[Mlir-commits] [mlir] [mlir][gpu] Support extf before contract when converting to MMA ops (PR #91988)
llvmlistbot at llvm.org
llvmlistbot at llvm.org
Mon May 13 09:11:58 PDT 2024
llvmbot wrote:
<!--LLVM PR SUMMARY COMMENT-->
@llvm/pr-subscribers-mlir
Author: Lei Zhang (antiagainst)
<details>
<summary>Changes</summary>
This commit allows `inferFragType` to see through all arith.ext op users before reaching contract op for figuring out the fragment type.
---
Full diff: https://github.com/llvm/llvm-project/pull/91988.diff
2 Files Affected:
- (modified) mlir/lib/Conversion/VectorToGPU/VectorToGPU.cpp (+10-4)
- (modified) mlir/test/Conversion/VectorToGPU/vector-to-mma-ops.mlir (+27)
``````````diff
diff --git a/mlir/lib/Conversion/VectorToGPU/VectorToGPU.cpp b/mlir/lib/Conversion/VectorToGPU/VectorToGPU.cpp
index 782cc92f83fee..ad7408bb06fc1 100644
--- a/mlir/lib/Conversion/VectorToGPU/VectorToGPU.cpp
+++ b/mlir/lib/Conversion/VectorToGPU/VectorToGPU.cpp
@@ -515,6 +515,13 @@ struct CombineTransferReadOpTranspose final
// TODO: Change the GPU dialect to abstract the layout at the this level and
// only care about it during lowering to NVVM.
static const char *inferFragType(Operation *op) {
+ // We can have arith.ext ops before reaching contract ops. See through them.
+ if (op->hasOneUse()) {
+ Operation *extOp = *op->user_begin();
+ if (isa<arith::ExtFOp, arith::ExtUIOp, arith::ExtSIOp>(extOp))
+ return inferFragType(extOp);
+ }
+
for (Operation *users : op->getUsers()) {
auto contract = dyn_cast<vector::ContractionOp>(users);
if (!contract)
@@ -560,13 +567,12 @@ convertTransferReadOp(RewriterBase &rewriter, vector::TransferReadOp op,
if (op->hasOneUse()) {
auto *user = *op->user_begin();
// Infer the signedness of the mma type from the integer extend.
- bool isSignedExtend = isa<arith::ExtSIOp>(user);
- if (isSignedExtend || isa<arith::ExtUIOp>(user)) {
+ if (isa<arith::ExtSIOp, arith::ExtUIOp>(user)) {
elType = IntegerType::get(
op.getContext(), cast<IntegerType>(elType).getWidth(),
- isSignedExtend ? IntegerType::Signed : IntegerType::Unsigned);
+ isa<arith::ExtSIOp>(user) ? IntegerType::Signed
+ : IntegerType::Unsigned);
mappingResult = user->getResult(0);
- fragType = inferFragType(user);
}
}
gpu::MMAMatrixType type =
diff --git a/mlir/test/Conversion/VectorToGPU/vector-to-mma-ops.mlir b/mlir/test/Conversion/VectorToGPU/vector-to-mma-ops.mlir
index 962ed7de584a2..8526ff1392599 100644
--- a/mlir/test/Conversion/VectorToGPU/vector-to-mma-ops.mlir
+++ b/mlir/test/Conversion/VectorToGPU/vector-to-mma-ops.mlir
@@ -490,3 +490,30 @@ func.func @fold_transpose_into_transfer_read(%alloc: memref<64x128xf16>, %vector
}
// -----
+
+#map1 = affine_map<(d0, d1, d2) -> (d0, d2)>
+#map2 = affine_map<(d0, d1, d2) -> (d1, d2)>
+#map3 = affine_map<(d0, d1, d2) -> (d0, d1)>
+
+// CHECK-LABEL: func @cast_f16_to_f32_read
+// CHECK: %[[A:.+]] = gpu.subgroup_mma_load_matrix {{.+}} {leadDimension = 16 : index} : memref<16x16xf16> -> !gpu.mma_matrix<16x16xf16, "AOp">
+// CHECK: %[[C:.+]] = gpu.subgroup_mma_load_matrix {{.+}} {leadDimension = 16 : index} : memref<16x16xf16> -> !gpu.mma_matrix<16x16xf16, "COp">
+// CHECK: %[[AE:.+]] = gpu.subgroup_mma_elementwise extf %[[A]] : (!gpu.mma_matrix<16x16xf16, "AOp">) -> !gpu.mma_matrix<16x16xf32, "AOp">
+// CHECK: %[[CE:.+]] = gpu.subgroup_mma_elementwise extf %[[C]] : (!gpu.mma_matrix<16x16xf16, "COp">) -> !gpu.mma_matrix<16x16xf32, "COp">
+// CHECK: %[[B:.+]] = gpu.subgroup_mma_load_matrix {{.+}} {leadDimension = 16 : index, transpose} : memref<16x16xf16> -> !gpu.mma_matrix<16x16xf16, "BOp">
+// CHECK: %[[BE:.+]] = gpu.subgroup_mma_elementwise extf %[[B]] : (!gpu.mma_matrix<16x16xf16, "BOp">) -> !gpu.mma_matrix<16x16xf32, "BOp">
+// CHECK: gpu.subgroup_mma_compute %[[AE]], %[[BE]], %[[CE]]
+func.func @cast_f16_to_f32_read(%arg0: memref<16x16xf16>, %arg1: memref<16x16xf16>, %arg2: memref<16x16xf16>, %arg3: memref<16x16xf32>) {
+ %c0 = arith.constant 0 : index
+ %cst = arith.constant 0.000000e+00 : f16
+ %A = vector.transfer_read %arg0[%c0, %c0], %cst {in_bounds = [true, true]} : memref<16x16xf16>, vector<16x16xf16>
+ %B = vector.transfer_read %arg1[%c0, %c0], %cst {in_bounds = [true, true]} : memref<16x16xf16>, vector<16x16xf16>
+ %C = vector.transfer_read %arg2[%c0, %c0], %cst {in_bounds = [true, true]} : memref<16x16xf16>, vector<16x16xf16>
+ %Aext = arith.extf %A : vector<16x16xf16> to vector<16x16xf32>
+ %Bext = arith.extf %B : vector<16x16xf16> to vector<16x16xf32>
+ %Cext = arith.extf %C : vector<16x16xf16> to vector<16x16xf32>
+ %D = vector.contract {indexing_maps = [#map1, #map2, #map3], iterator_types = ["parallel", "parallel", "reduction"], kind = #vector.kind<add>}
+ %Aext, %Bext, %Cext : vector<16x16xf32>, vector<16x16xf32> into vector<16x16xf32>
+ vector.transfer_write %D, %arg3[%c0, %c0] {in_bounds = [true, true]} : vector<16x16xf32>, memref<16x16xf32>
+ return
+}
``````````
</details>
https://github.com/llvm/llvm-project/pull/91988
More information about the Mlir-commits
mailing list