[[VEC:.*]] = call @make_vector() : () -> tensor<12x13xf32>
+// CHECK: %[[RES:.*]] = tensor.insert_slice %[[VEC]] into %[[WRITE]][0, 0, 0] [1, 12, 13] [1, 1, 1] : tensor<12x13xf32> into tensor<1x12x13xf32>
+// CHECK: return %[[RES]] : tensor<1x12x13xf32>
+
+func.func @pad_and_insert_slice_dest(
+ %arg0: tensor<1x5x6xf32>) -> tensor<1x12x13xf32> {
+ %c5 = arith.constant 5.0 : f32
+ %0 = tensor.pad %arg0 low[0, 0, 0] high[0, 7, 7] {
+ ^bb0(%arg2: index, %arg3: index, %arg4: index):
+ tensor.yield %c5 : f32
+ } : tensor<1x5x6xf32> to tensor<1x12x13xf32>
+ %1 = call @make_vector() : () -> tensor<12x13xf32>
+ %r = tensor.insert_slice %1 into %0[0, 0, 0][1, 12, 13][1, 1, 1] : tensor<12x13xf32> into tensor<1x12x13xf32>
+ return %r : tensor<1x12x13xf32>
+}
+
+module attributes {transform.with_named_sequence} {
+ transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
+ %func_op = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.op<"func.func">
+
+ transform.apply_patterns to %func_op {
+ transform.apply_patterns.linalg.pad_vectorization
+ } : !transform.op<"func.func">
+ transform.yield
+ }
+}
+
+// -----
+func.func private @make_vector() -> vector<7x9xf32>
+
+// Variant of @pad_and_transfer_write_static
+
+// CHECK-LABEL: func @pad_and_transfer_write_static_non_zero_low_pad
+// CHECK-NOT: tensor.pad
+// CHECK: linalg.fill
+func.func @pad_and_transfer_write_static_non_zero_low_pad(
+ %arg0: tensor<5x6xf32>) -> tensor<5x6xf32> {
+ %c0 = arith.constant 0 : index
+ %c5 = arith.constant 5.0 : f32
+ %0 = tensor.pad %arg0 low[0, 1] high[5, 6] {
+ ^bb0(%arg2: index, %arg3: index):
+ tensor.yield %c5 : f32
+ } : tensor<5x6xf32> to tensor<10x13xf32>
+ %1 = call @make_vector() : () -> vector<7x9xf32>
+ %2 = vector.transfer_write %1, %0[%c0, %c0]
+ : vector<7x9xf32>, tensor<10x13xf32>
+ %3 = tensor.extract_slice %2[0, 0] [5, 6] [1, 1] : tensor<10x13xf32> to tensor<5x6xf32>
+ return %3 : tensor<5x6xf32>
+}
+
+module attributes {transform.with_named_sequence} {
+ transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
+ %func_op = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.op<"func.func">
+
+ transform.apply_patterns to %func_op {
+ transform.apply_patterns.linalg.pad_vectorization
+ } : !transform.op<"func.func">
+ transform.yield
+ }
+}
+
+// -----
+func.func private @make_vector() -> vector<7x9xf32>
+
+// Variant of @pad_and_transfer_write_static
+
+// CHECK-LABEL: func @pad_and_transfer_write_static_non_zero_offset
+// CHECK-NOT: tensor.pad
+// CHECK: linalg.fill
+func.func @pad_and_transfer_write_static_non_zero_offset(
+ %arg0: tensor<5x6xf32>) -> tensor<5x6xf32> {
+ %c0 = arith.constant 0 : index
+ %c5 = arith.constant 5.0 : f32
+ %0 = tensor.pad %arg0 low[0, 1] high[5, 6] {
+ ^bb0(%arg2: index, %arg3: index):
+ tensor.yield %c5 : f32
+ } : tensor<5x6xf32> to tensor<10x13xf32>
+ %1 = call @make_vector() : () -> vector<7x9xf32>
+ %2 = vector.transfer_write %1, %0[%c0, %c0]
+ : vector<7x9xf32>, tensor<10x13xf32>
+ %3 = tensor.extract_slice %2[0, 1] [5, 6] [1, 1] : tensor<10x13xf32> to tensor<5x6xf32>
+ return %3 : tensor<5x6xf32>
+}
+
+module attributes {transform.with_named_sequence} {
+ transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
+ %func_op = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.op<"func.func">
+
+ transform.apply_patterns to %func_op {
+ transform.apply_patterns.linalg.pad_vectorization
+ } : !transform.op<"func.func">
+ transform.yield
+ }
+}
diff --git a/mlir/test/Dialect/Linalg/vectorization-with-patterns.mlir b/mlir/test/Dialect/Linalg/vectorization-with-patterns.mlir
index 1c6a786bfa436d..189507d97d6dc2 100644
--- a/mlir/test/Dialect/Linalg/vectorization-with-patterns.mlir
+++ b/mlir/test/Dialect/Linalg/vectorization-with-patterns.mlir
@@ -935,149 +935,6 @@ module attributes {transform.with_named_sequence} {
}
}
-// -----
-
-// CHECK-LABEL: func @pad_and_transfer_read
-// CHECK-SAME: %[[ARG0:.*]]: tensor<5x6xf32>
-// CHECK-NOT: tensor.pad
-// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
-// CHECK-DAG: %[[C5:.*]] = arith.constant 5.0
-// CHECK: %[[RESULT:.*]] = vector.transfer_read %[[ARG0]][%[[C0]], %[[C0]]], %[[C5]] : tensor<5x6xf32>, vector<7x9xf32>
-// CHECK: return %[[RESULT]]
-func.func @pad_and_transfer_read(%arg0: tensor<5x6xf32>) -> vector<7x9xf32> {
- %c0 = arith.constant 0 : index
- %c5 = arith.constant 5.0 : f32
- %c6 = arith.constant 6.0 : f32
- %0 = tensor.pad %arg0 low[0, 0] high[5, 7] {
- ^bb0(%arg1: index, %arg2: index):
- tensor.yield %c5 : f32
- } : tensor<5x6xf32> to tensor<10x13xf32>
- %1 = vector.transfer_read %0[%c0, %c0], %c6
- : tensor<10x13xf32>, vector<7x9xf32>
- return %1 : vector<7x9xf32>
-}
-
-
-module attributes {transform.with_named_sequence} {
- transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
- %0 = transform.structured.match ops{["tensor.pad"]} in %arg1 : (!transform.any_op) -> !transform.any_op
- %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
- %2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_padding } : (!transform.any_op) -> !transform.any_op
- transform.yield
- }
-}
-
-// -----
-
-func.func private @make_vector() -> vector<7x9xf32>
-
-// CHECK-LABEL: func @pad_and_transfer_write_static
-// CHECK-SAME: %[[ARG0:.*]]: tensor<5x6xf32>
-// CHECK-NOT: tensor.pad
-// CHECK: %[[C0:.*]] = arith.constant 0 : index
-// CHECK: %[[VEC0:.*]] = call @make_vector() : () -> vector<7x9xf32>
-// CHECK: %[[RESULT:.*]] = vector.transfer_write %[[VEC0]], %[[ARG0]][%[[C0]], %[[C0]]] : vector<7x9xf32>, tensor<5x6xf32>
-// CHECK: return %[[RESULT]]
-func.func @pad_and_transfer_write_static(
- %arg0: tensor<5x6xf32>) -> tensor<5x6xf32> {
- %c0 = arith.constant 0 : index
- %c5 = arith.constant 5.0 : f32
- %0 = tensor.pad %arg0 low[0, 0] high[5, 7] {
- ^bb0(%arg2: index, %arg3: index):
- tensor.yield %c5 : f32
- } : tensor<5x6xf32> to tensor<10x13xf32>
- %1 = call @make_vector() : () -> vector<7x9xf32>
- %2 = vector.transfer_write %1, %0[%c0, %c0]
- : vector<7x9xf32>, tensor<10x13xf32>
- %3 = tensor.extract_slice %2[0, 0] [5, 6] [1, 1] : tensor<10x13xf32> to tensor<5x6xf32>
- return %3 : tensor<5x6xf32>
-}
-
-module attributes {transform.with_named_sequence} {
- transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
- %3 = transform.structured.match ops{["tensor.pad"]} in %arg1 : (!transform.any_op) -> !transform.any_op
- %4 = transform.get_parent_op %3 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
- %5 = transform.structured.vectorize_children_and_apply_patterns %4 { vectorize_padding } : (!transform.any_op) -> !transform.any_op
- transform.yield
- }
-}
-
-
-// -----
-
-func.func private @make_vector() -> vector<7x9xf32>
-
-// CHECK-LABEL: func @pad_and_transfer_write_dynamic_static
-// CHECK-SAME: %[[ARG0:.*]]: tensor<?x?xf32>, %[[SIZE:.*]]: index, %[[PADDING:.*]]: index
-// CHECK-NOT: tensor.pad
-// CHECK: %[[C0:.*]] = arith.constant 0 : index
-// CHECK: %[[SUB:.*]] = tensor.extract_slice %[[ARG0]][0, 0] [%[[SIZE]], 6] [1, 1] : tensor<?x?xf32> to tensor<?x6xf32>
-// CHECK: %[[VEC0:.*]] = call @make_vector() : () -> vector<7x9xf32>
-// CHECK: %[[RESULT:.*]] = vector.transfer_write %[[VEC0]], %[[SUB]][%[[C0]], %[[C0]]] : vector<7x9xf32>, tensor<?x6xf32>
-// CHECK: return %[[RESULT]]
-func.func @pad_and_transfer_write_dynamic_static(
- %arg0: tensor<?x?xf32>, %size: index, %padding: index) -> tensor<?x6xf32> {
- %c0 = arith.constant 0 : index
- %c5 = arith.constant 5.0 : f32
- %s = tensor.extract_slice %arg0[0, 0] [%size, 6] [1, 1]
- : tensor<?x?xf32> to tensor<?x6xf32>
- %0 = tensor.pad %s low[0, 0] high[%padding, 7] {
- ^bb0(%arg2: index, %arg3: index):
- tensor.yield %c5 : f32
- } : tensor<?x6xf32> to tensor<?x13xf32>
- %1 = call @make_vector() : () -> vector<7x9xf32>
- %2 = vector.transfer_write %1, %0[%c0, %c0]
- : vector<7x9xf32>, tensor<?x13xf32>
- %3 = tensor.extract_slice %2[0, 0] [%size, 6] [1, 1] : tensor<?x13xf32> to tensor<?x6xf32>
- return %3 : tensor<?x6xf32>
-}
-
-module attributes {transform.with_named_sequence} {
- transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
- %3 = transform.structured.match ops{["tensor.pad"]} in %arg1 : (!transform.any_op) -> !transform.any_op
- %4 = transform.get_parent_op %3 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
- %5 = transform.structured.vectorize_children_and_apply_patterns %4 { vectorize_padding } : (!transform.any_op) -> !transform.any_op
- transform.yield
- }
-}
-
-
-// -----
-
-func.func private @make_vector() -> tensor<12x13xf32>
-
-// CHECK-LABEL: func @pad_and_insert_slice_source
-// CHECK-SAME: %[[ARG0:.*]]: tensor<5x6xf32>
-// CHECK-NOT: tensor.pad
-// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
-// CHECK-DAG: %[[C5:.*]] = arith.constant 5.0
-// CHECK: %[[VEC0:.*]] = call @make_vector() : () -> tensor<12x13xf32>
-// CHECK: %[[READ:.*]] = vector.transfer_read %[[ARG0]][%[[C0]], %[[C0]]], %[[C5]] : tensor<5x6xf32>, vector<7x9xf32>
-// CHECK: %[[WRITE:.*]] = vector.transfer_write %[[READ]], %[[VEC0]][%[[C0]], %[[C0]]] {in_bounds = [true, true]} : vector<7x9xf32>, tensor<12x13xf32>
-// CHECK: return %[[WRITE]]
-func.func @pad_and_insert_slice_source(
- %arg0: tensor<5x6xf32>) -> tensor<12x13xf32> {
- %c0 = arith.constant 0 : index
- %c5 = arith.constant 5.0 : f32
- %0 = tensor.pad %arg0 low[0, 0] high[2, 3] {
- ^bb0(%arg2: index, %arg3: index):
- tensor.yield %c5 : f32
- } : tensor<5x6xf32> to tensor<7x9xf32>
- %1 = call @make_vector() : () -> tensor<12x13xf32>
- %r = tensor.insert_slice %0 into %1[0, 0][7, 9][1, 1] : tensor<7x9xf32> into tensor<12x13xf32>
- return %r : tensor<12x13xf32>
-}
-
-module attributes {transform.with_named_sequence} {
- transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
- %3 = transform.structured.match ops{["tensor.pad"]} in %arg1 : (!transform.any_op) -> !transform.any_op
- %4 = transform.get_parent_op %3 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
- %5 = transform.structured.vectorize_children_and_apply_patterns %4 { vectorize_padding } : (!transform.any_op) -> !transform.any_op
- transform.yield
- }
-}
-
-
// -----
func.func private @make_vector() -> tensor<12x13xf32>
More information about the Mlir-commits
mailing list