[Mlir-commits] [mlir] [mlir][linalg] unfold projected permutation. (PR #114704)
Andrzej WarzyĆski
llvmlistbot at llvm.org
Fri Nov 8 11:19:08 PST 2024
================
@@ -0,0 +1,240 @@
+//===- DecomposeGenericByUnfoldingPermutation.cpp -------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+#include "mlir/Dialect/Affine/IR/AffineOps.h"
+#include "mlir/Dialect/Linalg/IR/Linalg.h"
+#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
+#include <map>
+#include <optional>
+#include <utility>
+
+using namespace mlir;
+using namespace mlir::linalg;
+
+namespace {
+
+/// This pattern decomposes the input operand(s) of a linalg.generic that has
+/// a `transpose`, `broadcast`, or a mixture of two, into explicit transpose
+/// and broadcast. Having them folded into the linalg.generic is a good
+/// optimization but sometimes we may want to unwrap, i.e., `unfold` them as
+/// explicit transpose and broadcast. This rewrite pattern helps do it for
+/// each input operand. This is useful for instance when trying to recognize
+/// named ops.
+///
+/// The transpose, broadcast, or mixture of both, are expressed in the affine
+/// map of the operand. Technically it is essentially `projected permutation`.
+///
+/// Example
+///
+/// ```mlir
+///
+/// #projection = affine_map<(d0, d1, d2, d3, d4) -> (d2, d3, d1)>
+/// #identity = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
+/// ...
+/// %res = linalg.generic
+/// { indexing_maps = [#projection, #identity, #identity],
+/// iterator_types = ["parallel", "parallel", "parallel",
+/// "parallel", "parallel"]}
+/// ins(%x, %y : tensor<7x8x9xf32>, tensor<5x9x7x8x10xf32>)
+/// outs(%z : tensor<5x9x7x8x10xf32>) {
+/// ^bb0(%in: f32, %in_1: f32, %out: f32):
+/// %div = arith.divf %in, %in_1 : f32
+/// linalg.yield %div : f32
+/// } -> tensor<5x9x7x8x10xf32>
+/// ```
+///
+/// In the above IR operand `%x` map is a projected-permutation. This can be
+/// unfolded as:
+///
+/// ```mlir
+/// ...
+/// %x_trans = linalg.transpose
+/// ins(%x : tensor<7x8x9xf32>)
+/// outs(%e1 : tensor<9x7x8xf32>) permutation = [2, 0, 1]
+/// ...
+/// %x_trans_bc = linalg.broadcast
+/// ins(%x_trans : tensor<9x7x8xf32>)
+/// outs(%e2 : tensor<5x9x7x8x10xf32>) dimensions = [0, 4]
+/// %2 = linalg.div
+/// ins(%x_trans_bc, %y :
+/// tensor<5x9x7x8x10xf32>, tensor<5x9x7x8x10xf32>)
+/// outs(%arg2 : tensor<5x9x7x8x10xf32>) -> tensor<5x9x7x8x10xf32>
+///
+/// Note that linalg.generic has been 'specialized' to linalg.div.
+///
+/// To unfold it, it is more optimal to transpose first and then do the
+/// broadcast. However, if transpose is done first, the permutation map needs
+/// to be expressed in terms of reduced dimension as broadcast hasn't happened
+/// yet. Also, the broadcast dimensions in a linalg.generic come from other
+/// operands (those not broadcasted along that particular dimension). We work
+/// this out by computing the convex-polyhedron shape of the linalg.generic
+/// iteration space from shapes of all the operands, both inputs and outputs.
+///
+struct DecomposeProjectedPermutation : public OpRewritePattern<GenericOp> {
+ using OpRewritePattern<GenericOp>::OpRewritePattern;
+
+ LogicalResult matchAndRewrite(GenericOp genericOp,
+ PatternRewriter &rewriter) const override;
+};
+
+/// For the given `map`, determine what dimensions are transposed and what
+/// dimensions are broadcasted.
+/// Returns :
+/// transpose-permutation, broadcast-dimensions` (empty if not needed)
+///
+std::pair<SmallVector<int64_t>, SmallVector<int64_t>>
+computeTransposeBroadcast(AffineMap &map) {
+ assert(map.isProjectedPermutation(false) && "not a projection");
+ int64_t minorSize = map.getNumResults();
+
+ SmallVector<int64_t> minorResult;
----------------
banach-space wrote:
What does `minor` mean in this context? Apologies if this is obvoius.
https://github.com/llvm/llvm-project/pull/114704
More information about the Mlir-commits
mailing list