[Mlir-commits] [mlir] [mlir] Do not bufferize parallel_insert_slice dest to read for full slices (PR #112761)

llvmlistbot at llvm.org llvmlistbot at llvm.org
Thu Oct 17 11:56:29 PDT 2024


llvmbot wrote:


<!--LLVM PR SUMMARY COMMENT-->

@llvm/pr-subscribers-mlir

Author: None (Max191)

<details>
<summary>Changes</summary>

In the insert_slice bufferization interface implementation, the destination tensor is not considered read if the full tensor is overwritten by the slice. This PR adds the same check for tensor.parallel_insert_slice.

---
Full diff: https://github.com/llvm/llvm-project/pull/112761.diff


2 Files Affected:

- (modified) mlir/lib/Dialect/Tensor/Transforms/BufferizableOpInterfaceImpl.cpp (+33-27) 
- (modified) mlir/test/Dialect/Tensor/one-shot-bufferize.mlir (+15) 


``````````diff
diff --git a/mlir/lib/Dialect/Tensor/Transforms/BufferizableOpInterfaceImpl.cpp b/mlir/lib/Dialect/Tensor/Transforms/BufferizableOpInterfaceImpl.cpp
index 87464ccb71720d..def4ee93854a1a 100644
--- a/mlir/lib/Dialect/Tensor/Transforms/BufferizableOpInterfaceImpl.cpp
+++ b/mlir/lib/Dialect/Tensor/Transforms/BufferizableOpInterfaceImpl.cpp
@@ -19,6 +19,7 @@
 #include "mlir/Dialect/Tensor/IR/Tensor.h"
 #include "mlir/Dialect/Tensor/Transforms/SubsetInsertionOpInterfaceImpl.h"
 #include "mlir/Dialect/Utils/StaticValueUtils.h"
+#include "mlir/IR/BuiltinTypeInterfaces.h"
 #include "mlir/IR/Dialect.h"
 #include "mlir/IR/Operation.h"
 
@@ -636,6 +637,34 @@ struct InsertOpInterface
   }
 };
 
+template <typename InsertOpTy>
+static bool insertSliceOpRequiresRead(InsertOpTy insertSliceOp,
+                                      OpOperand &opOperand) {
+  RankedTensorType destType = insertSliceOp.getDestType();
+
+  // The source is always read.
+  if (opOperand == insertSliceOp.getSourceMutable())
+    return true;
+
+  // For the destination, it depends...
+  assert(opOperand == insertSliceOp.getDestMutable() && "expected dest");
+
+  // Dest is not read if it is entirely overwritten. E.g.:
+  // tensor.insert_slice %a into %t[0][10][1] : ... into tensor<10xf32>
+  bool allOffsetsZero =
+      llvm::all_of(insertSliceOp.getMixedOffsets(),
+                   [](OpFoldResult ofr) { return isConstantIntValue(ofr, 0); });
+  bool sizesMatchDestSizes = llvm::all_of(
+      llvm::enumerate(insertSliceOp.getMixedSizes()), [&](const auto &it) {
+        return getConstantIntValue(it.value()) ==
+               destType.getDimSize(it.index());
+      });
+  bool allStridesOne =
+      llvm::all_of(insertSliceOp.getMixedStrides(),
+                   [](OpFoldResult ofr) { return isConstantIntValue(ofr, 1); });
+  return !(allOffsetsZero && sizesMatchDestSizes && allStridesOne);
+}
+
 /// Bufferization of tensor.insert_slice. Replace with a memory copy. Under
 /// certain circumstances, this op can also be a no-op.
 ///
@@ -646,32 +675,8 @@ struct InsertSliceOpInterface
                                                      tensor::InsertSliceOp> {
   bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
                               const AnalysisState &state) const {
-    auto insertSliceOp = cast<tensor::InsertSliceOp>(op);
-    RankedTensorType destType = insertSliceOp.getDestType();
-
-    // The source is always read.
-    if (opOperand == insertSliceOp.getSourceMutable())
-      return true;
-
-    // For the destination, it depends...
-    assert(opOperand == insertSliceOp.getDestMutable() && "expected dest");
-
-    // Dest is not read if it is entirely overwritten. E.g.:
-    // tensor.insert_slice %a into %t[0][10][1] : ... into tensor<10xf32>
-    bool allOffsetsZero =
-        llvm::all_of(insertSliceOp.getMixedOffsets(), [](OpFoldResult ofr) {
-          return isConstantIntValue(ofr, 0);
-        });
-    bool sizesMatchDestSizes = llvm::all_of(
-        llvm::enumerate(insertSliceOp.getMixedSizes()), [&](const auto &it) {
-          return getConstantIntValue(it.value()) ==
-                 destType.getDimSize(it.index());
-        });
-    bool allStridesOne =
-        llvm::all_of(insertSliceOp.getMixedStrides(), [](OpFoldResult ofr) {
-          return isConstantIntValue(ofr, 1);
-        });
-    return !(allOffsetsZero && sizesMatchDestSizes && allStridesOne);
+    return insertSliceOpRequiresRead(cast<tensor::InsertSliceOp>(op),
+                                     opOperand);
   }
 
   LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
@@ -931,7 +936,8 @@ struct ParallelInsertSliceOpInterface
 
   bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
                               const AnalysisState &state) const {
-    return true;
+    return insertSliceOpRequiresRead(cast<tensor::ParallelInsertSliceOp>(op),
+                                     opOperand);
   }
 
   bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
diff --git a/mlir/test/Dialect/Tensor/one-shot-bufferize.mlir b/mlir/test/Dialect/Tensor/one-shot-bufferize.mlir
index e2169fe1404c82..dc4306b8316ab7 100644
--- a/mlir/test/Dialect/Tensor/one-shot-bufferize.mlir
+++ b/mlir/test/Dialect/Tensor/one-shot-bufferize.mlir
@@ -213,6 +213,21 @@ func.func @rank_reducing_parallel_insert_slice(%in: tensor<100xf32>, %out: tenso
 
 // -----
 
+// CHECK-LABEL: func.func @parallel_insert_full_slice_in_place
+// CHECK-NOT:     memref.alloc()
+func.func @parallel_insert_full_slice_in_place(%2: tensor<2xf32>) -> tensor<2xf32> {
+  %cst = arith.constant 0.000000e+00 : f32
+  %3 = scf.forall (%arg0) in (1) shared_outs(%arg2 = %2) -> (tensor<2xf32>) {
+    %fill = linalg.fill ins(%cst : f32) outs(%arg2 : tensor<2xf32>) -> tensor<2xf32>
+    scf.forall.in_parallel {
+      tensor.parallel_insert_slice %fill into %arg2[0] [2] [1] : tensor<2xf32> into tensor<2xf32>
+    }
+  } {mapping = [#gpu.thread<linear_dim_0>]}
+  return %3 : tensor<2xf32>
+}
+
+// -----
+
 // This test case could bufferize in-place with a better analysis. However, it
 // is simpler to let the canonicalizer fold away the tensor.insert_slice.
 

``````````

</details>


https://github.com/llvm/llvm-project/pull/112761


More information about the Mlir-commits mailing list