[Mlir-commits] [mlir] [mlir] [linalg] Check for dim shape to decide unit dim for each operand in dropUnitDims pass. (PR #91673)
llvmlistbot at llvm.org
llvmlistbot at llvm.org
Thu May 9 16:04:17 PDT 2024
llvmbot wrote:
<!--LLVM PR SUMMARY COMMENT-->
@llvm/pr-subscribers-mlir
Author: Sayan Saha (sahas3)
<details>
<summary>Changes</summary>
`mlir-opt --linalg-fold-unit-extent-dims` pass on the following IR
```
#map = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d1 + d4, d2 + d5, d6)>
#map1 = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d4, d5, d6, d3)>
#map2 = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d1, d2, d3)>
module {
func.func @<!-- -->main(%arg0: tensor<1x?x?x1xf32>, %arg1: index) -> tensor<?x1x61x1xf32> {
%cst = arith.constant dense<1.000000e+00> : tensor<1x1x1x1xf32>
%0 = tensor.empty(%arg1) : tensor<?x1x61x1xf32>
%1 = linalg.generic {indexing_maps = [#map, #map1, #map2], iterator_types = ["parallel", "parallel", "parallel", "parallel", "reduction", "reduction", "reduction"]} ins(%arg0, %cst : tensor<1x?x?x1xf32>, tensor<1x1x1x1xf32>) outs(%0 : tensor<?x1x61x1xf32>) {
^bb0(%in: f32, %in_0: f32, %out: f32):
%2 = arith.mulf %in, %in_0 : f32
%3 = arith.addf %out, %2 : f32
linalg.yield %3 : f32
} -> tensor<?x1x61x1xf32>
return %1 : tensor<?x1x61x1xf32>
}
}
```
produces an incorrect `tensor.expand_shape` operation:
```
error: 'tensor.expand_shape' op expected dimension 0 of collapsed type to be dynamic since one or more of the corresponding dimensions in the expanded type is dynamic
%1 = linalg.generic {indexing_maps = [#map, #map1, #map2], iterator_types = ["parallel", "parallel", "parallel", "parallel", "reduction", "reduction", "reduction"]} ins(%arg0, %cst : tensor<1x?x?x1xf32>, tensor<1x1x1x1xf32>) outs(%0 : tensor<?x1x61x1xf32>) {
^
/mathworks/devel/sandbox/sayans/geckWorks/g3294570/repro.mlir:8:10: note: see current operation: %5 = "tensor.expand_shape"(%4) <{reassociation = [[0, 1, 2, 3]]}> : (tensor<61xf32>) -> tensor<?x1x61x1xf32>
// -----// IR Dump After LinalgFoldUnitExtentDimsPass Failed (linalg-fold-unit-extent-dims) //----- //
#map = affine_map<(d0) -> (0, d0)>
#map1 = affine_map<(d0) -> ()>
#map2 = affine_map<(d0) -> (d0)>
"builtin.module"() ({
"func.func"() <{function_type = (tensor<1x?x?x1xf32>, index) -> tensor<?x1x61x1xf32>, sym_name = "main"}> ({
^bb0(%arg0: tensor<1x?x?x1xf32>, %arg1: index):
%0 = "arith.constant"() <{value = dense<1.000000e+00> : tensor<f32>}> : () -> tensor<f32>
%1 = "tensor.collapse_shape"(%arg0) <{reassociation = [[0, 1], [2, 3]]}> : (tensor<1x?x?x1xf32>) -> tensor<?x?xf32>
%2 = "tensor.empty"() : () -> tensor<61xf32>
%3 = "tensor.empty"() : () -> tensor<61xf32>
%4 = "linalg.generic"(%1, %0, %2, %3) <{indexing_maps = [#map, #map1, #map2, #map2], iterator_types = [#linalg.iterator_type<parallel>], operandSegmentSizes = array<i32: 3, 1>}> ({
^bb0(%arg2: f32, %arg3: f32, %arg4: f32, %arg5: f32):
%6 = "arith.mulf"(%arg2, %arg3) <{fastmath = #arith.fastmath<none>}> : (f32, f32) -> f32
%7 = "arith.addf"(%arg4, %6) <{fastmath = #arith.fastmath<none>}> : (f32, f32) -> f32
"linalg.yield"(%7) : (f32) -> ()
}) : (tensor<?x?xf32>, tensor<f32>, tensor<61xf32>, tensor<61xf32>) -> tensor<61xf32>
%5 = "tensor.expand_shape"(%4) <{reassociation = [[0, 1, 2, 3]]}> : (tensor<61xf32>) -> tensor<?x1x61x1xf32>
"func.return"(%5) : (tensor<?x1x61x1xf32>) -> ()
}) : () -> ()
}) : () -> ()
```
The reason of this is because the dimension `d0` is determined to be an unit-dim that can be dropped based on the dimensions of operand `arg0` to `linalg.generic`. Later on when iterating over operand `outs` the dimension `d0` is determined to be an unit-dim even though the shape corresponding to it is `Shape::kDynamic`. For the `linalg.generic` to be valid `d0` of `outs` does need to be `1` but that isn't properly processed in the current implementation and the dimension is dropped resulting in `outs` operand to be `tensor<61xf32>` in the example.
The fix is to also check that the dimension shape is actually `1` before dropping the dimension. The IR after the fix is:
```
#map = affine_map<()[s0, s1] -> (s0 * s1)>
#map1 = affine_map<(d0) -> (0, d0)>
#map2 = affine_map<(d0) -> ()>
module {
func.func @<!-- -->main(%arg0: tensor<1x?x?x1xf32>, %arg1: index) -> tensor<?x1x61x1xf32> {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%cst = arith.constant dense<1.000000e+00> : tensor<f32>
%collapsed = tensor.collapse_shape %arg0 [[0, 1], [2, 3]] : tensor<1x?x?x1xf32> into tensor<?x?xf32>
%0 = tensor.empty(%arg1) : tensor<?x61xf32>
%1 = affine.apply #map()[%arg1, %c1]
%2 = tensor.empty(%1) : tensor<?x61xf32>
%3 = linalg.generic {indexing_maps = [#map1, #map2, #map1, #map1], iterator_types = ["parallel"]} ins(%collapsed, %cst, %0 : tensor<?x?xf32>, tensor<f32>, tensor<?x61xf32>) outs(%2 : tensor<?x61xf32>) {
^bb0(%in: f32, %in_0: f32, %in_1: f32, %out: f32):
%4 = arith.mulf %in, %in_0 : f32
%5 = arith.addf %in_1, %4 : f32
linalg.yield %5 : f32
} -> tensor<?x61xf32>
%expanded = tensor.expand_shape %3 [[0, 1], [2, 3]] output_shape [%c0, 1, 61, 1] : tensor<?x61xf32> into tensor<?x1x61x1xf32>
return %expanded : tensor<?x1x61x1xf32>
}
}
```
---
Full diff: https://github.com/llvm/llvm-project/pull/91673.diff
2 Files Affected:
- (modified) mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp (+2-1)
- (modified) mlir/test/Dialect/Linalg/drop-unit-extent-dims.mlir (+44)
``````````diff
diff --git a/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp b/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp
index 65efa18af18f6..c0829397f1f85 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp
@@ -351,7 +351,8 @@ static UnitExtentReplacementInfo dropUnitExtentFromOperandMetadata(
auto isUnitDim = [&](unsigned dim) {
if (auto dimExpr = dyn_cast<AffineDimExpr>(exprs[dim])) {
unsigned oldPosition = dimExpr.getPosition();
- return !oldDimsToNewDimsMap.count(oldPosition);
+ return !oldDimsToNewDimsMap.count(oldPosition) &&
+ (operandShape[dim] == 1);
}
// Handle the other case where the shape is 1, and is accessed using a
// constant 0.
diff --git a/mlir/test/Dialect/Linalg/drop-unit-extent-dims.mlir b/mlir/test/Dialect/Linalg/drop-unit-extent-dims.mlir
index a9cbaaf7fdc48..d31ceb5fd719f 100644
--- a/mlir/test/Dialect/Linalg/drop-unit-extent-dims.mlir
+++ b/mlir/test/Dialect/Linalg/drop-unit-extent-dims.mlir
@@ -1087,3 +1087,47 @@ func.func @drop_known_unit_constant_low_high(%arg0: tensor<1x383x128xf32>) -> te
// CHECK: } : tensor<383x128xf32> to tensor<384x128xf32>
// CHECK: tensor.expand_shape %[[PADDED]]
// CHECK-SAME: {{\[}}[0, 1], [2]] output_shape [1, 384, 128] : tensor<384x128xf32> into tensor<1x384x128xf32>
+
+
+// -----
+
+// CHECK: #[[$MAP0:.+]] = affine_map<()[s0, s1] -> (s0 * s1)>
+// CHECK: #[[$MAP1:.+]] = affine_map<(d0) -> (0, d0)>
+// CHECK: #[[$MAP2:.+]] = affine_map<(d0) -> ()>
+
+// CHECK-LABEL: func @drop_unit_dim_corresponding_to_dynamic_dim
+// CHECK-SAME: %[[ARG0:.*]]: tensor<1x?x?x1xf32>,
+// CHECK-SAME: %[[ARG1:.*]]: index) -> tensor<?x1x61x1xf32> {
+// CHECK: %[[VAL_0:.*]] = arith.constant 0 : index
+// CHECK: %[[VAL_1:.*]] = arith.constant 1 : index
+// CHECK: %[[VAL_2:.*]] = arith.constant dense<1.000000e+00> : tensor<f32>
+// CHECK: %[[VAL_3:.*]] = tensor.collapse_shape %[[ARG0]] {{\[\[}}0, 1], [2, 3]] : tensor<1x?x?x1xf32> into tensor<?x?xf32>
+// CHECK: %[[VAL_4:.*]] = tensor.empty(%[[ARG1]]) : tensor<?x61xf32>
+// CHECK: %[[VAL_5:.*]] = affine.apply #[[$MAP0]](){{\[}}%[[ARG1]], %[[VAL_1]]]
+// CHECK: %[[VAL_6:.*]] = tensor.empty(%[[VAL_5]]) : tensor<?x61xf32>
+// CHECK: %[[VAL_7:.*]] = linalg.generic {indexing_maps = [#[[$MAP1]], #[[$MAP2]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel"]} ins(%[[VAL_3]], %[[VAL_2]], %[[VAL_4]] : tensor<?x?xf32>, tensor<f32>, tensor<?x61xf32>) outs(%[[VAL_6]] : tensor<?x61xf32>) {
+// CHECK: ^bb0(%[[VAL_8:.*]]: f32, %[[VAL_9:.*]]: f32, %[[VAL_10:.*]]: f32, %[[VAL_11:.*]]: f32):
+// CHECK: %[[VAL_12:.*]] = arith.mulf %[[VAL_8]], %[[VAL_9]] : f32
+// CHECK: %[[VAL_13:.*]] = arith.addf %[[VAL_10]], %[[VAL_12]] : f32
+// CHECK: linalg.yield %[[VAL_13]] : f32
+// CHECK: } -> tensor<?x61xf32>
+// CHECK: %[[VAL_14:.*]] = tensor.expand_shape %[[VAL_7]] {{\[\[}}0, 1], [2, 3]] output_shape {{\[}}%[[VAL_0]], 1, 61, 1] : tensor<?x61xf32> into tensor<?x1x61x1xf32>
+// CHECK: return %[[VAL_14]] : tensor<?x1x61x1xf32>
+// CHECK: }
+
+#map = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d1 + d4, d2 + d5, d6)>
+#map1 = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d4, d5, d6, d3)>
+#map2 = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d1, d2, d3)>
+module {
+ func.func @drop_unit_dim_corresponding_to_dynamic_dim(%arg0: tensor<1x?x?x1xf32>, %arg1: index) -> tensor<?x1x61x1xf32> {
+ %cst = arith.constant dense<1.000000e+00> : tensor<1x1x1x1xf32>
+ %0 = tensor.empty(%arg1) : tensor<?x1x61x1xf32>
+ %1 = linalg.generic {indexing_maps = [#map, #map1, #map2], iterator_types = ["parallel", "parallel", "parallel", "parallel", "reduction", "reduction", "reduction"]} ins(%arg0, %cst : tensor<1x?x?x1xf32>, tensor<1x1x1x1xf32>) outs(%0 : tensor<?x1x61x1xf32>) {
+ ^bb0(%in: f32, %in_0: f32, %out: f32):
+ %2 = arith.mulf %in, %in_0 : f32
+ %3 = arith.addf %out, %2 : f32
+ linalg.yield %3 : f32
+ } -> tensor<?x1x61x1xf32>
+ return %1 : tensor<?x1x61x1xf32>
+ }
+}
``````````
</details>
https://github.com/llvm/llvm-project/pull/91673
More information about the Mlir-commits
mailing list