[Mlir-commits] [mlir] 3ad0148 - [MLIR][Linalg] Re-land linalg.matmul move to ODS. + Remove/update failing obsolete OpDSL tests. (#115319)

llvmlistbot at llvm.org llvmlistbot at llvm.org
Thu Nov 7 06:51:06 PST 2024


Author: Md Asghar Ahmad Shahid
Date: 2024-11-07T14:51:02Z
New Revision: 3ad0148020ca91cc288bffd8ad36e25f7555a3bb

URL: https://github.com/llvm/llvm-project/commit/3ad0148020ca91cc288bffd8ad36e25f7555a3bb
DIFF: https://github.com/llvm/llvm-project/commit/3ad0148020ca91cc288bffd8ad36e25f7555a3bb.diff

LOG: [MLIR][Linalg] Re-land linalg.matmul move to ODS. + Remove/update failing obsolete OpDSL tests. (#115319)

The earlier PR(https://github.com/llvm/llvm-project/pull/104783) which
introduces
transpose and broadcast semantic to linalg.matmul was reverted due to
two failing
OpDSL test for linalg.matmul.

Since linalg.matmul is now defined using TableGen ODS instead of
Python-based OpDSL,
these test started failing and needs to be removed/updated.

This commit removes/updates the failing obsolete tests from below files.
All other files
were part of earlier PR and just cherry picked.
    "mlir/test/python/integration/dialects/linalg/opsrun.py"
    "mlir/test/python/integration/dialects/transform.py"

---------

Co-authored-by: Renato Golin <rengolin at systemcall.eu>

Added: 
    

Modified: 
    mlir/include/mlir/Dialect/Linalg/IR/LinalgInterfaces.td
    mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
    mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td
    mlir/lib/Dialect/Linalg/IR/LinalgInterfaces.cpp
    mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
    mlir/lib/Dialect/Linalg/Transforms/TransposeMatmul.cpp
    mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
    mlir/lib/Dialect/NVGPU/TransformOps/NVGPUTransformOps.cpp
    mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
    mlir/test/Dialect/Linalg/generalize-named-ops.mlir
    mlir/test/Dialect/Linalg/invalid.mlir
    mlir/test/Dialect/Linalg/named-ops.mlir
    mlir/test/python/dialects/linalg/ops.py
    mlir/test/python/integration/dialects/linalg/opsrun.py
    mlir/test/python/integration/dialects/transform.py
    mlir/tools/mlir-linalg-ods-gen/mlir-linalg-ods-yaml-gen.cpp

Removed: 
    


################################################################################
diff  --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgInterfaces.td b/mlir/include/mlir/Dialect/Linalg/IR/LinalgInterfaces.td
index b81a4c9c8760cf..c0eff99c850752 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgInterfaces.td
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgInterfaces.td
@@ -708,6 +708,16 @@ def LinalgStructuredInterface
         return;
       }]
     >,
+    InterfaceMethod<
+      /*desc=*/[{
+        Return true if the user has supplied an explicit indexing maps for this op.
+      }],
+      /*retTy=*/"bool",
+      /*methodName=*/"hasUserDefinedMaps",
+      /*args=*/(ins),
+      /*methodBody=*/"",
+      /*defaultImplementation=*/[{ return false; }]
+    >,
     //===------------------------------------------------------------------===//
     // Linalg generalization hooks.
     //===------------------------------------------------------------------===//

diff  --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
index bf2f26de26e9ed..ee88ca516de6ff 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
@@ -1065,78 +1065,6 @@ structured_op: !LinalgStructuredOpConfig
         - !ScalarExpression
           scalar_arg: rhs
 --- !LinalgOpConfig
-metadata: !LinalgOpMetadata
-  name: matmul
-  cpp_class_name: MatmulOp
-  doc: |-
-    Performs a matrix multiplication of two 2D inputs.
-
-    Numeric casting is performed on the operands to the inner multiply, promoting
-    them to the same data type as the accumulator/output.
-  implements:
-  - LinalgContractionOpInterface
-structured_op: !LinalgStructuredOpConfig
-  args:
-  - !LinalgOperandDefConfig
-    name: A
-    kind: input_tensor
-    type_var: T1
-    shape_map: affine_map<()[s0, s1, s2] -> (s0, s1)>
-  - !LinalgOperandDefConfig
-    name: B
-    kind: input_tensor
-    type_var: T2
-    shape_map: affine_map<()[s0, s1, s2] -> (s1, s2)>
-  - !LinalgOperandDefConfig
-    name: C
-    kind: output_tensor
-    type_var: U
-    shape_map: affine_map<()[s0, s1, s2] -> (s0, s2)>
-  - !LinalgOperandDefConfig
-    name: cast
-    kind: type_fn_attr
-    default_fn: cast_signed
-  indexing_maps: !LinalgIndexingMapsConfig
-    static_indexing_maps:
-    - affine_map<(d0, d1, d2)[s0, s1, s2] -> (d0, d2)>
-    - affine_map<(d0, d1, d2)[s0, s1, s2] -> (d2, d1)>
-    - affine_map<(d0, d1, d2)[s0, s1, s2] -> (d0, d1)>
-  iterator_types:
-  - parallel
-  - parallel
-  - reduction
-  assignments:
-  - !ScalarAssign
-    arg: C
-    value: !ScalarExpression
-      scalar_fn:
-        kind: binary
-        fn_name: add
-        operands:
-        - !ScalarExpression
-          scalar_arg: C
-        - !ScalarExpression
-          scalar_fn:
-            kind: binary
-            fn_name: mul
-            operands:
-            - !ScalarExpression
-              scalar_fn:
-                kind: type
-                attr_name: cast
-                type_var: U
-                operands:
-                - !ScalarExpression
-                  scalar_arg: A
-            - !ScalarExpression
-              scalar_fn:
-                kind: type
-                attr_name: cast
-                type_var: U
-                operands:
-                - !ScalarExpression
-                  scalar_arg: B
---- !LinalgOpConfig
 metadata: !LinalgOpMetadata
   name: quantized_matmul
   cpp_class_name: QuantizedMatmulOp

diff  --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td b/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td
index c2fee8ea55c960..2b47414ff5e924 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgStructuredOps.td
@@ -554,6 +554,140 @@ def BroadcastOp : LinalgStructuredBase_Op<"broadcast", [
   let hasCanonicalizer = 1;
 }
 
+//===----------------------------------------------------------------------===//
+// Op definition for MatmulOp
+//===----------------------------------------------------------------------===//
+
+def MatmulOp : LinalgStructuredBase_Op<"matmul", [
+               AttrSizedOperandSegments,
+               LinalgContractionOpInterface]> {
+    
+  let summary = [{
+    Performs a matrix multiplication of two 2D inputs without broadcast or transpose.
+    }];
+  let description = [{
+    Numeric casting is performed on the operands to the inner multiply,
+    promoting them to the same data type as the accumulator/output.
+
+    Broadcast and Transpose semantics can be appiled by specifying the explicit attribute
+    'indexing_maps' as shown below.This is a list attribute, so the list must include all
+    the maps if specified.
+
+    Example Transpose:
+    ```
+    linalg.matmul indexing_maps = [
+                   affine_map<(d0, d1, d2) -> (d2, d0)>, // transpose
+                   affine_map<(d0, d1, d2) -> (d2, d1)>,
+                   affine_map<(d0, d1, d2) -> (d0, d1)>
+                   ]
+                   ins(%arg0, %arg1 : memref<5x3xf32>,memref<5x7xf32>)
+                   outs(%arg2: memref<3x7xf32>)
+     ```
+
+    Example Broadcast:
+     ```
+    linalg.matmul indexing_maps = [
+                   affine_map<(d0, d1, d2) -> (d2)>,     // broadcast
+                   affine_map<(d0, d1, d2) -> (d2, d1)>,
+                   affine_map<(d0, d1, d2) -> (d0, d1)>
+                  ]
+                  ins(%arg0, %arg1 : memref<3xf32>, memref<5x7xf32>)
+                  outs(%arg2: memref<3x7xf32>)
+     ```
+
+     Example Broadcast and transpose:
+     ```
+     linalg.matmul indexing_maps = [
+                       affine_map<(d0, d1, d2) -> (d2, d0)>, // transpose
+                       affine_map<(d0, d1, d2) -> (d2)>,     // broadcast
+                       affine_map<(d0, d1, d2) -> (d0, d1)>
+                     ]
+                     ins(%arg0, %arg1 : memref<5x3xf32>, memref<7xf32>) outs(%arg2: memref<3x7xf32>)
+    }];
+
+    let arguments = (ins
+      Variadic<AnyType>:$inputs,
+      Variadic<AnyShaped>:$outputs,
+      DefaultValuedOptionalAttr<AffineMapArrayAttr, "{}">:$indexing_maps,
+      DefaultValuedOptionalAttr<TypeFnAttr, "TypeFn::cast_signed">:$cast
+    );
+    let results = (outs Variadic<AnyRankedTensor>:$result_tensors);
+    let regions = (region AnyRegion:$region);
+
+    let skipDefaultBuilders = 1;
+    let builders = [
+      OpBuilder<
+      (ins "ValueRange":$inputs, "ValueRange":$outputs,
+            CArg<"ArrayRef<NamedAttribute>", "{}">:$attributes),
+      [{
+        buildStructuredOp($_builder, $_state, std::nullopt, inputs, outputs,
+          attributes, MatmulOp::getRegionBuilder());
+      }]>,
+      OpBuilder<
+      (ins "TypeRange":$resultTensorTypes, "ValueRange":$inputs,
+            "ValueRange":$outputs,
+            CArg<"ArrayRef<NamedAttribute>", "{}">:$attributes),
+      [{
+        buildStructuredOp($_builder, $_state, resultTensorTypes,
+          inputs, outputs, attributes, MatmulOp::getRegionBuilder());
+      }]>,
+      OpBuilder<
+      (ins "TypeRange":$resultTensorTypes, "ValueRange":$operands,
+            CArg<"ArrayRef<NamedAttribute>", "{}">:$attributes),
+      [{
+        $_state.addOperands(operands);
+        $_state.addAttributes(attributes);
+        $_state.addTypes(resultTensorTypes);
+        (void)$_state.addRegion();
+      }]>,
+      OpBuilder<
+      (ins "TypeRange":$resultTensorTypes, "ValueRange":$inputs,
+       "ValueRange":$outputs,
+       "Attribute":$cast, CArg<"ArrayRef<NamedAttribute>", "{}">:$attributes),
+      [{
+        $_state.addAttribute("cast", cast);
+        buildStructuredOp($_builder, $_state, resultTensorTypes, inputs, outputs,
+          attributes, MatmulOp::getRegionBuilder());
+      }]>
+
+    ];
+    let hasCustomAssemblyFormat = 1;
+    let hasFolder = 1;
+    let hasVerifier = 1;
+
+    let extraClassDeclaration = structuredOpsBaseDecls # [{
+      SmallVector<utils::IteratorType> getIteratorTypesArray();
+
+      /// Implements the block region builder.
+      static void regionBuilder(ImplicitLocOpBuilder &b,
+                                Block &block, ArrayRef<NamedAttribute> attrs);
+
+      /// Returns a list of AffineMap with the typical matmul indexing charactristic.
+      SmallVector<AffineMap> getDefaultIndexingMaps();
+
+      /// Returns true if the given broadcast map \p bcastMap is valid for this op.
+      bool isValidLhsRhsBroadcastMap(AffineMap bcastMap);
+
+      static std::function<void(ImplicitLocOpBuilder &,
+                                Block &, ArrayRef<NamedAttribute>)>
+      getRegionBuilder() {
+        return regionBuilder;
+      }
+
+      ::mlir::MutableOperandRange getDpsInitsMutable() {
+        return getOutputsMutable();
+      }
+
+      // Generic methods.
+      static unsigned getNumRegionArgs();
+      std::string getLibraryCallName();
+      bool hasDynamicIndexingMaps();
+      /// Check if the op has broadcast and/or transpose semantic. Returns true if the
+      /// user defined indexing maps are not equal to default map.
+      bool hasUserDefinedMaps();
+    }];
+}
+
 //===----------------------------------------------------------------------===//
 // Named Linalg ops, implemented as a declarative configurations of generic ops.
 //===----------------------------------------------------------------------===//

diff  --git a/mlir/lib/Dialect/Linalg/IR/LinalgInterfaces.cpp b/mlir/lib/Dialect/Linalg/IR/LinalgInterfaces.cpp
index bd77965194b27f..0cffadf8fb64a0 100644
--- a/mlir/lib/Dialect/Linalg/IR/LinalgInterfaces.cpp
+++ b/mlir/lib/Dialect/Linalg/IR/LinalgInterfaces.cpp
@@ -15,14 +15,21 @@
 #include "mlir/Dialect/Linalg/IR/Linalg.h"
 #include "mlir/Dialect/MemRef/IR/MemRef.h"
 #include "mlir/Dialect/Tensor/IR/Tensor.h"
+#include "mlir/IR/AffineExpr.h"
 #include "mlir/IR/AffineExprVisitor.h"
 #include "mlir/IR/AffineMap.h"
+#include "mlir/IR/BuiltinTypeInterfaces.h"
+#include "mlir/IR/MLIRContext.h"
 #include "mlir/IR/TypeUtilities.h"
+#include "llvm/ADT/STLExtras.h"
 #include "llvm/ADT/SetOperations.h"
 #include "llvm/ADT/SmallBitVector.h"
 #include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/raw_ostream.h"
 #include <algorithm>
 #include <numeric>
+#include <optional>
 
 using namespace mlir;
 using namespace mlir::linalg;
@@ -1211,7 +1218,6 @@ int64_t LinalgOp::getIndexingMapIndex(OpOperand *opOperand) {
 
 LogicalResult mlir::linalg::detail::verifyStructuredOpInterface(Operation *op) {
   LinalgOp linalgOp = cast<LinalgOp>(op);
-
   // Mixed tensor/buffer operands are not allowed.
   if (!linalgOp.hasPureTensorSemantics() &&
       !linalgOp.hasPureBufferSemantics() && op->getNumOperands() > 0)
@@ -1231,6 +1237,8 @@ LogicalResult mlir::linalg::detail::verifyStructuredOpInterface(Operation *op) {
            << ") to be equal to the number of input/output operands ("
            << linalgOp->getNumOperands() << ")";
 
+  // Set this flag if this op has user defined maps. This is required to guard
+  // the below error condition which assume default indexing maps.
   for (OpOperand &opOperand : linalgOp->getOpOperands()) {
     AffineMap indexingMap = linalgOp.getMatchingIndexingMap(&opOperand);
 
@@ -1247,13 +1255,13 @@ LogicalResult mlir::linalg::detail::verifyStructuredOpInterface(Operation *op) {
              << " dim(s) to match the number of loops";
 
     int64_t rank = linalgOp.getRank(&opOperand);
+
     if (indexingMap.getNumResults() != rank)
       return op->emitOpError("expected operand rank (")
              << rank << ") to match the result rank of indexing_map #"
              << opOperand.getOperandNumber() << " ("
              << indexingMap.getNumResults() << ")";
   }
-
   SmallVector<unsigned> redDims;
   linalgOp.getReductionDims(redDims);
 
@@ -1263,9 +1271,8 @@ LogicalResult mlir::linalg::detail::verifyStructuredOpInterface(Operation *op) {
   // Check if given shapes match to inferred shapes.
   SmallVector<int64_t, 4> endLoopRangeValues = linalgOp.getStaticLoopRanges();
   SmallVector<int64_t, 4> startLoopRangeValues(endLoopRangeValues.size(), 0);
-
-  // Verify only static cases since we can't get exact dimension sizes and loop
-  // ranges for dynamic cases in this stage.
+  // Verify only static cases since we can't get exact dimension sizes and
+  // loop ranges for dynamic cases in this stage.
   if (llvm::none_of(endLoopRangeValues, ShapedType::isDynamic)) {
     for (int64_t &range : endLoopRangeValues)
       range -= 1;

diff  --git a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
index 730c478c2883ef..c909d13e4314b4 100644
--- a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
+++ b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
@@ -27,6 +27,7 @@
 #include "mlir/Dialect/Utils/StaticValueUtils.h"
 #include "mlir/IR/AffineExprVisitor.h"
 #include "mlir/IR/AffineMap.h"
+#include "mlir/IR/Attributes.h"
 #include "mlir/IR/BuiltinAttributes.h"
 #include "mlir/IR/BuiltinTypeInterfaces.h"
 #include "mlir/IR/Matchers.h"
@@ -37,12 +38,17 @@
 #include "mlir/Interfaces/SideEffectInterfaces.h"
 
 #include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetOperations.h"
 #include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
 #include "llvm/ADT/StringSet.h"
 #include "llvm/ADT/TypeSwitch.h"
 #include "llvm/Support/FormatVariadic.h"
+#include "llvm/Support/LogicalResult.h"
 #include "llvm/Support/MathExtras.h"
 #include "llvm/Support/raw_ostream.h"
+#include <cassert>
 #include <optional>
 
 using namespace mlir;
@@ -149,15 +155,36 @@ static void fillStructuredOpRegion(OpBuilder &opBuilder, Region &region,
   // iterator_types is an auto-generated method.
 }
 
+/// Helper to create a typical indexing map for MatmulOp. Returns a list of
+/// AffineMap.
+static SmallVector<AffineMap, 3>
+getDefaultIndexingMapsForMatmul(MLIRContext *context) {
+  AffineExpr d0, d1, d2;
+  SmallVector<AffineMap, 3> indexingMaps;
+  bindDims(context, d0, d1, d2);
+  indexingMaps.push_back(AffineMap::get(3, 0, {d0, d2}, context));
+  indexingMaps.push_back(AffineMap::get(3, 0, {d2, d1}, context));
+  indexingMaps.push_back(AffineMap::get(3, 0, {d0, d1}, context));
+  return indexingMaps;
+}
+
+/// Wrapper to return the typical indexing map array attribute for MatmulOp.
+static SmallVector<Attribute> getDefaultIndexingMapAttr(MLIRContext *context) {
+  return llvm::map_to_vector(
+      getDefaultIndexingMapsForMatmul(context),
+      [](AffineMap map) -> Attribute { return AffineMapAttr::get(map); });
+}
+
 /// Creates a structured operation given `inputs`, `outputs`, and `attributes`.
 /// The result types are derived automatically if `resultTensorTypes` is none.
 /// The body of the operation is filled using `regionBuilder`. All ods-gen
 /// created structured operations use the method to implement their builders.
-static void buildStructuredOp(OpBuilder &b, OperationState &state,
-                              std::optional<TypeRange> resultTensorTypes,
-                              ValueRange inputs, ValueRange outputs,
-                              ArrayRef<NamedAttribute> attributes,
-                              RegionBuilderFn regionBuilder) {
+static void buildStructuredOp(
+    OpBuilder &b, OperationState &state,
+    std::optional<TypeRange> resultTensorTypes, ValueRange inputs,
+    ValueRange outputs, ArrayRef<NamedAttribute> attributes,
+    RegionBuilderFn regionBuilder,
+    std::optional<ArrayRef<AffineMap>> indexingMaps = std::nullopt) {
   // Derive the result types if needed.
   SmallVector<Type> derivedResultTypes =
       resultTensorTypes.value_or(TypeRange());
@@ -168,6 +195,20 @@ static void buildStructuredOp(OpBuilder &b, OperationState &state,
   state.addOperands(inputs);
   state.addOperands(outputs);
   state.addTypes(derivedResultTypes);
+
+  // Initialize indexingMaps, for MatmulOp.
+  SmallVector<Attribute, 3> indexingMapsAttrVal;
+  if (indexingMaps.has_value()) {
+    for (mlir::AffineMap map : *indexingMaps) {
+      // Convert each AffineMap to an AffineMapAttr
+      indexingMapsAttrVal.push_back(AffineMapAttr::get(map));
+    }
+    state.addAttribute("indexing_maps", b.getArrayAttr(indexingMapsAttrVal));
+  } else {
+    indexingMapsAttrVal = getDefaultIndexingMapAttr(b.getContext());
+    state.addAttribute("indexing_maps", b.getArrayAttr(indexingMapsAttrVal));
+  }
+
   state.addAttributes(attributes);
   state.addAttribute(
       "operandSegmentSizes",
@@ -299,11 +340,48 @@ static ParseResult parseNamedStructuredOp(OpAsmParser &parser,
                                           OperationState &result,
                                           unsigned numRegionArgs,
                                           RegionBuilderFn regionBuilder) {
+
+  SmallVector<Attribute, 3> indexingMapsAttr;
+  Attribute mapAttr;
+  if (succeeded(parser.parseOptionalKeyword("indexing_maps"))) {
+    if (parser.parseEqual())
+      return failure();
+
+    if (parser.parseLSquare())
+      return failure();
+
+    do {
+      if (parser.parseAttribute(mapAttr))
+        return failure();
+      if (!isa<AffineMapAttr>(mapAttr)) {
+        return parser.emitError(parser.getCurrentLocation(),
+                                "expected affine map attribute");
+      }
+      indexingMapsAttr.push_back(mapAttr);
+
+      if (parser.parseOptionalComma())
+        break;
+    } while (true);
+
+    if (parser.parseRSquare())
+      return failure();
+  }
+  // Initialize indexingMaps, if not supplied explicitly.
+  if (indexingMapsAttr.empty()) {
+    indexingMapsAttr = getDefaultIndexingMapAttr(result.getContext());
+  }
+  result.addAttribute("indexing_maps",
+                      parser.getBuilder().getArrayAttr(indexingMapsAttr));
+
   // TODO: Enable when ods-gen supports captures.
   SmallVector<Type, 1> inputTypes, outputTypes;
   if (parseCommonStructuredOpParts(parser, result, inputTypes, outputTypes))
     return failure();
 
+  // Parse optional attributes.
+  if (parser.parseOptionalAttrDict(result.attributes))
+    return failure();
+
   // TODO: consider merging results parsing into region parsing.
   // Need to wait for declarative assembly resolution to decide.
   SmallVector<Type, 1> outputTensorsTypes;
@@ -329,13 +407,9 @@ static void printNamedStructuredOpResults(OpAsmPrinter &p,
 }
 
 static void printNamedStructuredOp(OpAsmPrinter &p, Operation *op,
-                                   ValueRange inputs, ValueRange outputs) {
-  p.printOptionalAttrDict(
-      op->getAttrs(),
-      /*elidedAttrs=*/{"operandSegmentSizes",
-                       // See generated code in
-                       // LinalgNamedStructuredOps.yamlgen.cpp.inc
-                       "linalg.memoized_indexing_maps"});
+                                   ValueRange inputs, ValueRange outputs,
+                                   ArrayRef<StringRef> elidedAttrs = {}) {
+  p.printOptionalAttrDict(op->getAttrs(), elidedAttrs);
 
   // Printing is shared with generic ops, except for the region and
   // attributes.
@@ -3382,3 +3456,168 @@ Operation *LinalgDialect::materializeConstant(OpBuilder &builder,
                                               Location loc) {
   return arith::ConstantOp::materialize(builder, value, type, loc);
 }
+
+/// Returns true if the result AffineExpr of the \p explicitMap is same as \p
+/// defaultMap.
+static bool isValidResultDimExprs(AffineMap explictMap, AffineMap defaultMap) {
+  auto explicitRange = explictMap.getResults();
+  auto defaultRange = defaultMap.getResults();
+  DenseSet<AffineExpr> explicitSet(explicitRange.begin(), explicitRange.end());
+  DenseSet<AffineExpr> defaultSet(defaultRange.begin(), defaultRange.end());
+  llvm::set_union(explicitSet, defaultSet);
+  return explicitSet == defaultSet;
+}
+
+/// Returns true if the \p explictMap is broadcasted with respect to the
+/// \p defaultMap.
+static bool isBroadcasted(AffineMap explictMap, AffineMap defaultMap) {
+  return explictMap.getNumResults() < defaultMap.getNumResults();
+}
+
+/// Verifies the broadcast and transpose semantic sepecified by the explicit
+/// indexing map for the MatmulOp \p op for each operand specified by \p
+/// opIndex.
+static LogicalResult verifyExtendedMatmulSemantic(MatmulOp matmulOp,
+                                                  unsigned opIndex) {
+  SmallVector<AffineMap, 3> opIndexingMaps = matmulOp.getIndexingMapsArray();
+  SmallVector<AffineMap, 3> defaultIndexingMaps =
+      matmulOp.getDefaultIndexingMaps();
+
+  auto opIndexingMap = opIndexingMaps[opIndex];
+  auto defaultIndexingMap = defaultIndexingMaps[opIndex];
+  // Check general validity of indexing map results.
+  if (!isValidResultDimExprs(opIndexingMap, defaultIndexingMap))
+    return matmulOp->emitOpError()
+           << "Unexpected dim expression in map result.";
+
+  // Check if the requested broadcast is valid.
+  if (isBroadcasted(opIndexingMap, defaultIndexingMap)) {
+    if (!matmulOp.isValidLhsRhsBroadcastMap(opIndexingMap)) {
+      return matmulOp->emitOpError()
+             << "Invalid broadcast requested, should be (d2).";
+    }
+    return success();
+  }
+  return success();
+}
+
+namespace mlir {
+namespace linalg {
+//===----------------------------------------------------------------------===//
+// MatMulOp
+//===----------------------------------------------------------------------===//
+SmallVector<utils::IteratorType> MatmulOp::getIteratorTypesArray() {
+  return SmallVector<utils::IteratorType>{utils::IteratorType::parallel,
+                                          utils::IteratorType::parallel,
+                                          utils::IteratorType::reduction};
+}
+
+unsigned MatmulOp::getNumRegionArgs() { return 3; }
+
+std::string MatmulOp::getLibraryCallName() {
+  return generateLibraryCallName(getOperation());
+}
+
+bool MatmulOp::hasDynamicIndexingMaps() { return true; }
+
+/// Check if the op has broadcast and/or transpose semantic. Returns true if the
+/// user defined indexing maps are not equal to default map.
+bool MatmulOp::hasUserDefinedMaps() {
+  SmallVector<AffineMap, 3> defaultMaps = getDefaultIndexingMaps();
+  SmallVector<AffineMap, 3> explicitMaps = getIndexingMapsArray();
+  return defaultMaps != explicitMaps;
+}
+
+/// Implements the block region builder for the MatmulOp. This is called by
+/// 'fillStructuredOpRegion'.
+void MatmulOp::regionBuilder(ImplicitLocOpBuilder &b, Block &block,
+                             ArrayRef<NamedAttribute> attrs) {
+  assert(3 > 0 && block.getNumArguments() == 3 &&
+         "MatmulOp regionBuilder expects 3 (>=0) args");
+  RegionBuilderHelper helper(b, block);
+  SmallVector<Value> yields;
+
+  TypeFn castVal = TypeFn::cast_signed;
+  auto castIter = llvm::find_if(attrs, [&](const NamedAttribute &attr) {
+    return attr.getName() == "cast";
+  });
+  if (castIter != attrs.end()) {
+    if (auto attr = llvm::dyn_cast<TypeFnAttr>(castIter->getValue()))
+      castVal = attr.getValue();
+  }
+
+  Value value1 = helper.buildTypeFn(castVal, block.getArgument(2).getType(),
+                                    block.getArgument(0));
+  Value value2 = helper.buildTypeFn(castVal, block.getArgument(2).getType(),
+                                    block.getArgument(1));
+  Value value3 = helper.buildBinaryFn(BinaryFn::mul, value1, value2);
+  Value value4 =
+      helper.buildBinaryFn(BinaryFn::add, block.getArgument(2), value3);
+  yields.push_back(value4);
+  helper.yieldOutputs(yields);
+}
+
+/// Returns a list of AffineMap with the typical matmul indexing charactristic.
+SmallVector<AffineMap> MatmulOp::getDefaultIndexingMaps() {
+  MLIRContext *context = this->getContext();
+  return getDefaultIndexingMapsForMatmul(context);
+}
+
+/// Returns true if the given broadcast map \p bcastMap is valid for this op.
+bool MatmulOp::isValidLhsRhsBroadcastMap(AffineMap bcastMap) {
+  assert(bcastMap.getNumResults() == 1 && "Expected single result dim expr.");
+  AffineExpr exp = bcastMap.getResult(0);
+  // Invalid map if the common dimension of matmul not found.
+  return exp.isFunctionOfDim(bcastMap.getNumDims() - 1);
+}
+
+ParseResult MatmulOp::parse(OpAsmParser &parser, OperationState &result) {
+  return parseNamedStructuredOp(parser, result, MatmulOp::getNumRegionArgs(),
+                                MatmulOp::getRegionBuilder());
+}
+void MatmulOp::print(OpAsmPrinter &p) {
+  SmallVector<StringRef, 3> elidedAttrs = {
+      "operandSegmentSizes", "linalg.memoized_indexing_maps", "indexing_maps"};
+  printNamedStructuredOp(p, getOperation(), getInputs(), getOutputs(),
+                         elidedAttrs);
+
+  SmallVector<Attribute, 3> indexingMaps =
+      getDefaultIndexingMapAttr(getContext());
+  if (!llvm::equal(getIndexingMaps(), indexingMaps)) {
+    p << " indexing_maps = [";
+    llvm::interleaveComma(getIndexingMaps(), p,
+                          [&](Attribute attr) { p.printAttribute(attr); });
+    p << "]";
+  }
+}
+
+/// Verify the user defined indexing maps.
+LogicalResult MatmulOp::verify() {
+  // Verification of pure matmul is handled by verifyStructuredOpInterface().
+  if (!hasUserDefinedMaps())
+    return success();
+
+  for (unsigned opIndex = 0; opIndex < 2; opIndex++) {
+    if (failed(verifyExtendedMatmulSemantic(*this, opIndex)))
+      return failure();
+  }
+  return success();
+}
+
+LogicalResult MatmulOp::fold(FoldAdaptor, SmallVectorImpl<OpFoldResult> &) {
+  return memref::foldMemRefCast(*this);
+}
+void MatmulOp::getEffects(
+    SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
+        &effects) {
+  if (hasPureTensorSemantics())
+    return;
+  getGenericEffectsImpl(effects, cast<LinalgOp>(getOperation()));
+}
+
+Speculation::Speculatability MatmulOp::getSpeculatability() {
+  return getGenericSpeculatabilityImpl(cast<LinalgOp>(getOperation()));
+}
+
+} // namespace linalg
+} // namespace mlir

diff  --git a/mlir/lib/Dialect/Linalg/Transforms/TransposeMatmul.cpp b/mlir/lib/Dialect/Linalg/Transforms/TransposeMatmul.cpp
index aa0052ce47fa7b..6b934f7e8157d4 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/TransposeMatmul.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/TransposeMatmul.cpp
@@ -31,6 +31,13 @@ using namespace mlir::linalg;
 FailureOr<Operation *> mlir::linalg::transposeMatmul(RewriterBase &rewriter,
                                                      linalg::MatmulOp matmulOp,
                                                      bool transposeLHS) {
+  // Check to not let go the matmul with extended semantic, through this
+  // transform.
+  if (matmulOp.hasUserDefinedMaps()) {
+    return rewriter.notifyMatchFailure(
+        matmulOp, "only matmul ops with non-extended semantics are supported");
+  }
+
   if (!bufferization::hasTensorSemantics(matmulOp))
     return rewriter.notifyMatchFailure(
         matmulOp, "only matmul ops with tensors are supported");

diff  --git a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
index 090e0b46768d7e..757701dc024dfe 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
@@ -2090,6 +2090,11 @@ vectorizeScalableVectorPrecondition(Operation *op,
       return failure();
   }
 
+  // Check to not let go the matmul with extended semantic, through this
+  // transform.
+  if (linalgOp.hasUserDefinedMaps())
+    return failure();
+
   // Cond 4: Only the following ops are supported in the
   // presence of scalable vectors
   return success(isElementwise(linalgOp) || isa<linalg::MatmulOp>(op) ||

diff  --git a/mlir/lib/Dialect/NVGPU/TransformOps/NVGPUTransformOps.cpp b/mlir/lib/Dialect/NVGPU/TransformOps/NVGPUTransformOps.cpp
index 0c2275bbc4b224..3c508ed6e324b2 100644
--- a/mlir/lib/Dialect/NVGPU/TransformOps/NVGPUTransformOps.cpp
+++ b/mlir/lib/Dialect/NVGPU/TransformOps/NVGPUTransformOps.cpp
@@ -821,6 +821,12 @@ DiagnosedSilenceableFailure transform::RewriteMatmulAsMmaSyncOp::applyToOne(
   bool fail = true;
   // TODO: more robust detection of matmulOp, with transposes etc.
   if (isa_and_nonnull<linalg::MatmulOp>(linalgOp.getOperation())) {
+    // Check to not let go the matmul with extended semantic, through this
+    // transform.
+    if (linalgOp.hasUserDefinedMaps()) {
+      return emitSilenceableError()
+             << "only matmul ops with non-extended semantics are supported";
+    }
     Location loc = linalgOp.getLoc();
     // TODO: more robust computation of laneId, for now assume a single warp.
     Value laneId = rewriter.create<gpu::ThreadIdOp>(

diff  --git a/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py b/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
index b45fecd0ee1457..5c1c984b136058 100644
--- a/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
+++ b/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
@@ -383,23 +383,6 @@ def select(
     O[None] = TernaryFn.select(cond[None], lhs[None], rhs[None])
 
 
- at linalg_structured_op
-def matmul(
-    A=TensorDef(T1, S.M, S.K),
-    B=TensorDef(T2, S.K, S.N),
-    C=TensorDef(U, S.M, S.N, output=True),
-    cast=TypeFnAttrDef(default=TypeFn.cast_signed),
-):
-    """Performs a matrix multiplication of two 2D inputs.
-
-    Numeric casting is performed on the operands to the inner multiply, promoting
-    them to the same data type as the accumulator/output.
-    """
-    domain(D.m, D.n, D.k)
-    implements(ContractionOpInterface)
-    C[D.m, D.n] += cast(U, A[D.m, D.k]) * cast(U, B[D.k, D.n])
-
-
 @linalg_structured_op
 def quantized_matmul(
     A=TensorDef(T1, S.M, S.K),

diff  --git a/mlir/test/Dialect/Linalg/generalize-named-ops.mlir b/mlir/test/Dialect/Linalg/generalize-named-ops.mlir
index 1e8f1435ca0fa5..aba26c35931fd3 100644
--- a/mlir/test/Dialect/Linalg/generalize-named-ops.mlir
+++ b/mlir/test/Dialect/Linalg/generalize-named-ops.mlir
@@ -29,6 +29,34 @@ func.func @generalize_matmul_buffer(%A : memref<16x8xf32>, %B: memref<8x32xf32>,
 
 // -----
 
+func.func @matmul_bcast_a(%arg0: memref<5xf32>, %arg1: memref<5x7xf32>, %arg2: memref<3x7xf32>) {
+  linalg.matmul indexing_maps = [
+                       affine_map<(d0, d1, d2) -> (d2)>,
+                       affine_map<(d0, d1, d2) -> (d2, d1)>,
+                       affine_map<(d0, d1, d2) -> (d0, d1)>
+                     ]
+                     ins(%arg0, %arg1 : memref<5xf32>, memref<5x7xf32>) outs(%arg2: memref<3x7xf32>)
+  return
+}
+
+// CHECK: #[[$ATTR_0:.+]] = affine_map<(d0, d1, d2) -> (d2)>
+// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1, d2) -> (d2, d1)>
+// CHECK: #[[$ATTR_2:.+]] = affine_map<(d0, d1, d2) -> (d0, d1)>
+// CHECK-LABEL:   func.func @matmul_bcast_a(
+// CHECK-SAME:                              %[[VAL_0:.*]]: memref<5xf32>,
+// CHECK-SAME:                              %[[VAL_1:.*]]: memref<5x7xf32>,
+// CHECK-SAME:                              %[[VAL_2:.*]]: memref<3x7xf32>) {
+// CHECK:           linalg.generic {indexing_maps = [#[[$ATTR_0]], #[[$ATTR_1]], #[[$ATTR_2]]], iterator_types = ["parallel", "parallel", "reduction"]} ins(%[[VAL_0]], %[[VAL_1]] : memref<5xf32>, memref<5x7xf32>) outs(%[[VAL_2]] : memref<3x7xf32>) {
+// CHECK:           ^bb0(%[[VAL_3:.*]]: f32, %[[VAL_4:.*]]: f32, %[[VAL_5:.*]]: f32):
+// CHECK:             %[[VAL_6:.*]] = arith.mulf %[[VAL_3]], %[[VAL_4]] : f32
+// CHECK:             %[[VAL_7:.*]] = arith.addf %[[VAL_5]], %[[VAL_6]] : f32
+// CHECK:             linalg.yield %[[VAL_7]] : f32
+// CHECK:           }
+// CHECK:           return
+// CHECK:         }
+
+// -----
+
 func.func @generalize_matmul_tensor(%A : tensor<16x8xf32>, %B: tensor<8x32xf32>, %C: tensor<16x32xf32>) -> tensor<16x32xf32> {
   %0 = linalg.matmul ins(%A, %B: tensor<16x8xf32>, tensor<8x32xf32>)
                     outs(%C: tensor<16x32xf32>) -> tensor<16x32xf32>
@@ -891,3 +919,86 @@ func.func @fill_tensor(%f: f32, %v: vector<2x4xf32>) -> (tensor<f32>, tensor<vec
 
   return %0, %1: tensor<f32>, tensor<vector<2x4xf32>>
 }
+
+// -----
+
+// CHECK: #[[$ATTR_0:.+]] = affine_map<(d0, d1, d2) -> (d2, d0)>
+// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1, d2) -> (d2, d1)>
+// CHECK: #[[$ATTR_2:.+]] = affine_map<(d0, d1, d2) -> (d0, d1)>
+
+// CHECK-LABEL:   func.func @matmul_transpose_a_explicit(
+// CHECK-SAME:                                  %[[VAL_0:.*]]: memref<5x3xf32>,
+// CHECK-SAME:                                  %[[VAL_1:.*]]: memref<5x7xf32>,
+// CHECK-SAME:                                  %[[VAL_2:.*]]: memref<3x7xf32>) {
+
+// CHECK:           linalg.generic {indexing_maps = [#[[$ATTR_0]], #[[$ATTR_1]], #[[$ATTR_2]]], iterator_types = ["parallel", "parallel", "reduction"]}
+// CHECK:           arith.mulf
+// CHECK:           arith.addf
+
+func.func @matmul_transpose_a_explicit(%arg0: memref<5x3xf32>, %arg1: memref<5x7xf32>, %arg2: memref<3x7xf32>) {
+  linalg.matmul indexing_maps = [
+                       affine_map<(d0, d1, d2) -> (d2, d0)>,
+                       affine_map<(d0, d1, d2) -> (d2, d1)>,
+                       affine_map<(d0, d1, d2) -> (d0, d1)>
+                      ]
+                      ins(%arg0, %arg1 : memref<5x3xf32>, memref<5x7xf32>)
+                      outs(%arg2: memref<3x7xf32>)
+                      
+  return
+}
+
+// -----
+
+// CHECK: #[[$ATTR_0:.+]] = affine_map<(d0, d1, d2) -> (d0, d2)>
+// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1, d2) -> (d1, d2)>
+// CHECK: #[[$ATTR_2:.+]] = affine_map<(d0, d1, d2) -> (d0, d1)>
+// CHECK-LABEL:   func.func @matmul_transpose_b_explicit(
+// CHECK-SAME:                                           %[[VAL_0:.*]]: memref<3x5xf32>,
+// CHECK-SAME:                                           %[[VAL_1:.*]]: memref<7x5xf32>,
+// CHECK-SAME:                                           %[[VAL_2:.*]]: memref<3x7xf32>) {
+
+// CHECK:           linalg.generic {indexing_maps = [#[[$ATTR_0]], #[[$ATTR_1]], #[[$ATTR_2]]], iterator_types = ["parallel", "parallel", "reduction"]}
+// CHECK:           arith.mulf
+// CHECK:           arith.addf
+
+func.func @matmul_transpose_b_explicit(%arg0: memref<3x5xf32>, %arg1: memref<7x5xf32>, %arg2: memref<3x7xf32>) {
+  linalg.matmul indexing_maps = [
+                       affine_map<(d0, d1, d2) -> (d0, d2)>,
+                       affine_map<(d0, d1, d2) -> (d1, d2)>,
+                       affine_map<(d0, d1, d2) -> (d0, d1)>
+                      ]
+                      ins(%arg0, %arg1 : memref<3x5xf32>, memref<7x5xf32>)
+                      outs(%arg2: memref<3x7xf32>)
+                      
+  return
+}
+
+// -----
+
+// CHECK: #[[$ATTR_0:.+]] = affine_map<(d0, d1, d2) -> (d2, d0)>
+// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1, d2) -> (d1, d2)>
+// CHECK: #[[$ATTR_2:.+]] = affine_map<(d0, d1, d2) -> (d0, d1)>
+
+// CHECK-LABEL:   func.func @matmul_transpose_a_b_explicit(
+// CHECK-SAME:                                             %[[VAL_0:.*]]: memref<5x3xf32>,
+// CHECK-SAME:                                             %[[VAL_1:.*]]: memref<7x5xf32>,
+// CHECK-SAME:                                             %[[VAL_2:.*]]: memref<3x7xf32>) {
+
+// CHECK:           linalg.generic {indexing_maps = [#[[$ATTR_0]], #[[$ATTR_1]], #[[$ATTR_2]]], iterator_types = ["parallel", "parallel", "reduction"]}
+// CHECK:           arith.mulf
+// CHECK:           arith.addf
+
+func.func @matmul_transpose_a_b_explicit(%arg0: memref<5x3xf32>, %arg1: memref<7x5xf32>, %arg2: memref<3x7xf32>) {
+  linalg.matmul indexing_maps = [
+                       affine_map<(d0, d1, d2) -> (d2, d0)>,
+                       affine_map<(d0, d1, d2) -> (d1, d2)>,
+                       affine_map<(d0, d1, d2) -> (d0, d1)>
+                      ]
+                      ins(%arg0, %arg1 : memref<5x3xf32>, memref<7x5xf32>)
+                      outs(%arg2: memref<3x7xf32>)
+                      
+  return
+}
+
+// -----
+

diff  --git a/mlir/test/Dialect/Linalg/invalid.mlir b/mlir/test/Dialect/Linalg/invalid.mlir
index 4b5a66f8fb5b92..a59472377a732c 100644
--- a/mlir/test/Dialect/Linalg/invalid.mlir
+++ b/mlir/test/Dialect/Linalg/invalid.mlir
@@ -370,6 +370,165 @@ func.func @invalid_static_matmul(%arg0: memref<2x4xf32>, %arg1: memref<3x4xf32>,
 
 // -----
 
+func.func @invalid_indexing_maps_matmul(%arg0: memref<2x4xf32>, %arg1: memref<3x4xf32>, %arg2: memref<2x4xf32>) {
+  // expected-error @+1 {{expected attribute value}}
+  linalg.matmul indexing_maps = [
+                       ,
+                       affine_map<(d0, d1, d2) -> (d2, d1)>,
+                       affine_map<(d0, d1, d2) -> (d0, d1)>
+                      ]
+                      ins(%arg0, %arg1 : memref<2x4xf32>, memref<3x4xf32>)
+                      outs(%arg2 :memref<2x4xf32>)
+  return
+}
+
+// -----
+
+func.func @invalid_matmul_dim_a(%arg0: memref<5x5xf32>, %arg1: memref<5x5xf32>, %arg2: memref<5x5xf32>) {
+  // expected-error @+1 {{Unexpected dim expression in map result}}
+  linalg.matmul indexing_maps = [
+                       affine_map<(d0, d1, d2) -> (d1, d2)>,
+                       affine_map<(d0, d1, d2) -> (d2, d1)>,
+                       affine_map<(d0, d1, d2) -> (d0, d1)>
+                     ]
+                     ins(%arg0, %arg1 : memref<5x5xf32>, memref<5x5xf32>) outs(%arg2: memref<5x5xf32>)
+  return
+}
+
+// -----
+
+func.func @invalid_matmul_dim_b(%arg0: memref<5x5xf32>, %arg1: memref<5x5xf32>, %arg2: memref<5x5xf32>) {
+  // expected-error @+1 {{Unexpected dim expression in map result}}
+  linalg.matmul indexing_maps = [
+                       affine_map<(d0, d1, d2) -> (d0, d2)>,
+                       affine_map<(d0, d1, d2) -> (d2, d0)>,
+                       affine_map<(d0, d1, d2) -> (d0, d1)>
+                     ]
+                     ins(%arg0, %arg1 : memref<5x5xf32>, memref<5x5xf32>) outs(%arg2: memref<5x5xf32>)
+  return
+}
+
+// -----
+
+func.func @invalid_transpose_a_matmul(%lhs: tensor<4x1xf32>, %rhs: tensor<1x64xf32>, %init: tensor<4x64xf32>) -> tensor<4x64xf32> {
+  // expected-error @+1 {{inferred input/output operand #1 has shape's dimension #0 to be 4, but found 1}}
+  %0 = linalg.matmul indexing_maps = [
+                       affine_map<(d0, d1, d2) -> (d2, d0)>,
+                       affine_map<(d0, d1, d2) -> (d2, d1)>,
+                       affine_map<(d0, d1, d2) -> (d0, d1)>
+                      ]
+                      ins(%lhs, %rhs : tensor<4x1xf32>, tensor<1x64xf32>)
+                      outs(%init : tensor<4x64xf32>) -> tensor<4x64xf32>
+  return %0: tensor<4x64xf32>
+}
+
+// -----
+
+func.func @invalid_transpose_b_matmul(%lhs: tensor<4x1xf32>, %rhs: tensor<1x64xf32>, %init: tensor<4x64xf32>) -> tensor<4x64xf32> {
+  // expected-error @+1 {{inferred input/output operand #1 has shape's dimension #1 to be 1, but found 64}}
+  %0 = linalg.matmul indexing_maps = [
+                       affine_map<(d0, d1, d2) -> (d0, d2)>,
+                       affine_map<(d0, d1, d2) -> (d1, d2)>,
+                       affine_map<(d0, d1, d2) -> (d0, d1)>
+                      ]
+                      ins(%lhs, %rhs : tensor<4x1xf32>, tensor<1x64xf32>)
+                      outs(%init : tensor<4x64xf32>) -> tensor<4x64xf32>
+  return %0: tensor<4x64xf32>
+}
+
+// -----
+
+func.func @invalid_bcast_a(%arg0: memref<3xf32>, %arg1: memref<5x7xf32>, %arg2: memref<3x7xf32>) {
+  // expected-error @+1 {{'linalg.matmul' op Invalid broadcast requested, should be (d2)}}
+  linalg.matmul indexing_maps = [
+                       affine_map<(d0, d1, d2) -> (d0)>,
+                       affine_map<(d0, d1, d2) -> (d1, d2)>,
+                       affine_map<(d0, d1, d2) -> (d0, d1)>
+                     ]
+                     ins(%arg0, %arg1 : memref<3xf32>, memref<5x7xf32>) outs(%arg2: memref<3x7xf32>)
+  return
+}
+
+// -----
+
+func.func @invalid_bcast_b(%arg0: memref<3x5xf32>, %arg1: memref<7xf32>, %arg2: memref<3x7xf32>) {
+  // expected-error @+1 {{'linalg.matmul' op Invalid broadcast requested, should be (d2)}}
+  linalg.matmul indexing_maps = [
+                       affine_map<(d0, d1, d2) -> (d0, d2)>,
+                       affine_map<(d0, d1, d2) -> (d1)>,
+                       affine_map<(d0, d1, d2) -> (d0, d1)>
+                     ]
+                     ins(%arg0, %arg1 : memref<3x5xf32>, memref<7xf32>) outs(%arg2: memref<3x7xf32>)
+  return
+}
+
+// -----
+
+func.func @invalid_bcast_a_rank_mismatch(%arg0: memref<3x5xf32>, %arg1: memref<5x7xf32>, %arg2: memref<3x7xf32>) {
+  // expected-error @+1 {{'linalg.matmul' op expected operand rank (2) to match the result rank of indexing_map #0 (1)}}
+  linalg.matmul indexing_maps = [
+                       affine_map<(d0, d1, d2) -> (d2)>,
+                       affine_map<(d0, d1, d2) -> (d2, d1)>,
+                       affine_map<(d0, d1, d2) -> (d0, d1)>
+                     ]
+                     ins(%arg0, %arg1 : memref<3x5xf32>, memref<5x7xf32>) outs(%arg2: memref<3x7xf32>)
+  return
+}
+
+// -----
+
+func.func @invalid_bcast_b_rank_mismatch(%arg0: memref<3x5xf32>, %arg1: memref<5x7xf32>, %arg2: memref<3x7xf32>) {
+  // expected-error @+1 {{'linalg.matmul' op expected operand rank (2) to match the result rank of indexing_map #1 (1)}}
+  linalg.matmul indexing_maps = [
+                       affine_map<(d0, d1, d2) -> (d0, d2)>,
+                       affine_map<(d0, d1, d2) -> (d2)>,
+                       affine_map<(d0, d1, d2) -> (d0, d1)>
+                     ]
+                     ins(%arg0, %arg1 : memref<3x5xf32>, memref<5x7xf32>) outs(%arg2: memref<3x7xf32>)
+  return
+}
+
+// -----
+
+func.func @invalid_matmul_bcast_b_transpose_a(%arg0: memref<5x3xf32>, %arg1: memref<7xf32>, %arg2: memref<3x7xf32>) {
+  // expected-error @+1 {{inferred input/output operand #1 has shape's dimension #0 to be 5, but found 7}}
+  linalg.matmul indexing_maps = [
+                       affine_map<(d0, d1, d2) -> (d2, d0)>,
+                       affine_map<(d0, d1, d2) -> (d2)>,
+                       affine_map<(d0, d1, d2) -> (d0, d1)>
+                     ]
+                     ins(%arg0, %arg1 : memref<5x3xf32>, memref<7xf32>) outs(%arg2: memref<3x7xf32>)
+  return
+}
+
+// -----
+
+func.func @invalid_matmul_bcast_b_transpose_a_wrong_dim(%arg0: memref<3x5xf32>, %arg1: memref<5xf32>, %arg2: memref<3x7xf32>) {
+  // expected-error @+1 {{'linalg.matmul' op Unexpected dim expression in map result.}}
+  linalg.matmul indexing_maps = [
+                       affine_map<(d0, d1, d2) -> (d1, d2)>,
+                       affine_map<(d0, d1, d2) -> (d2)>,
+                       affine_map<(d0, d1, d2) -> (d0, d1)>
+                     ]
+                     ins(%arg0, %arg1 : memref<3x5xf32>, memref<5xf32>) outs(%arg2: memref<3x7xf32>)
+  return
+}
+
+// -----
+
+func.func @invalid_indexing_maps_placement_matmul(%lhs: tensor<4x1xf32>, %rhs: tensor<1x64xf32>, %init: tensor<4x64xf32>) {
+  // expected-error @+2 {{custom op 'indexing_maps' is unknown (tried 'func.indexing_maps' as well)}}
+  linalg.matmul ins(%lhs, %rhs : tensor<4x1xf32>, tensor<1x64xf32>) outs(%init : tensor<4x64xf32>)
+                        indexing_maps = [
+                       affine_map<(d0, d1, d2) -> (d0, d2)>,
+                       affine_map<(d0, d1, d2) -> (d2, d1)>,
+                       affine_map<(d0, d1, d2) -> (d0, d1)>
+                      ]
+  return
+}
+
+// -----
+
 func.func @invalid_static_2d_conv(%input : memref<1x3x4x2xf32>, %filter: memref<3x2x2x1xf32>, %output: memref<1x2x3x1xf32>) {
   // expected-error @+1 {{inferred input/output operand #0 has shape's dimension #1 to be greater than or equal to 4, but found 3}}
   linalg.conv_2d_nhwc_hwcf

diff  --git a/mlir/test/Dialect/Linalg/named-ops.mlir b/mlir/test/Dialect/Linalg/named-ops.mlir
index 02ecbed232c8b5..65c18de8424771 100644
--- a/mlir/test/Dialect/Linalg/named-ops.mlir
+++ b/mlir/test/Dialect/Linalg/named-ops.mlir
@@ -1201,6 +1201,249 @@ func.func @matmul_transpose_a(%arg0: memref<5x3xf32>, %arg1: memref<5x7xf32>, %a
 
 // -----
 
+// CHECK-LABEL: func @matmul_transpose_a_explicit
+//       CHECK:   linalg.matmul
+//  CHECK-SAME:     ins(%{{.+}}, %{{.+}} : memref<5x3xf32>, memref<5x7xf32>)
+//  CHECK-SAME:     outs(%{{.+}} : memref<3x7xf32>)
+func.func @matmul_transpose_a_explicit(%arg0: memref<5x3xf32>, %arg1: memref<5x7xf32>, %arg2: memref<3x7xf32>) {
+  linalg.matmul indexing_maps = [
+                       affine_map<(d0, d1, d2) -> (d2, d0)>,
+                       affine_map<(d0, d1, d2) -> (d2, d1)>,
+                       affine_map<(d0, d1, d2) -> (d0, d1)>
+                      ]
+                      ins(%arg0, %arg1 : memref<5x3xf32>, memref<5x7xf32>)
+                      outs(%arg2: memref<3x7xf32>)
+                      
+  return
+}
+
+// -----
+
+func.func @matmul_transpose_b_explicit(%arg0: memref<3x5xf32>, %arg1: memref<7x5xf32>, %arg2: memref<3x7xf32>) {
+  linalg.matmul indexing_maps = [
+                       affine_map<(d0, d1, d2) -> (d0, d2)>,
+                       affine_map<(d0, d1, d2) -> (d1, d2)>,
+                       affine_map<(d0, d1, d2) -> (d0, d1)>
+                      ]
+                      ins(%arg0, %arg1 : memref<3x5xf32>, memref<7x5xf32>)
+                      outs(%arg2: memref<3x7xf32>)
+                      
+  return
+}
+
+// CHECK: #[[$ATTR_0:.+]] = affine_map<(d0, d1, d2) -> (d0, d2)>
+// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1, d2) -> (d1, d2)>
+// CHECK: #[[$ATTR_2:.+]] = affine_map<(d0, d1, d2) -> (d0, d1)>
+
+// CHECK-LABEL:   func.func @matmul_transpose_b_explicit(
+// CHECK-SAME:                                           %[[VAL_0:.*]]: memref<3x5xf32>,
+// CHECK-SAME:                                           %[[VAL_1:.*]]: memref<7x5xf32>,
+// CHECK-SAME:                                           %[[VAL_2:.*]]: memref<3x7xf32>) {
+// CHECK:           linalg.matmul ins(%[[VAL_0]], %[[VAL_1]] : memref<3x5xf32>, memref<7x5xf32>) outs(%[[VAL_2]] : memref<3x7xf32>) indexing_maps = [#[[$ATTR_0]], #[[$ATTR_1]], #[[$ATTR_2]]]
+// CHECK:           return
+// CHECK:         }
+
+// -----
+
+func.func @matmul_transpose_a_b_explicit(%arg0: memref<5x3xf32>, %arg1: memref<7x5xf32>, %arg2: memref<3x7xf32>) {
+  linalg.matmul indexing_maps = [
+                       affine_map<(d0, d1, d2) -> (d2, d0)>,
+                       affine_map<(d0, d1, d2) -> (d1, d2)>,
+                       affine_map<(d0, d1, d2) -> (d0, d1)>
+                      ]
+                      ins(%arg0, %arg1 : memref<5x3xf32>, memref<7x5xf32>)
+                      outs(%arg2: memref<3x7xf32>)
+  return
+}
+
+// CHECK: #[[$ATTR_0:.+]] = affine_map<(d0, d1, d2) -> (d2, d0)>
+// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1, d2) -> (d1, d2)>
+// CHECK: #[[$ATTR_2:.+]] = affine_map<(d0, d1, d2) -> (d0, d1)>
+
+// CHECK-LABEL:   func.func @matmul_transpose_a_b_explicit(
+// CHECK-SAME:                                             %[[VAL_0:.*]]: memref<5x3xf32>,
+// CHECK-SAME:                                             %[[VAL_1:.*]]: memref<7x5xf32>,
+// CHECK-SAME:                                             %[[VAL_2:.*]]: memref<3x7xf32>) {
+// CHECK:           linalg.matmul ins(%[[VAL_0]], %[[VAL_1]] : memref<5x3xf32>, memref<7x5xf32>) outs(%[[VAL_2]] : memref<3x7xf32>) indexing_maps = [#[[$ATTR_0]], #[[$ATTR_1]], #[[$ATTR_2]]]
+// CHECK:           return
+// CHECK:         }
+
+// -----
+
+func.func @matmul_bcast_a(%arg0: memref<5xf32>, %arg1: memref<5x7xf32>, %arg2: memref<3x7xf32>) {
+  linalg.matmul indexing_maps = [
+                       affine_map<(d0, d1, d2) -> (d2)>,
+                       affine_map<(d0, d1, d2) -> (d2, d1)>,
+                       affine_map<(d0, d1, d2) -> (d0, d1)>
+                     ]
+                     ins(%arg0, %arg1 : memref<5xf32>, memref<5x7xf32>) outs(%arg2: memref<3x7xf32>)
+  return
+}
+
+// CHECK: #[[$ATTR_0:.+]] = affine_map<(d0, d1, d2) -> (d2)>
+// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1, d2) -> (d2, d1)>
+// CHECK: #[[$ATTR_2:.+]] = affine_map<(d0, d1, d2) -> (d0, d1)>
+// CHECK-LABEL: func @matmul_bcast_a
+//       CHECK:   linalg.matmul
+//  CHECK-SAME:     ins(%{{.+}}, %{{.+}} : memref<5xf32>, memref<5x7xf32>)
+//  CHECK-SAME:     outs(%{{.+}} : memref<3x7xf32>)
+
+// -----
+
+func.func @matmul_bcast_a_dim1(%arg0: memref<5xf32>, %arg1: memref<5x7xf32>, %arg2: memref<3x7xf32>) {
+  linalg.matmul indexing_maps = [
+                       affine_map<(d0, d1, d2) -> (d2)>,
+                       affine_map<(d0, d1, d2) -> (d2, d1)>,
+                       affine_map<(d0, d1, d2) -> (d0, d1)>
+                     ]
+                     ins(%arg0, %arg1 : memref<5xf32>, memref<5x7xf32>) outs(%arg2: memref<3x7xf32>)
+  return
+}
+
+// CHECK: #[[$ATTR_0:.+]] = affine_map<(d0, d1, d2) -> (d2)>
+// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1, d2) -> (d2, d1)>
+// CHECK: #[[$ATTR_2:.+]] = affine_map<(d0, d1, d2) -> (d0, d1)>
+// CHECK-LABEL: func @matmul_bcast_a_dim1
+//       CHECK:   linalg.matmul
+//  CHECK-SAME:     ins(%{{.+}}, %{{.+}} : memref<5xf32>, memref<5x7xf32>)
+//  CHECK-SAME:     outs(%{{.+}} : memref<3x7xf32>)
+
+// -----
+
+func.func @matmul_bcast_b(%arg0: memref<3x5xf32>, %arg1: memref<5xf32>, %arg2: memref<3x7xf32>) {
+  linalg.matmul indexing_maps = [
+                       affine_map<(d0, d1, d2) -> (d0, d2)>,
+                       affine_map<(d0, d1, d2) -> (d2)>,
+                       affine_map<(d0, d1, d2) -> (d0, d1)>
+                     ]
+                     ins(%arg0, %arg1 : memref<3x5xf32>, memref<5xf32>) outs(%arg2: memref<3x7xf32>)
+  return
+}
+
+// CHECK: #[[$ATTR_0:.+]] = affine_map<(d0, d1, d2) -> (d0, d2)>
+// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1, d2) -> (d2)>
+// CHECK: #[[$ATTR_2:.+]] = affine_map<(d0, d1, d2) -> (d0, d1)>
+// CHECK-LABEL: func @matmul_bcast_b
+//       CHECK:   linalg.matmul
+//  CHECK-SAME:     ins(%{{.+}}, %{{.+}} : memref<3x5xf32>, memref<5xf32>)
+//  CHECK-SAME:     outs(%{{.+}} : memref<3x7xf32>)
+
+// -----
+
+func.func @matmul_bcast_a_b(%arg0: memref<5xf32>, %arg1: memref<5xf32>, %arg2: memref<3x7xf32>) {
+  linalg.matmul indexing_maps = [
+                       affine_map<(d0, d1, d2) -> (d2)>,
+                       affine_map<(d0, d1, d2) -> (d2)>,
+                       affine_map<(d0, d1, d2) -> (d0, d1)>
+                     ]
+                     ins(%arg0, %arg1 : memref<5xf32>, memref<5xf32>) outs(%arg2: memref<3x7xf32>)
+  return
+}
+
+// CHECK: #[[$ATTR_0:.+]] = affine_map<(d0, d1, d2) -> (d2)>
+// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1, d2) -> (d0, d1)>
+
+// CHECK-LABEL:   func.func @matmul_bcast_a_b(
+// CHECK-SAME:                                %[[VAL_0:.*]]: memref<5xf32>, %[[VAL_1:.*]]: memref<5xf32>,
+// CHECK-SAME:                                %[[VAL_2:.*]]: memref<3x7xf32>) {
+// CHECK:           linalg.matmul ins(%[[VAL_0]], %[[VAL_1]] : memref<5xf32>, memref<5xf32>) outs(%[[VAL_2]] : memref<3x7xf32>) indexing_maps = [#[[$ATTR_0]], #[[$ATTR_0]], #[[$ATTR_1]]]
+// CHECK:           return
+// CHECK:         }
+
+// -----
+
+func.func @matmul_bcast_b_dim1(%arg0: memref<3x5xf32>, %arg1: memref<5xf32>, %arg2: memref<3x7xf32>) {
+  linalg.matmul indexing_maps = [
+                       affine_map<(d0, d1, d2) -> (d0, d2)>,
+                       affine_map<(d0, d1, d2) -> (d2)>,
+                       affine_map<(d0, d1, d2) -> (d0, d1)>
+                     ]
+                     ins(%arg0, %arg1 : memref<3x5xf32>, memref<5xf32>) outs(%arg2: memref<3x7xf32>)
+  return
+}
+
+// CHECK: #[[$ATTR_0:.+]] = affine_map<(d0, d1, d2) -> (d0, d2)>
+// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1, d2) -> (d2)>
+// CHECK: #[[$ATTR_2:.+]] = affine_map<(d0, d1, d2) -> (d0, d1)>
+// CHECK-LABEL: func @matmul_bcast_b_dim1
+//       CHECK:   linalg.matmul
+//  CHECK-SAME:     ins(%{{.+}}, %{{.+}} : memref<3x5xf32>, memref<5xf32>)
+//  CHECK-SAME:     outs(%{{.+}} : memref<3x7xf32>)
+
+// -----
+
+func.func @dynamic_matmul_bcast_a(%arg0: memref<?xf32>, %arg1: memref<?x?xf32>, %arg2: memref<?x?xf32>) {
+  linalg.matmul indexing_maps = [
+                       affine_map<(d0, d1, d2) -> (d2)>,
+                       affine_map<(d0, d1, d2) -> (d2, d1)>,
+                       affine_map<(d0, d1, d2) -> (d0, d1)>
+                     ]
+                     ins(%arg0, %arg1 : memref<?xf32>, memref<?x?xf32>) outs(%arg2: memref<?x?xf32>)
+  return
+}
+
+// CHECK: #[[$ATTR_0:.+]] = affine_map<(d0, d1, d2) -> (d2)>
+// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1, d2) -> (d2, d1)>
+// CHECK: #[[$ATTR_2:.+]] = affine_map<(d0, d1, d2) -> (d0, d1)>
+
+// CHECK-LABEL:   func.func @dynamic_matmul_bcast_a(
+// CHECK-SAME:                                      %[[VAL_0:.*]]: memref<?xf32>,
+// CHECK-SAME:                                      %[[VAL_1:.*]]: memref<?x?xf32>,
+// CHECK-SAME:                                      %[[VAL_2:.*]]: memref<?x?xf32>) {
+// CHECK:           linalg.matmul ins(%[[VAL_0]], %[[VAL_1]] : memref<?xf32>, memref<?x?xf32>) outs(%[[VAL_2]] : memref<?x?xf32>) indexing_maps = [#[[$ATTR_0]], #[[$ATTR_1]], #[[$ATTR_2]]]
+// CHECK:           return
+// CHECK:         }
+
+// -----
+
+func.func @matmul_bcast_a_transpose_b(%arg0: memref<5xf32>, %arg1: memref<7x5xf32>, %arg2: memref<3x7xf32>) {
+  linalg.matmul indexing_maps = [
+                       affine_map<(d0, d1, d2) -> (d2)>,
+                       affine_map<(d0, d1, d2) -> (d1, d2)>,
+                       affine_map<(d0, d1, d2) -> (d0, d1)>
+                     ]
+                     ins(%arg0, %arg1 : memref<5xf32>, memref<7x5xf32>) outs(%arg2: memref<3x7xf32>)
+  return
+}
+
+// CHECK: #[[$ATTR_0:.+]] = affine_map<(d0, d1, d2) -> (d2)>
+// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1, d2) -> (d1, d2)>
+// CHECK: #[[$ATTR_2:.+]] = affine_map<(d0, d1, d2) -> (d0, d1)>
+
+// CHECK-LABEL:   func.func @matmul_bcast_a_transpose_b(
+// CHECK-SAME:                                  %[[VAL_0:.*]]: memref<5xf32>,
+// CHECK-SAME:                                  %[[VAL_1:.*]]: memref<7x5xf32>,
+// CHECK-SAME:                                  %[[VAL_2:.*]]: memref<3x7xf32>) {
+// CHECK:           linalg.matmul ins(%[[VAL_0]], %[[VAL_1]] : memref<5xf32>, memref<7x5xf32>) outs(%[[VAL_2]] : memref<3x7xf32>) indexing_maps = [#[[$ATTR_0]], #[[$ATTR_1]], #[[$ATTR_2]]]
+// CHECK:           return
+// CHECK:         }
+
+// -----
+
+func.func @matmul_bcast_b_transpose_a(%arg0: memref<5x3xf32>, %arg1: memref<5xf32>, %arg2: memref<3x7xf32>) {
+  linalg.matmul indexing_maps = [
+                       affine_map<(d0, d1, d2) -> (d2, d0)>,
+                       affine_map<(d0, d1, d2) -> (d2)>,
+                       affine_map<(d0, d1, d2) -> (d0, d1)>
+                     ]
+                     ins(%arg0, %arg1 : memref<5x3xf32>, memref<5xf32>) outs(%arg2: memref<3x7xf32>)
+  return
+}
+
+// CHECK: #[[$ATTR_0:.+]] = affine_map<(d0, d1, d2) -> (d2, d0)>
+// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1, d2) -> (d2)>
+// CHECK: #[[$ATTR_2:.+]] = affine_map<(d0, d1, d2) -> (d0, d1)>
+
+// CHECK-LABEL:   func.func @matmul_bcast_b_transpose_a(
+// CHECK-SAME:                                          %[[VAL_0:.*]]: memref<5x3xf32>,
+// CHECK-SAME:                                          %[[VAL_1:.*]]: memref<5xf32>,
+// CHECK-SAME:                                          %[[VAL_2:.*]]: memref<3x7xf32>) {
+// CHECK:           linalg.matmul ins(%[[VAL_0]], %[[VAL_1]] : memref<5x3xf32>, memref<5xf32>) outs(%[[VAL_2]] : memref<3x7xf32>) indexing_maps = [#[[$ATTR_0]], #[[$ATTR_1]], #[[$ATTR_2]]]
+// CHECK:           return
+// CHECK:         }
+
+// -----
+
 // CHECK-LABEL: func @matmul_transpose_b
 //       CHECK:   linalg.matmul_transpose_b
 //  CHECK-SAME:     ins(%{{.+}}, %{{.+}} : memref<3x5xf32>, memref<7x5xf32>)

diff  --git a/mlir/test/python/dialects/linalg/ops.py b/mlir/test/python/dialects/linalg/ops.py
index 3bfbcf7d7f7c81..72045a07b2da80 100644
--- a/mlir/test/python/dialects/linalg/ops.py
+++ b/mlir/test/python/dialects/linalg/ops.py
@@ -84,81 +84,6 @@ def named_form(lhs, rhs):
 
     print(module)
 
-
-# CHECK-LABEL: TEST: testNamedStructuredOpGenericForm
- at run
-def testNamedStructuredOpGenericForm():
-    with Context() as ctx, Location.unknown():
-        module = Module.create()
-        f32 = F32Type.get()
-        with InsertionPoint(module.body):
-
-            @func.FuncOp.from_py_func(
-                RankedTensorType.get((4, 16), f32), RankedTensorType.get((16, 8), f32)
-            )
-            def named_form(lhs, rhs):
-                init_result = tensor.empty([4, 8], f32)
-                #      CHECK: "linalg.matmul"(%{{.*}})
-                # CHECK-SAME:    cast = #linalg.type_fn<cast_signed>
-                # CHECK-SAME:    operandSegmentSizes = array<i32: 2, 1>
-                # CHECK-NEXT:  ^bb0(%{{.*}}: f32, %{{.*}}: f32, %{{.*}}: f32):
-                # CHECK-NEXT:    arith.mulf{{.*}} (f32, f32) -> f32
-                # CHECK-NEXT:    arith.addf{{.*}} (f32, f32) -> f32
-                # CHECK-NEXT:    linalg.yield{{.*}} (f32) -> ()
-                # CHECK-NEXT: (tensor<4x16xf32>, tensor<16x8xf32>, tensor<4x8xf32>) -> tensor<4x8xf32>
-                return linalg.matmul(lhs, rhs, outs=[init_result])
-
-    module.operation.print(print_generic_op_form=True)
-
-
-# CHECK-LABEL: TEST: testNamedStructuredAsGenericOp
- at run
-def testNamedStructuredAsGenericOp():
-    with Context() as ctx, Location.unknown():
-        module = Module.create()
-        f32 = F32Type.get()
-        with InsertionPoint(module.body):
-
-            @func.FuncOp.from_py_func(
-                RankedTensorType.get((4, 16), f32), RankedTensorType.get((16, 8), f32)
-            )
-            def generic_form(lhs, rhs):
-                init_result = tensor.EmptyOp([4, 8], f32)
-                # CHECK: linalg.generic
-                return linalg.matmul(
-                    lhs, rhs, outs=[init_result.result], emit_generic=True
-                )
-
-    print(module)
-
-
-# CHECK-LABEL: TEST: testOpResultFromOtherOp
- at run
-def testOpResultFromOtherOp():
-    with Context(), Location.unknown():
-        module = Module.create()
-        f32 = F32Type.get()
-        with InsertionPoint(module.body):
-
-            @func.FuncOp.from_py_func(
-                RankedTensorType.get((4, 16), f32), RankedTensorType.get((16, 8), f32)
-            )
-            def pass_an_op_directly(arg0, arg1):
-                one = arith.ConstantOp(F32Type.get(), 1.0)
-                # CHECK: %[[LHS:.*]] = linalg.fill
-                lhs = linalg.fill(one, outs=[arg0])
-                # CHECK: %[[RHS:.*]] = linalg.fill
-                rhs = linalg.fill(one, outs=[arg1])
-                # CHECK: %[[INIT:.*]] = tensor.empty
-                init = tensor.EmptyOp([4, 8], f32)
-                # CHECK: linalg.matmul
-                # CHECK: ins(%[[LHS]], %[[RHS]]
-                # CHECK: outs(%[[INIT]]
-                return linalg.matmul(lhs, rhs, outs=init)
-
-    print(module)
-
-
 # CHECK-LABEL: TEST: testIdentityRegionOps
 @run
 def testIdentityRegionOps():

diff  --git a/mlir/test/python/integration/dialects/linalg/opsrun.py b/mlir/test/python/integration/dialects/linalg/opsrun.py
index f6519fb17a6b98..f77900bc277736 100644
--- a/mlir/test/python/integration/dialects/linalg/opsrun.py
+++ b/mlir/test/python/integration/dialects/linalg/opsrun.py
@@ -50,37 +50,6 @@ def log(*args):
 }
 """
 
-matmul_boiler = """
-func.func @main() -> f32 attributes {llvm.emit_c_interface} {
-  %v0 = arith.constant 0.0 : f32
-  %v1 = arith.constant -1 : i8
-  %v2 = arith.constant 2.0 : f32
-
-  %A = memref.alloc() : memref<4x16xi8>
-  %B = memref.alloc() : memref<16x8xf32>
-  %C0 = memref.alloc() : memref<4x8xf32>
-  %C1 = memref.alloc() : memref<4x8xf32>
-  linalg.fill ins(%v1 : i8) outs(%A : memref<4x16xi8>)
-  linalg.fill ins(%v2 : f32) outs(%B : memref<16x8xf32>)
-  linalg.fill ins(%v0 : f32) outs(%C0 : memref<4x8xf32>)
-  linalg.fill ins(%v0 : f32) outs(%C1 : memref<4x8xf32>)
-
-  call @matmul_signed_on_buffers(%A, %B, %C0) :
-    (memref<4x16xi8>, memref<16x8xf32>, memref<4x8xf32>) -> ()
-  call @matmul_unsigned_on_buffers(%A, %B, %C1) :
-    (memref<4x16xi8>, memref<16x8xf32>, memref<4x8xf32>) -> ()
-
-  %c0 = arith.constant 0 : index
-  %res0 = memref.load %C0[%c0, %c0] : memref<4x8xf32>
-  %res1 = memref.load %C1[%c0, %c0] : memref<4x8xf32>
-
-  %0 = arith.addf %res0, %res1 : f32
-
-  // TODO: FFI-based solution to allow testing and printing with python code.
-  return %0 : f32
-}
-"""
-
 fill_boiler = """
 func.func @main() -> i32 attributes {llvm.emit_c_interface} {
   %O0 = memref.alloc() : memref<i32>
@@ -296,90 +265,6 @@ def elemwise_log_mul_on_buffers(lhs, rhs, out):
 test_elemwise_generic()
 
 
-def test_matmul_builtin():
-    with Context() as ctx, Location.unknown():
-        module = Module.create()
-        f32 = F32Type.get()
-        i8 = IntegerType.get_signless(8)
-        with InsertionPoint(module.body):
-
-            @func.FuncOp.from_py_func(
-                MemRefType.get((4, 16), i8),
-                MemRefType.get((16, 8), f32),
-                MemRefType.get((4, 8), f32),
-            )
-            def matmul_signed_on_buffers(lhs, rhs, out):
-                linalg.matmul(lhs, rhs, outs=[out])
-
-            @func.FuncOp.from_py_func(
-                MemRefType.get((4, 16), i8),
-                MemRefType.get((16, 8), f32),
-                MemRefType.get((4, 8), f32),
-            )
-            def matmul_unsigned_on_buffers(lhs, rhs, out):
-                linalg.matmul(lhs, rhs, outs=[out], cast=TypeFn.cast_unsigned)
-
-        execution_engine = ExecutionEngine(transform(module, matmul_boiler))
-
-        # TODO: FFI-based solution to allow testing and printing with python code.
-        # Prepare arguments: one result f32.
-        # Arguments must be passed as pointers.
-        c_float_p = ctypes.c_float * 1
-        res = c_float_p(-1.0)
-        execution_engine.invoke("main", res)
-
-        log("RESULT: ", res[0])
-        # matmul_signed_on_buffers: -1 * 2.0 * 16 = -32
-        # matmul_unsigned_on_buffers: (2^8-1) * 2.0 * 16 = 8160
-        # CHECK: RESULT: 8128
-
-
-test_matmul_builtin()
-
-
-def test_matmul_generic():
-    with Context() as ctx, Location.unknown():
-        module = Module.create()
-        f32 = F32Type.get()
-        i8 = IntegerType.get_signless(8)
-        with InsertionPoint(module.body):
-
-            @func.FuncOp.from_py_func(
-                MemRefType.get((4, 16), i8),
-                MemRefType.get((16, 8), f32),
-                MemRefType.get((4, 8), f32),
-            )
-            def matmul_signed_on_buffers(lhs, rhs, out):
-                linalg.matmul(lhs, rhs, outs=[out], emit_generic=True)
-
-            @func.FuncOp.from_py_func(
-                MemRefType.get((4, 16), i8),
-                MemRefType.get((16, 8), f32),
-                MemRefType.get((4, 8), f32),
-            )
-            def matmul_unsigned_on_buffers(lhs, rhs, out):
-                linalg.matmul(
-                    lhs, rhs, outs=[out], cast=TypeFn.cast_unsigned, emit_generic=True
-                )
-
-        execution_engine = ExecutionEngine(transform(module, matmul_boiler))
-
-        # TODO: FFI-based solution to allow testing and printing with python code.
-        # Prepare arguments: one result f32.
-        # Arguments must be passed as pointers.
-        c_float_p = ctypes.c_float * 1
-        res = c_float_p(-1.0)
-        execution_engine.invoke("main", res)
-
-        log("RESULT: ", res[0])
-        # matmul_signed_on_buffers = -1 * 2.0 * 16 = -32
-        # matmul_unsigned_on_buffers = (2^8-1) * 2.0 * 16 = 8160
-        # CHECK: RESULT: 8128
-
-
-test_matmul_generic()
-
-
 def test_fill_builtin():
     with Context() as ctx, Location.unknown():
         module = Module.create()

diff  --git a/mlir/test/python/integration/dialects/transform.py b/mlir/test/python/integration/dialects/transform.py
index bc88a61314d0d8..303274a8f88287 100644
--- a/mlir/test/python/integration/dialects/transform.py
+++ b/mlir/test/python/integration/dialects/transform.py
@@ -99,26 +99,28 @@ def basic(target: any_op_t()):
 # CHECK-LABEL: TEST: test_apply_patterns
 @construct_and_print_in_module
 def test_apply_patterns(module_):
-    M, N, K = 3, 5, 3
+    b, M, N, K = 1, 3, 5, 3
 
-    # CHECK-LABEL:   func.func @matmul(
-    # CHECK-SAME:                      %[[VAL_0:.*]]: tensor<3x5xf32>, %[[VAL_1:.*]]: tensor<5x3xf32>, %[[VAL_2:.*]]: tensor<3x3xf32>) -> tensor<3x3xf32> {
+    # CHECK-LABEL:   func.func @batch_reduce_matmul(
+    # CHECK-SAME:                      %[[VAL_0:.*]]: tensor<1x3x5xf32>,
+    # CHECK-SAME:                      %[[VAL_1:.*]]: tensor<1x5x3xf32>,
+    # CHECK-SAME:                      %[[VAL_2:.*]]: tensor<3x3xf32>) -> tensor<3x3xf32> {
     # CHECK:           %[[VAL_3:.*]] = arith.constant 1 : i32
     # CHECK:           %[[VAL_4:.*]] = arith.addi %[[VAL_3]], %[[VAL_3]] : i32
-    # CHECK:           %[[VAL_5:.*]] = linalg.matmul {cast = #linalg.type_fn<cast_signed>} ins(%[[VAL_0]], %[[VAL_1]] : tensor<3x5xf32>, tensor<5x3xf32>) outs(%[[VAL_2]] : tensor<3x3xf32>) -> tensor<3x3xf32>
+    # CHECK:           %[[VAL_5:.*]] = linalg.batch_reduce_matmul ins(%[[VAL_0]], %[[VAL_1]] : tensor<1x3x5xf32>, tensor<1x5x3xf32>) outs(%[[VAL_2]] : tensor<3x3xf32>) -> tensor<3x3xf32>
     # CHECK:           return %[[VAL_5]] : tensor<3x3xf32>
     # CHECK:         }
     @func.func(
-        T.tensor(M, N, T.f32()), T.tensor(N, K, T.f32()), T.tensor(M, K, T.f32())
+        T.tensor(b, M, N, T.f32()), T.tensor(b, N, K, T.f32()), T.tensor(M, K, T.f32())
     )
-    def matmul(A, B, C):
+    def batch_reduce_matmul(A, B, C):
         i = arith.constant(T.i32(), 1)
         v = arith.addi(i, i)
-        return linalg.matmul(A, B, outs=[C])
+        return linalg.batch_reduce_matmul(A, B, outs=[C])
 
     # CHECK-LABEL:   module attributes {transform.with_named_sequence} {
     # CHECK:           transform.named_sequence @__transform_main(%[[VAL_0:.*]]: !transform.any_op) {
-    # CHECK:             %[[VAL_1:.*]] = transform.structured.match ops{["linalg.matmul"]} in %[[VAL_0]] : (!transform.any_op) -> !transform.any_op
+    # CHECK:             %[[VAL_1:.*]] = transform.structured.match ops{["linalg.batch_reduce_matmul"]} in %[[VAL_0]] : (!transform.any_op) -> !transform.any_op
     # CHECK:             %[[VAL_2:.*]] = transform.get_parent_op %[[VAL_1]] {op_name = "func.func"} : (!transform.any_op) -> !pdl.operation
     # CHECK:             transform.apply_patterns to %[[VAL_2]] {
     # CHECK:               transform.apply_patterns.canonicalization
@@ -132,7 +134,9 @@ def matmul(A, B, C):
     def mod():
         @named_sequence("__transform_main", [any_op_t()], [])
         def basic(variant_op: any_op_t()):
-            matmul = structured_match(any_op_t(), variant_op, ops=["linalg.matmul"])
+            matmul = structured_match(
+                any_op_t(), variant_op, ops=["linalg.batch_reduce_matmul"]
+            )
             top_func = get_parent_op(pdl.op_t(), matmul, op_name="func.func")
 
             @apply_patterns(top_func)
@@ -147,9 +151,9 @@ def pats():
     pm = PassManager.parse("builtin.module(transform-interpreter)")
     pm.run(module_.operation)
 
-    # CHECK-LABEL:   func.func @matmul(
-    # CHECK-SAME:                      %[[VAL_0:.*]]: tensor<3x5xf32>, %[[VAL_1:.*]]: tensor<5x3xf32>, %[[VAL_2:.*]]: tensor<3x3xf32>) -> tensor<3x3xf32> {
-    # CHECK:           %[[VAL_3:.*]] = linalg.matmul {cast = #linalg.type_fn<cast_signed>} ins(%[[VAL_0]], %[[VAL_1]] : tensor<3x5xf32>, tensor<5x3xf32>) outs(%[[VAL_2]] : tensor<3x3xf32>) -> tensor<3x3xf32>
+    # CHECK-LABEL:   func.func @batch_reduce_matmul(
+    # CHECK-SAME:                      %[[VAL_0:.*]]: tensor<1x3x5xf32>, %[[VAL_1:.*]]: tensor<1x5x3xf32>, %[[VAL_2:.*]]: tensor<3x3xf32>) -> tensor<3x3xf32> {
+    # CHECK:           %[[VAL_3:.*]] = linalg.batch_reduce_matmul ins(%[[VAL_0]], %[[VAL_1]] : tensor<1x3x5xf32>, tensor<1x5x3xf32>) outs(%[[VAL_2]] : tensor<3x3xf32>) -> tensor<3x3xf32>
     # CHECK:           return %[[VAL_3]] : tensor<3x3xf32>
     # CHECK:         }
     print(module_)

diff  --git a/mlir/tools/mlir-linalg-ods-gen/mlir-linalg-ods-yaml-gen.cpp b/mlir/tools/mlir-linalg-ods-gen/mlir-linalg-ods-yaml-gen.cpp
index 5f86c0cd747077..6be7d4320c6562 100644
--- a/mlir/tools/mlir-linalg-ods-gen/mlir-linalg-ods-yaml-gen.cpp
+++ b/mlir/tools/mlir-linalg-ods-gen/mlir-linalg-ods-yaml-gen.cpp
@@ -678,7 +678,11 @@ ParseResult {0}::parse(OpAsmParser &parser, OperationState &result) {{
     {0}::getNumRegionArgs(), {0}::getRegionBuilder());
 }
 void {0}::print(OpAsmPrinter &p) {{
-  ::printNamedStructuredOp(p, getOperation(), getInputs(), getOutputs());
+  SmallVector<StringRef, 3> elidedAttrs = {{"operandSegmentSizes",
+                                           "linalg.memoized_indexing_maps",
+                                           "indexing_maps"};
+  ::printNamedStructuredOp(p, getOperation(), getInputs(), getOutputs(),
+                           elidedAttrs);
 }
 )FMT";
 


        


More information about the Mlir-commits mailing list