[Mlir-commits] [mlir] [mlir][linalg] Add linalg.conv_2d_ngchw_gfchw_q to named ops (PR #92136)

llvmlistbot at llvm.org llvmlistbot at llvm.org
Tue May 14 08:46:01 PDT 2024


https://github.com/zjgarvey created https://github.com/llvm/llvm-project/pull/92136

I'm not sure what kinds of unit tests would be appropriate for simply adding a new op like this. Any suggestions?

>From fe5039d7396ca32d085d507942a9eb3e87aa9b77 Mon Sep 17 00:00:00 2001
From: zjgarvey <zjgarvey at gmail.com>
Date: Tue, 14 May 2024 15:39:37 +0000
Subject: [PATCH] Add a grouped 2d quantized convolution op

---
 .../Linalg/IR/LinalgNamedStructuredOps.yaml   | 177 ++++++++++++++----
 .../linalg/opdsl/ops/core_named_ops.py        |  34 ++++
 2 files changed, 174 insertions(+), 37 deletions(-)

diff --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
index 584bfcd8b59dc..98f20809a60fa 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
@@ -304,41 +304,6 @@ structured_op: !LinalgStructuredOpConfig
         - !ScalarExpression
           scalar_arg: I
 --- !LinalgOpConfig
-metadata: !LinalgOpMetadata
-  name: reciprocal
-  cpp_class_name: ReciprocalOp
-  doc: |-
-    Applies reciprocal(x) elementwise.
-
-    No numeric casting is performed on the input operand.
-structured_op: !LinalgStructuredOpConfig
-  args:
-  - !LinalgOperandDefConfig
-    name: I
-    kind: input_tensor
-    type_var: T1
-    shape_map: affine_map<() -> ()>
-  - !LinalgOperandDefConfig
-    name: O
-    kind: output_tensor
-    type_var: T1
-    shape_map: affine_map<() -> ()>
-  indexing_maps: !LinalgIndexingMapsConfig
-    static_indexing_maps:
-    - affine_map<() -> ()>
-    - affine_map<() -> ()>
-  iterator_types: []
-  assignments:
-  - !ScalarAssign
-    arg: O
-    value: !ScalarExpression
-      scalar_fn:
-        kind: unary
-        fn_name: reciprocal
-        operands:
-        - !ScalarExpression
-          scalar_arg: I
---- !LinalgOpConfig
 metadata: !LinalgOpMetadata
   name: round
   cpp_class_name: RoundOp
@@ -516,7 +481,7 @@ structured_op: !LinalgStructuredOpConfig
 --- !LinalgOpConfig
 metadata: !LinalgOpMetadata
   name: erf
-  cpp_class_name: erfOp
+  cpp_class_name: ErfOp
   doc: |-
     Applies erf(x) elementwise.
 
@@ -959,7 +924,7 @@ structured_op: !LinalgStructuredOpConfig
 --- !LinalgOpConfig
 metadata: !LinalgOpMetadata
   name: powf
-  cpp_class_name: PowFOp
+  cpp_class_name: PowfOp
   doc: |-
     Takes the powf(lhs, rhs) between two inputs, elementwise. For powf(arg, 2) use `linalg.square`.
 
@@ -3421,6 +3386,144 @@ structured_op: !LinalgStructuredOpConfig
                 - !ScalarExpression
                   scalar_arg: K
 --- !LinalgOpConfig
+metadata: !LinalgOpMetadata
+  name: conv_2d_ngchw_gfchw_q
+  cpp_class_name: Conv2DNgchwGfchwQOp
+  doc: |-
+    Performs 2-D grouped convolution with zero-point offsets.
+
+    Layout:
+      * Input: NGCHW.
+      * Kernel: GFCHW.
+
+    Numeric casting is performed on the operands to the inner multiply, promoting
+    them to the same data type as the accumulator/output. This includes the zero
+    point offsets common to quantized operations.
+  implements:
+  - LinalgConvolutionOpInterface
+structured_op: !LinalgStructuredOpConfig
+  args:
+  - !LinalgOperandDefConfig
+    name: I
+    kind: input_tensor
+    type_var: T1
+    shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11] ->
+      (s0, s1, s2, s3 * s4 + s5 * s6, s7 * s8 + s9 * s10)>
+  - !LinalgOperandDefConfig
+    name: K
+    kind: input_tensor
+    type_var: T2
+    shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11] ->
+      (s1, s11, s2, s5, s9)>
+  - !LinalgOperandDefConfig
+    name: IZp
+    kind: scalar
+    type_var: I32
+  - !LinalgOperandDefConfig
+    name: KZp
+    kind: scalar
+    type_var: I32
+  - !LinalgOperandDefConfig
+    name: O
+    kind: output_tensor
+    type_var: U
+    shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11] ->
+      (s0, s1, s11, s3, s7)>
+  - !LinalgOperandDefConfig
+    name: strides
+    kind: index_attr
+    index_attr_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11]
+      -> (s4, s8)>
+    default_indices:
+    - 1
+    - 1
+  - !LinalgOperandDefConfig
+    name: dilations
+    kind: index_attr
+    index_attr_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11]
+      -> (s6, s10)>
+    default_indices:
+    - 1
+    - 1
+  indexing_maps: !LinalgIndexingMapsConfig
+    static_indexing_maps:
+    - affine_map<(d0, d1, d2, d3, d4, d5, d6, d7)[s0, s1, s2, s3, s4, s5, s6, s7,
+      s8, s9, s10, s11] -> (d0, d1, d5, d3 * s4 + d6 * s6, d4 * s8 + d7 * s10)>
+    - affine_map<(d0, d1, d2, d3, d4, d5, d6, d7)[s0, s1, s2, s3, s4, s5, s6, s7,
+      s8, s9, s10, s11] -> (d1, d2, d5, d6, d7)>
+    - affine_map<(d0, d1, d2, d3, d4, d5, d6, d7)[s0, s1, s2, s3, s4, s5, s6, s7,
+      s8, s9, s10, s11] -> ()>
+    - affine_map<(d0, d1, d2, d3, d4, d5, d6, d7)[s0, s1, s2, s3, s4, s5, s6, s7,
+      s8, s9, s10, s11] -> ()>
+    - affine_map<(d0, d1, d2, d3, d4, d5, d6, d7)[s0, s1, s2, s3, s4, s5, s6, s7,
+      s8, s9, s10, s11] -> (d0, d1, d2, d3, d4)>
+  iterator_types:
+  - parallel
+  - parallel
+  - parallel
+  - parallel
+  - parallel
+  - reduction
+  - reduction
+  - reduction
+  assignments:
+  - !ScalarAssign
+    arg: O
+    value: !ScalarExpression
+      scalar_fn:
+        kind: binary
+        fn_name: add
+        operands:
+        - !ScalarExpression
+          scalar_arg: O
+        - !ScalarExpression
+          scalar_fn:
+            kind: binary
+            fn_name: mul
+            operands:
+            - !ScalarExpression
+              scalar_fn:
+                kind: binary
+                fn_name: sub
+                operands:
+                - !ScalarExpression
+                  scalar_fn:
+                    kind: type
+                    fn_name: cast_signed
+                    type_var: U
+                    operands:
+                    - !ScalarExpression
+                      scalar_arg: I
+                - !ScalarExpression
+                  scalar_fn:
+                    kind: type
+                    fn_name: cast_signed
+                    type_var: U
+                    operands:
+                    - !ScalarExpression
+                      scalar_arg: IZp
+            - !ScalarExpression
+              scalar_fn:
+                kind: binary
+                fn_name: sub
+                operands:
+                - !ScalarExpression
+                  scalar_fn:
+                    kind: type
+                    fn_name: cast_signed
+                    type_var: U
+                    operands:
+                    - !ScalarExpression
+                      scalar_arg: K
+                - !ScalarExpression
+                  scalar_fn:
+                    kind: type
+                    fn_name: cast_signed
+                    type_var: U
+                    operands:
+                    - !ScalarExpression
+                      scalar_arg: KZp
+--- !LinalgOpConfig
 metadata: !LinalgOpMetadata
   name: conv_3d_ndhwc_dhwcf
   cpp_class_name: Conv3DNdhwcDhwcfOp
diff --git a/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py b/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
index ca2bb0c5f7f8a..f1790b1fa2893 100644
--- a/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
+++ b/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
@@ -937,6 +937,40 @@ def conv_2d_ngchw_gfchw(
         U, I[D.n, D.g, D.c, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW]
     ) * TypeFn.cast_signed(U, K[D.g, D.fg, D.c, D.kh, D.kw])
 
+ at linalg_structured_op
+def conv_2d_ngchw_gfchw_q(
+    I=TensorDef(
+        T1, S.N, S.G, S.C, S.OH * S.SH + S.KH * S.DH, S.OW * S.SW + S.KW * S.DW
+    ),
+    K=TensorDef(T2, S.G, S.FG, S.C, S.KH, S.KW),
+    IZp=ScalarDef(I32),
+    KZp=ScalarDef(I32),
+    O=TensorDef(U, S.N, S.G, S.FG, S.OH, S.OW, output=True),
+    strides=IndexAttrDef(S.SH, S.SW, default=[1, 1]),
+    dilations=IndexAttrDef(S.DH, S.DW, default=[1, 1]),
+):
+    """Performs 2-D grouped convolution with zero-point offsets.
+
+    Layout:
+      * Input: NGCHW.
+      * Kernel: GFCHW.
+
+    Numeric casting is performed on the operands to the inner multiply, promoting
+    them to the same data type as the accumulator/output. This includes the zero
+    point offsets common to quantized operations.
+    """
+    implements(ConvolutionOpInterface)
+    domain(D.n, D.g, D.fg, D.oh, D.ow, D.c, D.kh, D.kw)
+    O[D.n, D.g, D.fg, D.oh, D.ow] += (
+        TypeFn.cast_signed(
+            U, I[D.n, D.g, D.c, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW]
+        )
+        - TypeFn.cast_signed(U, IZp)
+    ) * (
+        TypeFn.cast_signed(U, K[D.g, D.fg, D.c, D.kh, D.kw])
+        - TypeFn.cast_signed(U, KZp)
+    )
+
 
 @linalg_structured_op
 def conv_3d_ndhwc_dhwcf(



More information about the Mlir-commits mailing list