[Mlir-commits] [mlir] [mlir][arith] Add neutral element support to arith.maxnumf/arith.minnumf (PR #93278)

donald chen llvmlistbot at llvm.org
Sun May 26 07:41:53 PDT 2024


https://github.com/cxy-1993 updated https://github.com/llvm/llvm-project/pull/93278

>From 3fbd1a22a3f6b7058f82f26869785f604d21d537 Mon Sep 17 00:00:00 2001
From: cxy <chenxunyu1993 at gmail.com>
Date: Fri, 24 May 2024 07:45:57 +0000
Subject: [PATCH] [mlir][arith] Add neutral element support to
 arith.maxnumf/arith.minnumf

For maxnumf and minnumf, the result of calculations involving NaN will be
another value, so their neutral element is set to NaN.
---
 mlir/lib/Dialect/Arith/IR/ArithOps.cpp        | 14 ++++++
 .../Linalg/transform-op-split-reduction.mlir  | 46 +++++++++++++++++++
 2 files changed, 60 insertions(+)

diff --git a/mlir/lib/Dialect/Arith/IR/ArithOps.cpp b/mlir/lib/Dialect/Arith/IR/ArithOps.cpp
index a0b50251c6b67..5797c5681a5fd 100644
--- a/mlir/lib/Dialect/Arith/IR/ArithOps.cpp
+++ b/mlir/lib/Dialect/Arith/IR/ArithOps.cpp
@@ -2467,6 +2467,12 @@ TypedAttr mlir::arith::getIdentityValueAttr(AtomicRMWKind kind, Type resultType,
                            : APFloat::getInf(semantic, /*Negative=*/true);
     return builder.getFloatAttr(resultType, identity);
   }
+  case AtomicRMWKind::maxnumf: {
+    const llvm::fltSemantics &semantic =
+        llvm::cast<FloatType>(resultType).getFloatSemantics();
+    APFloat identity = APFloat::getNaN(semantic, /*Negative=*/true);
+    return builder.getFloatAttr(resultType, identity);
+  }
   case AtomicRMWKind::addf:
   case AtomicRMWKind::addi:
   case AtomicRMWKind::maxu:
@@ -2489,6 +2495,12 @@ TypedAttr mlir::arith::getIdentityValueAttr(AtomicRMWKind kind, Type resultType,
 
     return builder.getFloatAttr(resultType, identity);
   }
+  case AtomicRMWKind::minnumf: {
+    const llvm::fltSemantics &semantic =
+        llvm::cast<FloatType>(resultType).getFloatSemantics();
+    APFloat identity = APFloat::getNaN(semantic, /*Negative=*/false);
+    return builder.getFloatAttr(resultType, identity);
+  }
   case AtomicRMWKind::mins:
     return builder.getIntegerAttr(
         resultType, APInt::getSignedMaxValue(
@@ -2518,6 +2530,8 @@ std::optional<TypedAttr> mlir::arith::getNeutralElement(Operation *op) {
           .Case([](arith::MulFOp op) { return AtomicRMWKind::mulf; })
           .Case([](arith::MaximumFOp op) { return AtomicRMWKind::maximumf; })
           .Case([](arith::MinimumFOp op) { return AtomicRMWKind::minimumf; })
+          .Case([](arith::MaxNumFOp op) { return AtomicRMWKind::maxnumf; })
+          .Case([](arith::MinNumFOp op) { return AtomicRMWKind::minnumf; })
           // Integer operations.
           .Case([](arith::AddIOp op) { return AtomicRMWKind::addi; })
           .Case([](arith::OrIOp op) { return AtomicRMWKind::ori; })
diff --git a/mlir/test/Dialect/Linalg/transform-op-split-reduction.mlir b/mlir/test/Dialect/Linalg/transform-op-split-reduction.mlir
index 31e9fd00cffa0..d76331ac08905 100644
--- a/mlir/test/Dialect/Linalg/transform-op-split-reduction.mlir
+++ b/mlir/test/Dialect/Linalg/transform-op-split-reduction.mlir
@@ -407,3 +407,49 @@ module attributes {transform.with_named_sequence} {
       transform.yield
   }
 }
+
+// -----
+
+// Checks we use nan as the neutral element for maxnumf op.
+func.func @generic_split_maxnumf(%in: tensor<32xf32>, %out: tensor<f32>) -> tensor<f32> {
+  %r = linalg.generic {indexing_maps = [affine_map<(d0) -> (d0)>,
+                                        affine_map<(d0) -> ()>],
+        iterator_types = ["reduction"]}
+  ins(%in : tensor<32xf32>)
+  outs(%out : tensor<f32>) {
+  ^bb0(%arg1: f32, %arg2: f32):
+    %y = arith.maxnumf %arg1, %arg2 : f32
+    linalg.yield %y : f32
+  } -> tensor<f32>
+  return %r : tensor<f32>
+}
+
+//  CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1) -> (d0, d1)>
+//  CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0, d1) -> (d1)>
+//  CHECK-DAG: #[[$MAP2:.*]] = affine_map<(d0) -> (d0)>
+//  CHECK-DAG: #[[$MAP3:.*]] = affine_map<(d0) -> ()>
+// CHECK-LABEL:  func @generic_split_maxnumf
+//  CHECK-DAG: %[[ID:.*]] = arith.constant 0xFFC00000 : f32
+//  CHECK-DAG: %[[I1:.*]] = tensor.expand_shape %{{.*}}[0, 1]] output_shape [8, 4] : tensor<32xf32> into tensor<8x4xf32>
+//  CHECK-DAG: %[[INI:.*]] = tensor.empty() : tensor<4xf32>
+//      CHECK: %[[F:.*]] = linalg.fill ins(%[[ID]] : f32) outs(%[[INI]] : tensor<4xf32>) -> tensor<4xf32>
+//      CHECK: %[[G:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["reduction", "parallel"]}
+// CHECK-SAME:   ins(%[[I1]] : tensor<8x4xf32>) outs(%[[F]] : tensor<4xf32>) {
+//      CHECK:   arith.maxnumf
+//      CHECK:   linalg.yield
+//      CHECK: } -> tensor<4xf32>
+//      CHECK: %[[R:.*]] = linalg.generic {indexing_maps = [#[[$MAP2]], #[[$MAP3]]], iterator_types = ["reduction"]}
+// CHECK-SAME:   ins(%[[G]] : tensor<4xf32>) outs(%{{.*}} : tensor<f32>) {
+//      CHECK:   arith.maxnumf {{.*}}
+//      CHECK:   linalg.yield
+//      CHECK:  } -> tensor<f32>
+//      CHECK: return %[[R]] : tensor<f32>
+
+module attributes {transform.with_named_sequence} {
+  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
+    %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
+    %1:4 = transform.structured.split_reduction %0 { split_factor = 4, insert_split_dimension = 0, inner_parallel}
+      : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
+      transform.yield
+  }
+}



More information about the Mlir-commits mailing list