[Mlir-commits] [mlir] [MLIR] Drop assumption of a surrounding builtin.func in promoteIfSingleIteration (PR #116323)
Uday Bondhugula
llvmlistbot at llvm.org
Thu Nov 14 21:54:34 PST 2024
https://github.com/bondhugula updated https://github.com/llvm/llvm-project/pull/116323
>From 76e73485a21f7428c629a30ad43907956dca4b7e Mon Sep 17 00:00:00 2001
From: Uday Bondhugula <uday at polymagelabs.com>
Date: Fri, 15 Nov 2024 11:10:14 +0530
Subject: [PATCH] [MLIR] Drop assumption of a surrounding builtin.func in
promoteIfSingleIteration
Drop assumption of a surrounding builtin.func in
promoteIfSingleIteration.
Fixes: https://github.com/llvm/llvm-project/issues/116042
---
mlir/lib/Dialect/Affine/Utils/LoopUtils.cpp | 9 +++-
mlir/test/Dialect/Affine/loop-fusion-4.mlir | 59 +++++++++++++++++++++
2 files changed, 66 insertions(+), 2 deletions(-)
diff --git a/mlir/lib/Dialect/Affine/Utils/LoopUtils.cpp b/mlir/lib/Dialect/Affine/Utils/LoopUtils.cpp
index d6fc4ed07bfab3..827adfe892969a 100644
--- a/mlir/lib/Dialect/Affine/Utils/LoopUtils.cpp
+++ b/mlir/lib/Dialect/Affine/Utils/LoopUtils.cpp
@@ -129,8 +129,13 @@ LogicalResult mlir::affine::promoteIfSingleIteration(AffineForOp forOp) {
auto *parentBlock = forOp->getBlock();
if (!iv.use_empty()) {
if (forOp.hasConstantLowerBound()) {
- OpBuilder topBuilder(forOp->getParentOfType<func::FuncOp>().getBody());
- auto constOp = topBuilder.create<arith::ConstantIndexOp>(
+ auto func = forOp->getParentOfType<FunctionOpInterface>();
+ OpBuilder builder(forOp->getContext());
+ if (func)
+ builder.setInsertionPointToStart(&func.getFunctionBody().front());
+ else
+ builder.setInsertionPoint(forOp);
+ auto constOp = builder.create<arith::ConstantIndexOp>(
forOp.getLoc(), forOp.getConstantLowerBound());
iv.replaceAllUsesWith(constOp);
} else {
diff --git a/mlir/test/Dialect/Affine/loop-fusion-4.mlir b/mlir/test/Dialect/Affine/loop-fusion-4.mlir
index 3fc31ad0d77b82..f46ad0f5e4c232 100644
--- a/mlir/test/Dialect/Affine/loop-fusion-4.mlir
+++ b/mlir/test/Dialect/Affine/loop-fusion-4.mlir
@@ -1,5 +1,6 @@
// RUN: mlir-opt -allow-unregistered-dialect %s -pass-pipeline='builtin.module(func.func(affine-loop-fusion{mode=producer}))' -split-input-file | FileCheck %s --check-prefix=PRODUCER-CONSUMER
// RUN: mlir-opt -allow-unregistered-dialect %s -pass-pipeline='builtin.module(func.func(affine-loop-fusion{fusion-maximal mode=sibling}))' -split-input-file | FileCheck %s --check-prefix=SIBLING-MAXIMAL
+// RUN: mlir-opt -allow-unregistered-dialect %s -pass-pipeline='builtin.module(spirv.func(affine-loop-fusion{mode=producer}))' -split-input-file | FileCheck %s --check-prefix=SPIRV
// Part I of fusion tests in mlir/test/Transforms/loop-fusion.mlir.
// Part II of fusion tests in mlir/test/Transforms/loop-fusion-2.mlir
@@ -226,3 +227,61 @@ func.func @fuse_higher_dim_nest_into_lower_dim_nest() {
// PRODUCER-CONSUMER: return
return
}
+
+// -----
+
+// Basic test to ensure fusion works inside other func ops like spirv.func.
+
+#map = affine_map<(d0, d1) -> (d0 + d1)>
+module {
+ // SPIRV-LABEL: func @test_avgpool2d_pad_right
+ spirv.func @test_avgpool2d_pad_right(%arg0: !spirv.array<8192 x f32>) -> !spirv.array<8192 x f32> "None" {
+ %cst_f32 = spirv.Constant 0.000000e+00 : f32
+ %0 = builtin.unrealized_conversion_cast %arg0 : !spirv.array<8192 x f32> to tensor<1x32x32x8xf32>
+ %padded = tensor.pad %0 low[0, 4, 4, 0] high[0, 4, 8193, 0] {
+ ^bb0(%arg1: index, %arg2: index, %arg3: index, %arg4: index):
+ tensor.yield %cst_f32 : f32
+ } : tensor<1x32x32x8xf32> to tensor<1x40x8229x8xf32>
+ %1 = bufferization.to_memref %padded : memref<1x40x8229x8xf32>
+ %alloc_0 = memref.alloc() {alignment = 64 : i64} : memref<1x32x32x8xf32>
+ affine.for %arg1 = 0 to 1 {
+ affine.for %arg2 = 0 to 32 {
+ affine.for %arg3 = 0 to 32 {
+ affine.for %arg4 = 0 to 8 {
+ affine.for %arg5 = 0 to 1 {
+ affine.for %arg6 = 0 to 1 {
+ %4 = affine.apply #map(%arg2, %arg5)
+ %5 = affine.apply #map(%arg3, %arg6)
+ %6 = affine.load %1[%arg1, %4, %5, %arg4] : memref<1x40x8229x8xf32>
+ %7 = affine.load %alloc_0[%arg1, %arg2, %arg3, %arg4] : memref<1x32x32x8xf32>
+ %8 = arith.addf %7, %6 : f32
+ affine.store %8, %alloc_0[%arg1, %arg2, %arg3, %arg4] : memref<1x32x32x8xf32>
+ }
+ }
+ }
+ }
+ }
+ }
+ %alloc_1 = memref.alloc() {alignment = 64 : i64} : memref<1x32x32x8xf32>
+ affine.for %arg1 = 0 to 1 {
+ affine.for %arg2 = 0 to 32 {
+ affine.for %arg3 = 0 to 32 {
+ affine.for %arg4 = 0 to 8 {
+ %4 = affine.load %alloc_0[%arg1, %arg2, %arg3, %arg4] : memref<1x32x32x8xf32>
+ }
+ }
+ }
+ }
+ // Test fusion.
+ // SPIRV: affine.for %{{.*}} = 0 to 1 {
+ // SPIRV-NEXT: affine.for %{{.*}} = 0 to 32 {
+ // SPIRV-NEXT: affine.for %{{.*}} = 0 to 32 {
+ // SPIRV-NEXT: affine.for %{{.*}} = 0 to 8 {
+ // SPIRV-NOT: affine.for %{{.*}}
+
+ // SPIRV: ReturnValue
+ %2 = bufferization.to_tensor %alloc_1 : memref<1x32x32x8xf32>
+ %3 = builtin.unrealized_conversion_cast %2 : tensor<1x32x32x8xf32> to !spirv.array<8192 x f32>
+ spirv.ReturnValue %3 : !spirv.array<8192 x f32>
+ }
+}
More information about the Mlir-commits
mailing list