[Mlir-commits] [mlir] [mlir][affine] fix the issue of ceildiv-mul-ceildiv form expression n… (PR #111254)
llvmlistbot at llvm.org
llvmlistbot at llvm.org
Mon Oct 7 00:19:03 PDT 2024
https://github.com/lipracer updated https://github.com/llvm/llvm-project/pull/111254
>From a1dcc066c49afcc42dfa3a4899de8a1829d5778f Mon Sep 17 00:00:00 2001
From: lipracer <lipracer at gmail.com>
Date: Sat, 5 Oct 2024 08:55:03 -0400
Subject: [PATCH 1/2] [mlir][affine] fix the issue of ceildiv-mul-ceildiv form
expression not satisfying commutative
Fixes https://github.com/llvm/llvm-project/issues/107508
---
mlir/lib/IR/AffineExpr.cpp | 48 ++++++++++++++-----
.../Dialect/Affine/simplify-structures.mlir | 22 +++++++--
2 files changed, 56 insertions(+), 14 deletions(-)
diff --git a/mlir/lib/IR/AffineExpr.cpp b/mlir/lib/IR/AffineExpr.cpp
index 0b078966aeb85b..f947b8c3d54c6a 100644
--- a/mlir/lib/IR/AffineExpr.cpp
+++ b/mlir/lib/IR/AffineExpr.cpp
@@ -349,6 +349,8 @@ unsigned AffineDimExpr::getPosition() const {
return static_cast<ImplType *>(expr)->position;
}
+namespace {
+
/// Returns true if the expression is divisible by the given symbol with
/// position `symbolPos`. The argument `opKind` specifies here what kind of
/// division or mod operation called this division. It helps in implementing the
@@ -356,12 +358,17 @@ unsigned AffineDimExpr::getPosition() const {
///`exprKind` is floordiv and `expr` is also a binary expression of a floordiv
/// operation, then the commutative property can be used otherwise, the floordiv
/// operation is not divisible. The same argument holds for ceildiv operation.
-static bool isDivisibleBySymbol(AffineExpr expr, unsigned symbolPos,
- AffineExprKind opKind) {
+bool isDivisibleBySymbolImpl(AffineExpr expr, unsigned symbolPos,
+ AffineExprKind opKind,
+ SmallVectorImpl<AffineExpr> &visitedExprs,
+ size_t depth = 0) {
// The argument `opKind` can either be Modulo, Floordiv or Ceildiv only.
assert((opKind == AffineExprKind::Mod || opKind == AffineExprKind::FloorDiv ||
opKind == AffineExprKind::CeilDiv) &&
"unexpected opKind");
+ if (visitedExprs.size() > depth)
+ visitedExprs.resize(depth);
+ visitedExprs.emplace_back(expr);
switch (expr.getKind()) {
case AffineExprKind::Constant:
return cast<AffineConstantExpr>(expr).getValue() == 0;
@@ -372,8 +379,10 @@ static bool isDivisibleBySymbol(AffineExpr expr, unsigned symbolPos,
// Checks divisibility by the given symbol for both operands.
case AffineExprKind::Add: {
AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(expr);
- return isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos, opKind) &&
- isDivisibleBySymbol(binaryExpr.getRHS(), symbolPos, opKind);
+ return isDivisibleBySymbolImpl(binaryExpr.getLHS(), symbolPos, opKind,
+ visitedExprs, depth + 1) &&
+ isDivisibleBySymbolImpl(binaryExpr.getRHS(), symbolPos, opKind,
+ visitedExprs, depth + 1);
}
// Checks divisibility by the given symbol for both operands. Consider the
// expression `(((s1*s0) floordiv w) mod ((s1 * s2) floordiv p)) floordiv s1`,
@@ -382,16 +391,20 @@ static bool isDivisibleBySymbol(AffineExpr expr, unsigned symbolPos,
// `AffineExprKind::Mod` for this reason.
case AffineExprKind::Mod: {
AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(expr);
- return isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos,
- AffineExprKind::Mod) &&
- isDivisibleBySymbol(binaryExpr.getRHS(), symbolPos,
- AffineExprKind::Mod);
+ return isDivisibleBySymbolImpl(binaryExpr.getLHS(), symbolPos,
+ AffineExprKind::Mod, visitedExprs,
+ depth + 1) &&
+ isDivisibleBySymbolImpl(binaryExpr.getRHS(), symbolPos,
+ AffineExprKind::Mod, visitedExprs,
+ depth + 1);
}
// Checks if any of the operand divisible by the given symbol.
case AffineExprKind::Mul: {
AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(expr);
- return isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos, opKind) ||
- isDivisibleBySymbol(binaryExpr.getRHS(), symbolPos, opKind);
+ return isDivisibleBySymbolImpl(binaryExpr.getLHS(), symbolPos, opKind,
+ visitedExprs, depth + 1) ||
+ isDivisibleBySymbolImpl(binaryExpr.getRHS(), symbolPos, opKind,
+ visitedExprs, depth + 1);
}
// Floordiv and ceildiv are divisible by the given symbol when the first
// operand is divisible, and the affine expression kind of the argument expr
@@ -406,12 +419,25 @@ static bool isDivisibleBySymbol(AffineExpr expr, unsigned symbolPos,
AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(expr);
if (opKind != expr.getKind())
return false;
- return isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos, expr.getKind());
+ if (llvm::any_of(visitedExprs, [](auto expr) {
+ return expr.getKind() == AffineExprKind::Mul;
+ }))
+ return false;
+ return isDivisibleBySymbolImpl(binaryExpr.getLHS(), symbolPos,
+ expr.getKind(), visitedExprs, depth + 1);
}
}
llvm_unreachable("Unknown AffineExpr");
}
+bool isDivisibleBySymbol(AffineExpr expr, unsigned symbolPos,
+ AffineExprKind opKind) {
+ SmallVector<AffineExpr> visitedExprs;
+ return isDivisibleBySymbolImpl(expr, symbolPos, opKind, visitedExprs);
+}
+
+} // namespace
+
/// Divides the given expression by the given symbol at position `symbolPos`. It
/// considers the divisibility condition is checked before calling itself. A
/// null expression is returned whenever the divisibility condition fails.
diff --git a/mlir/test/Dialect/Affine/simplify-structures.mlir b/mlir/test/Dialect/Affine/simplify-structures.mlir
index 92d3d86bc93068..d1f34f20fa5dad 100644
--- a/mlir/test/Dialect/Affine/simplify-structures.mlir
+++ b/mlir/test/Dialect/Affine/simplify-structures.mlir
@@ -308,10 +308,26 @@ func.func @semiaffine_ceildiv(%arg0: index, %arg1: index) -> index {
}
// Tests the simplification of a semi-affine expression with a nested ceildiv operation and further simplifications after performing ceildiv.
-// CHECK-LABEL: func @semiaffine_composite_floor
-func.func @semiaffine_composite_floor(%arg0: index, %arg1: index) -> index {
+// CHECK-LABEL: func @semiaffine_composite_ceildiv
+func.func @semiaffine_composite_ceildiv(%arg0: index, %arg1: index) -> index {
+ %a = affine.apply affine_map<(d0)[s0] ->((((s0 * 2) ceildiv 4) + s0 * 42) ceildiv s0)> (%arg0)[%arg1]
+ // CHECK: %[[CST:.*]] = arith.constant 43
+ return %a : index
+}
+
+// Tests the do not simplification of a semi-affine expression with a nested ceildiv-mul-ceildiv operation.
+// CHECK-LABEL: func @semiaffine_composite_ceildiv
+func.func @semiaffine_composite_ceildiv_mul_ceildiv(%arg0: index, %arg1: index) -> index {
%a = affine.apply affine_map<(d0)[s0] ->(((((s0 * 2) ceildiv 4) * 5) + s0 * 42) ceildiv s0)> (%arg0)[%arg1]
- // CHECK: %[[CST:.*]] = arith.constant 47
+ // CHECK-NOT: arith.constant
+ return %a : index
+}
+
+// Tests the do not simplification of a semi-affine expression with a nested floordiv_mul_floordiv operation
+// CHECK-LABEL: func @semiaffine_composite_floordiv
+func.func @semiaffine_composite_floordiv_mul_floordiv(%arg0: index, %arg1: index) -> index {
+ %a = affine.apply affine_map<(d0)[s0] ->(((((s0 * 2) floordiv 4) * 5) + s0 * 42) floordiv s0)> (%arg0)[%arg1]
+ // CHECK-NOT: arith.constant
return %a : index
}
>From 169f415d54be20e28613d0b6412c8b7ec1d6c7e3 Mon Sep 17 00:00:00 2001
From: lipracer <lipracer at gmail.com>
Date: Mon, 7 Oct 2024 03:13:34 -0400
Subject: [PATCH 2/2] refine
---
mlir/lib/IR/AffineExpr.cpp | 54 +++++++++++---------------------------
1 file changed, 16 insertions(+), 38 deletions(-)
diff --git a/mlir/lib/IR/AffineExpr.cpp b/mlir/lib/IR/AffineExpr.cpp
index f947b8c3d54c6a..bfd6fad5022afc 100644
--- a/mlir/lib/IR/AffineExpr.cpp
+++ b/mlir/lib/IR/AffineExpr.cpp
@@ -349,8 +349,6 @@ unsigned AffineDimExpr::getPosition() const {
return static_cast<ImplType *>(expr)->position;
}
-namespace {
-
/// Returns true if the expression is divisible by the given symbol with
/// position `symbolPos`. The argument `opKind` specifies here what kind of
/// division or mod operation called this division. It helps in implementing the
@@ -358,17 +356,12 @@ namespace {
///`exprKind` is floordiv and `expr` is also a binary expression of a floordiv
/// operation, then the commutative property can be used otherwise, the floordiv
/// operation is not divisible. The same argument holds for ceildiv operation.
-bool isDivisibleBySymbolImpl(AffineExpr expr, unsigned symbolPos,
- AffineExprKind opKind,
- SmallVectorImpl<AffineExpr> &visitedExprs,
- size_t depth = 0) {
+static bool isDivisibleBySymbol(AffineExpr expr, unsigned symbolPos,
+ AffineExprKind opKind, bool fromMul = false) {
// The argument `opKind` can either be Modulo, Floordiv or Ceildiv only.
assert((opKind == AffineExprKind::Mod || opKind == AffineExprKind::FloorDiv ||
opKind == AffineExprKind::CeilDiv) &&
"unexpected opKind");
- if (visitedExprs.size() > depth)
- visitedExprs.resize(depth);
- visitedExprs.emplace_back(expr);
switch (expr.getKind()) {
case AffineExprKind::Constant:
return cast<AffineConstantExpr>(expr).getValue() == 0;
@@ -379,10 +372,8 @@ bool isDivisibleBySymbolImpl(AffineExpr expr, unsigned symbolPos,
// Checks divisibility by the given symbol for both operands.
case AffineExprKind::Add: {
AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(expr);
- return isDivisibleBySymbolImpl(binaryExpr.getLHS(), symbolPos, opKind,
- visitedExprs, depth + 1) &&
- isDivisibleBySymbolImpl(binaryExpr.getRHS(), symbolPos, opKind,
- visitedExprs, depth + 1);
+ return isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos, opKind) &&
+ isDivisibleBySymbol(binaryExpr.getRHS(), symbolPos, opKind);
}
// Checks divisibility by the given symbol for both operands. Consider the
// expression `(((s1*s0) floordiv w) mod ((s1 * s2) floordiv p)) floordiv s1`,
@@ -391,20 +382,16 @@ bool isDivisibleBySymbolImpl(AffineExpr expr, unsigned symbolPos,
// `AffineExprKind::Mod` for this reason.
case AffineExprKind::Mod: {
AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(expr);
- return isDivisibleBySymbolImpl(binaryExpr.getLHS(), symbolPos,
- AffineExprKind::Mod, visitedExprs,
- depth + 1) &&
- isDivisibleBySymbolImpl(binaryExpr.getRHS(), symbolPos,
- AffineExprKind::Mod, visitedExprs,
- depth + 1);
+ return isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos,
+ AffineExprKind::Mod) &&
+ isDivisibleBySymbol(binaryExpr.getRHS(), symbolPos,
+ AffineExprKind::Mod);
}
// Checks if any of the operand divisible by the given symbol.
case AffineExprKind::Mul: {
AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(expr);
- return isDivisibleBySymbolImpl(binaryExpr.getLHS(), symbolPos, opKind,
- visitedExprs, depth + 1) ||
- isDivisibleBySymbolImpl(binaryExpr.getRHS(), symbolPos, opKind,
- visitedExprs, depth + 1);
+ return isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos, opKind, true) ||
+ isDivisibleBySymbol(binaryExpr.getRHS(), symbolPos, opKind, true);
}
// Floordiv and ceildiv are divisible by the given symbol when the first
// operand is divisible, and the affine expression kind of the argument expr
@@ -412,32 +399,23 @@ bool isDivisibleBySymbolImpl(AffineExpr expr, unsigned symbolPos,
// property of floordiv and ceildiv operations and are as follow:
// (exp1 floordiv exp2) floordiv exp3 = (exp1 floordiv exp3) floordiv exp2
// (exp1 ceildiv exp2) ceildiv exp3 = (exp1 ceildiv exp3) ceildiv expr2
- // It will fail if operations are not same. For example:
- // (exps1 ceildiv exp2) floordiv exp3 can not be simplified.
+ // It will fail 1.if operations are not same. For example:
+ // (exps1 ceildiv exp2) floordiv exp3 can not be simplified. 2.if there is a
+ // multiplication operation in the expression. For example:
+ // (exps1 ceildiv exp2) mul exp3 ceildiv exp4 can not be simplified.
case AffineExprKind::FloorDiv:
case AffineExprKind::CeilDiv: {
AffineBinaryOpExpr binaryExpr = cast<AffineBinaryOpExpr>(expr);
if (opKind != expr.getKind())
return false;
- if (llvm::any_of(visitedExprs, [](auto expr) {
- return expr.getKind() == AffineExprKind::Mul;
- }))
+ if (fromMul)
return false;
- return isDivisibleBySymbolImpl(binaryExpr.getLHS(), symbolPos,
- expr.getKind(), visitedExprs, depth + 1);
+ return isDivisibleBySymbol(binaryExpr.getLHS(), symbolPos, expr.getKind());
}
}
llvm_unreachable("Unknown AffineExpr");
}
-bool isDivisibleBySymbol(AffineExpr expr, unsigned symbolPos,
- AffineExprKind opKind) {
- SmallVector<AffineExpr> visitedExprs;
- return isDivisibleBySymbolImpl(expr, symbolPos, opKind, visitedExprs);
-}
-
-} // namespace
-
/// Divides the given expression by the given symbol at position `symbolPos`. It
/// considers the divisibility condition is checked before calling itself. A
/// null expression is returned whenever the divisibility condition fails.
More information about the Mlir-commits
mailing list