[Mlir-commits] [mlir] [mlir][sparse] Add verification for explicit/implicit value (PR #90111)

Yinying Li llvmlistbot at llvm.org
Thu May 2 10:34:05 PDT 2024


https://github.com/yinying-lisa-li updated https://github.com/llvm/llvm-project/pull/90111

>From 1cb0885be2aa1ab1e46e516b7863704d6d6e77ff Mon Sep 17 00:00:00 2001
From: Yinying Li <yinyingli at google.com>
Date: Thu, 25 Apr 2024 00:39:00 +0000
Subject: [PATCH 1/5] add verification for explicit/implicit values

---
 .../SparseTensor/IR/SparseTensorDialect.cpp   | 35 +++++++++
 .../SparseTensor/invalid_encoding.mlir        | 72 +++++++++++++++++++
 2 files changed, 107 insertions(+)

diff --git a/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp b/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp
index de3d3006ebaac5..c4524a24346eb9 100644
--- a/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp
+++ b/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp
@@ -912,6 +912,41 @@ LogicalResult SparseTensorEncodingAttr::verifyEncoding(
     return emitError()
            << "dimension-rank mismatch between encoding and tensor shape: "
            << getDimRank() << " != " << dimRank;
+  Type expType, impType;
+  if (getExplicitVal()) {
+    auto fVal = llvm::dyn_cast<FloatAttr>(getExplicitVal());
+    auto intVal = llvm::dyn_cast<IntegerAttr>(getExplicitVal());
+    if (fVal && fVal.getType() != elementType) {
+      expType = fVal.getType();
+    } else if (intVal && intVal.getType() != elementType) {
+      expType = intVal.getType();
+    }
+    if (expType) {
+      return emitError() << "explicit value type mismatch between encoding and "
+                         << "tensor element type: " << expType
+                         << " != " << elementType;
+    }
+  }
+
+  if (getImplicitVal()) {
+    auto impFVal = llvm::dyn_cast<FloatAttr>(getImplicitVal());
+    auto impIntVal = llvm::dyn_cast<IntegerAttr>(getImplicitVal());
+    if (impFVal && impFVal.getType() != elementType) {
+      impType = impFVal.getType();
+    } else if (impIntVal && impIntVal.getType() != elementType) {
+      impType = impIntVal.getType();
+    }
+    if (impType) {
+      return emitError() << "implicit value type mismatch between encoding and "
+                         << "tensor element type: " << impType
+                         << " != " << elementType;
+    }
+    // Currently, we only support zero as the implicit value.
+    if ((impFVal && impFVal.getValueAsDouble() != 0.0) ||
+        (impIntVal && impIntVal.getInt() != 0)) {
+      return emitError() << "implicit value must be zero";
+    }
+  }
   return success();
 }
 
diff --git a/mlir/test/Dialect/SparseTensor/invalid_encoding.mlir b/mlir/test/Dialect/SparseTensor/invalid_encoding.mlir
index 8096c010ac935a..19e8fc95e22813 100644
--- a/mlir/test/Dialect/SparseTensor/invalid_encoding.mlir
+++ b/mlir/test/Dialect/SparseTensor/invalid_encoding.mlir
@@ -443,3 +443,75 @@ func.func private @NOutOfM(%arg0: tensor<?x?x?xf64, #NOutOfM>) {
 func.func private @NOutOfM(%arg0: tensor<?x?x?xf64, #NOutOfM>) {
   return
 }
+
+// -----
+
+#CSR_ExpType = #sparse_tensor.encoding<{
+  map = (d0, d1) -> (d0 : dense, d1 : compressed),
+  posWidth = 32,
+  crdWidth = 32,
+  explicitVal = 1 : i32,
+  implicitVal = 0.0 : f32
+}>
+
+// expected-error at +1 {{explicit value type mismatch between encoding and tensor element type: 'i32' != 'f32'}}
+func.func private @sparse_csr(tensor<?x?xf32, #CSR_ExpType>)
+
+// -----
+
+#CSR_ImpType = #sparse_tensor.encoding<{
+  map = (d0, d1) -> (d0 : dense, d1 : compressed),
+  posWidth = 32,
+  crdWidth = 32,
+  explicitVal = 1 : i32,
+  implicitVal = 0.0 : f32
+}>
+
+// expected-error at +1 {{implicit value type mismatch between encoding and tensor element type: 'f32' != 'i32'}}
+func.func private @sparse_csr(tensor<?x?xi32, #CSR_ImpType>)
+
+// -----
+
+// expected-error at +1 {{expected a numeric value for explicitVal}}
+#CSR_ExpType = #sparse_tensor.encoding<{
+  map = (d0, d1) -> (d0 : dense, d1 : compressed),
+  posWidth = 32,
+  crdWidth = 32,
+  explicitVal = "str"
+}>
+func.func private @sparse_csr(tensor<?x?xi32, #CSR_ExpType>)
+
+// -----
+
+// expected-error at +1 {{expected a numeric value for implicitVal}}
+#CSR_ImpType = #sparse_tensor.encoding<{
+  map = (d0, d1) -> (d0 : dense, d1 : compressed),
+  posWidth = 32,
+  crdWidth = 32,
+  implicitVal = "str"
+}>
+func.func private @sparse_csr(tensor<?x?xi32, #CSR_ImpType>)
+
+// -----
+
+#CSR_ImpVal = #sparse_tensor.encoding<{
+  map = (d0, d1) -> (d0 : dense, d1 : compressed),
+  posWidth = 32,
+  crdWidth = 32,
+  implicitVal = 1 : i32
+}>
+
+// expected-error at +1 {{implicit value must be zero}}
+func.func private @sparse_csr(tensor<?x?xi32, #CSR_ImpVal>)
+
+// -----
+
+#CSR_ImpVal = #sparse_tensor.encoding<{
+  map = (d0, d1) -> (d0 : dense, d1 : compressed),
+  posWidth = 32,
+  crdWidth = 32,
+  implicitVal = 1.0 : f32
+}>
+
+// expected-error at +1 {{implicit value must be zero}}
+func.func private @sparse_csr(tensor<?x?xf32, #CSR_ImpVal>)

>From 7497b4815bca0f7de62f97737dfd35c179c2f174 Mon Sep 17 00:00:00 2001
From: Yinying Li <yinyingli at google.com>
Date: Thu, 25 Apr 2024 17:37:28 +0000
Subject: [PATCH 2/5] new function

---
 .../SparseTensor/IR/SparseTensorAttrDefs.td   |  5 +++
 .../SparseTensor/IR/SparseTensorDialect.cpp   | 41 ++++++++++---------
 2 files changed, 26 insertions(+), 20 deletions(-)

diff --git a/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.td b/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.td
index eefa4c71bbd2ca..37fa4913aa6a60 100644
--- a/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.td
+++ b/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.td
@@ -512,6 +512,11 @@ def SparseTensorEncodingAttr : SparseTensor_Attr<"SparseTensorEncoding",
     void printSymbols(AffineMap &map, AsmPrinter &printer) const;
     void printDimensions(AffineMap &map, AsmPrinter &printer, ArrayRef<::mlir::sparse_tensor::SparseTensorDimSliceAttr> dimSlices) const;
     void printLevels(AffineMap &map, AsmPrinter &printer, ArrayRef<::mlir::sparse_tensor::LevelType> lvlTypes) const;
+
+    //
+    // Explicit/implicit value methods.
+    //
+    Type getMismatchedValueType(Type elementType, Attribute val) const;
   }];
 
   let genVerifyDecl = 1;
diff --git a/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp b/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp
index c4524a24346eb9..d451864c66db8a 100644
--- a/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp
+++ b/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp
@@ -893,6 +893,19 @@ LogicalResult SparseTensorEncodingAttr::verify(
   return success();
 }
 
+Type SparseTensorEncodingAttr::getMismatchedValueType(Type elementType,
+                                                      Attribute val) const {
+  Type type;
+  auto fVal = llvm::dyn_cast<FloatAttr>(val);
+  auto intVal = llvm::dyn_cast<IntegerAttr>(val);
+  if (fVal && fVal.getType() != elementType) {
+    type = fVal.getType();
+  } else if (intVal && intVal.getType() != elementType) {
+    type = intVal.getType();
+  }
+  return type;
+}
+
 LogicalResult SparseTensorEncodingAttr::verifyEncoding(
     ArrayRef<Size> dimShape, Type elementType,
     function_ref<InFlightDiagnostic()> emitError) const {
@@ -912,36 +925,24 @@ LogicalResult SparseTensorEncodingAttr::verifyEncoding(
     return emitError()
            << "dimension-rank mismatch between encoding and tensor shape: "
            << getDimRank() << " != " << dimRank;
-  Type expType, impType;
+  Type type;
   if (getExplicitVal()) {
-    auto fVal = llvm::dyn_cast<FloatAttr>(getExplicitVal());
-    auto intVal = llvm::dyn_cast<IntegerAttr>(getExplicitVal());
-    if (fVal && fVal.getType() != elementType) {
-      expType = fVal.getType();
-    } else if (intVal && intVal.getType() != elementType) {
-      expType = intVal.getType();
-    }
-    if (expType) {
+    if ((type = getMismatchedValueType(elementType, getExplicitVal()))) {
       return emitError() << "explicit value type mismatch between encoding and "
-                         << "tensor element type: " << expType
+                         << "tensor element type: " << type
                          << " != " << elementType;
     }
   }
-
   if (getImplicitVal()) {
-    auto impFVal = llvm::dyn_cast<FloatAttr>(getImplicitVal());
-    auto impIntVal = llvm::dyn_cast<IntegerAttr>(getImplicitVal());
-    if (impFVal && impFVal.getType() != elementType) {
-      impType = impFVal.getType();
-    } else if (impIntVal && impIntVal.getType() != elementType) {
-      impType = impIntVal.getType();
-    }
-    if (impType) {
+    auto impVal = getImplicitVal();
+    if ((type = getMismatchedValueType(elementType, impVal))) {
       return emitError() << "implicit value type mismatch between encoding and "
-                         << "tensor element type: " << impType
+                         << "tensor element type: " << type
                          << " != " << elementType;
     }
     // Currently, we only support zero as the implicit value.
+    auto impFVal = llvm::dyn_cast<FloatAttr>(impVal);
+    auto impIntVal = llvm::dyn_cast<IntegerAttr>(impVal);
     if ((impFVal && impFVal.getValueAsDouble() != 0.0) ||
         (impIntVal && impIntVal.getInt() != 0)) {
       return emitError() << "implicit value must be zero";

>From 94424277f21c479032e1d0d6fd0f5c630a39e989 Mon Sep 17 00:00:00 2001
From: Yinying Li <yinyingli at google.com>
Date: Thu, 25 Apr 2024 23:49:03 +0000
Subject: [PATCH 3/5] use TypedAttr

---
 .../SparseTensor/IR/SparseTensorAttrDefs.td   |  5 ---
 .../SparseTensor/IR/SparseTensorDialect.cpp   | 40 +++++++++----------
 2 files changed, 18 insertions(+), 27 deletions(-)

diff --git a/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.td b/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.td
index 37fa4913aa6a60..eefa4c71bbd2ca 100644
--- a/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.td
+++ b/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.td
@@ -512,11 +512,6 @@ def SparseTensorEncodingAttr : SparseTensor_Attr<"SparseTensorEncoding",
     void printSymbols(AffineMap &map, AsmPrinter &printer) const;
     void printDimensions(AffineMap &map, AsmPrinter &printer, ArrayRef<::mlir::sparse_tensor::SparseTensorDimSliceAttr> dimSlices) const;
     void printLevels(AffineMap &map, AsmPrinter &printer, ArrayRef<::mlir::sparse_tensor::LevelType> lvlTypes) const;
-
-    //
-    // Explicit/implicit value methods.
-    //
-    Type getMismatchedValueType(Type elementType, Attribute val) const;
   }];
 
   let genVerifyDecl = 1;
diff --git a/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp b/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp
index d451864c66db8a..8c74d5a14779e3 100644
--- a/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp
+++ b/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp
@@ -893,19 +893,6 @@ LogicalResult SparseTensorEncodingAttr::verify(
   return success();
 }
 
-Type SparseTensorEncodingAttr::getMismatchedValueType(Type elementType,
-                                                      Attribute val) const {
-  Type type;
-  auto fVal = llvm::dyn_cast<FloatAttr>(val);
-  auto intVal = llvm::dyn_cast<IntegerAttr>(val);
-  if (fVal && fVal.getType() != elementType) {
-    type = fVal.getType();
-  } else if (intVal && intVal.getType() != elementType) {
-    type = intVal.getType();
-  }
-  return type;
-}
-
 LogicalResult SparseTensorEncodingAttr::verifyEncoding(
     ArrayRef<Size> dimShape, Type elementType,
     function_ref<InFlightDiagnostic()> emitError) const {
@@ -925,20 +912,29 @@ LogicalResult SparseTensorEncodingAttr::verifyEncoding(
     return emitError()
            << "dimension-rank mismatch between encoding and tensor shape: "
            << getDimRank() << " != " << dimRank;
-  Type type;
   if (getExplicitVal()) {
-    if ((type = getMismatchedValueType(elementType, getExplicitVal()))) {
-      return emitError() << "explicit value type mismatch between encoding and "
-                         << "tensor element type: " << type
-                         << " != " << elementType;
+    if (auto typedAttr = llvm::dyn_cast<TypedAttr>(getExplicitVal())) {
+      Type attrType = typedAttr.getType();
+      if (attrType != elementType) {
+        return emitError()
+               << "explicit value type mismatch between encoding and "
+               << "tensor element type: " << attrType << " != " << elementType;
+      }
+    } else {
+      return emitError() << "expected typed explicit value";
     }
   }
   if (getImplicitVal()) {
     auto impVal = getImplicitVal();
-    if ((type = getMismatchedValueType(elementType, impVal))) {
-      return emitError() << "implicit value type mismatch between encoding and "
-                         << "tensor element type: " << type
-                         << " != " << elementType;
+    if (auto typedAttr = llvm::dyn_cast<TypedAttr>(getImplicitVal())) {
+      Type attrType = typedAttr.getType();
+      if (attrType != elementType) {
+        return emitError()
+               << "implicit value type mismatch between encoding and "
+               << "tensor element type: " << attrType << " != " << elementType;
+      }
+    } else {
+      return emitError() << "expected typed implicit value";
     }
     // Currently, we only support zero as the implicit value.
     auto impFVal = llvm::dyn_cast<FloatAttr>(impVal);

>From c96df1e08041bdd4fdc465846fd008bbb18d8aaa Mon Sep 17 00:00:00 2001
From: Yinying Li <yinyingli at google.com>
Date: Mon, 29 Apr 2024 19:37:43 +0000
Subject: [PATCH 4/5] remove redundant call

---
 mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

diff --git a/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp b/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp
index 8c74d5a14779e3..1b397e950179b8 100644
--- a/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp
+++ b/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp
@@ -926,7 +926,7 @@ LogicalResult SparseTensorEncodingAttr::verifyEncoding(
   }
   if (getImplicitVal()) {
     auto impVal = getImplicitVal();
-    if (auto typedAttr = llvm::dyn_cast<TypedAttr>(getImplicitVal())) {
+    if (auto typedAttr = llvm::dyn_cast<TypedAttr>(impVal)) {
       Type attrType = typedAttr.getType();
       if (attrType != elementType) {
         return emitError()

>From bf8d54a0c75ad4ca380b57bac645a4b689fe8b9b Mon Sep 17 00:00:00 2001
From: Yinying Li <yinyingli at google.com>
Date: Thu, 2 May 2024 17:09:16 +0000
Subject: [PATCH 5/5] add complex type verification

---
 .../SparseTensor/IR/SparseTensorAttrDefs.td   | 28 ++++++
 .../SparseTensor/IR/SparseTensorType.h        | 23 +----
 .../SparseTensor/IR/SparseTensorDialect.cpp   | 95 +++++++++----------
 .../SparseTensor/invalid_encoding.mlir        | 13 +++
 4 files changed, 90 insertions(+), 69 deletions(-)

diff --git a/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.td b/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.td
index eefa4c71bbd2ca..86d7de0e66faa2 100644
--- a/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.td
+++ b/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.td
@@ -502,9 +502,37 @@ def SparseTensorEncodingAttr : SparseTensor_Attr<"SparseTensorEncoding",
     //
     // Helper function to translate between level/dimension space.
     //
+
     SmallVector<int64_t> translateShape(::mlir::ArrayRef<int64_t> srcShape, ::mlir::sparse_tensor::CrdTransDirectionKind) const;
     ValueRange translateCrds(::mlir::OpBuilder &builder, ::mlir::Location loc, ::mlir::ValueRange crds, ::mlir::sparse_tensor::CrdTransDirectionKind) const;
 
+    //
+    // COO struct and methods.
+    //
+
+    /// A simple structure that encodes a range of levels in the sparse tensors
+    /// that forms a COO segment.
+    struct COOSegment {
+      std::pair<Level, Level> lvlRange; // [low, high)
+      bool isSoA;
+
+      bool isAoS() const { return !isSoA; }
+      bool isSegmentStart(Level l) const { return l == lvlRange.first; }
+      bool inSegment(Level l) const {
+        return l >= lvlRange.first && l < lvlRange.second;
+      }
+    };
+
+    /// Returns the starting level of this sparse tensor type for a
+    /// trailing COO region that spans **at least** two levels. If
+    /// no such COO region is found, then returns the level-rank.
+    ///
+    /// DEPRECATED: use getCOOSegment instead;
+    Level getAoSCOOStart() const;
+
+    /// Returns a list of COO segments in the sparse tensor types.
+    SmallVector<COOSegment> getCOOSegments() const;
+
     //
     // Printing methods.
     //
diff --git a/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorType.h b/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorType.h
index ea3d8013b45671..365a8cba30bd59 100644
--- a/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorType.h
+++ b/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorType.h
@@ -18,18 +18,6 @@
 namespace mlir {
 namespace sparse_tensor {
 
-/// A simple structure that encodes a range of levels in the sparse tensors that
-/// forms a COO segment.
-struct COOSegment {
-  std::pair<Level, Level> lvlRange; // [low, high)
-  bool isSoA;
-
-  bool isAoS() const { return !isSoA; }
-  bool isSegmentStart(Level l) const { return l == lvlRange.first; }
-  bool inSegment(Level l) const {
-    return l >= lvlRange.first && l < lvlRange.second;
-  }
-};
 
 //===----------------------------------------------------------------------===//
 /// A wrapper around `RankedTensorType`, which has three goals:
@@ -73,11 +61,6 @@ class SparseTensorType {
       : SparseTensorType(
             RankedTensorType::get(stp.getShape(), stp.getElementType(), enc)) {}
 
-  // TODO: remove?
-  SparseTensorType(SparseTensorEncodingAttr enc)
-      : SparseTensorType(RankedTensorType::get(
-            SmallVector<Size>(enc.getDimRank(), ShapedType::kDynamic),
-            Float32Type::get(enc.getContext()), enc)) {}
 
   SparseTensorType &operator=(const SparseTensorType &) = delete;
   SparseTensorType(const SparseTensorType &) = default;
@@ -369,13 +352,15 @@ class SparseTensorType {
   /// no such COO region is found, then returns the level-rank.
   ///
   /// DEPRECATED: use getCOOSegment instead;
-  Level getAoSCOOStart() const;
+  Level getAoSCOOStart() const { return getEncoding().getAoSCOOStart(); };
 
   /// Returns [un]ordered COO type for this sparse tensor type.
   RankedTensorType getCOOType(bool ordered) const;
 
   /// Returns a list of COO segments in the sparse tensor types.
-  SmallVector<COOSegment> getCOOSegments() const;
+  SmallVector<SparseTensorEncodingAttr::COOSegment> getCOOSegments() const {
+    return getEncoding().getCOOSegments();
+  }
 
 private:
   // These two must be const, to ensure coherence of the memoized fields.
diff --git a/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp b/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp
index 1b397e950179b8..8626cb141abfbb 100644
--- a/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp
+++ b/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp
@@ -104,7 +104,8 @@ void StorageLayout::foreachField(
         callback) const {
   const auto lvlTypes = enc.getLvlTypes();
   const Level lvlRank = enc.getLvlRank();
-  SmallVector<COOSegment> cooSegs = SparseTensorType(enc).getCOOSegments();
+  SmallVector<SparseTensorEncodingAttr::COOSegment> cooSegs =
+      enc.getCOOSegments();
   FieldIndex fieldIdx = kDataFieldStartingIdx;
 
   ArrayRef cooSegsRef = cooSegs;
@@ -211,7 +212,7 @@ StorageLayout::getFieldIndexAndStride(SparseTensorFieldKind kind,
   unsigned stride = 1;
   if (kind == SparseTensorFieldKind::CrdMemRef) {
     assert(lvl.has_value());
-    const Level cooStart = SparseTensorType(enc).getAoSCOOStart();
+    const Level cooStart = enc.getAoSCOOStart();
     const Level lvlRank = enc.getLvlRank();
     if (lvl.value() >= cooStart && lvl.value() < lvlRank) {
       lvl = cooStart;
@@ -912,78 +913,53 @@ LogicalResult SparseTensorEncodingAttr::verifyEncoding(
     return emitError()
            << "dimension-rank mismatch between encoding and tensor shape: "
            << getDimRank() << " != " << dimRank;
-  if (getExplicitVal()) {
-    if (auto typedAttr = llvm::dyn_cast<TypedAttr>(getExplicitVal())) {
-      Type attrType = typedAttr.getType();
-      if (attrType != elementType) {
-        return emitError()
-               << "explicit value type mismatch between encoding and "
-               << "tensor element type: " << attrType << " != " << elementType;
-      }
-    } else {
-      return emitError() << "expected typed explicit value";
+  if (auto expVal = getExplicitVal()) {
+    Type attrType = llvm::dyn_cast<TypedAttr>(expVal).getType();
+    if (attrType != elementType) {
+      return emitError() << "explicit value type mismatch between encoding and "
+                         << "tensor element type: " << attrType
+                         << " != " << elementType;
     }
   }
-  if (getImplicitVal()) {
-    auto impVal = getImplicitVal();
-    if (auto typedAttr = llvm::dyn_cast<TypedAttr>(impVal)) {
-      Type attrType = typedAttr.getType();
-      if (attrType != elementType) {
-        return emitError()
-               << "implicit value type mismatch between encoding and "
-               << "tensor element type: " << attrType << " != " << elementType;
-      }
-    } else {
-      return emitError() << "expected typed implicit value";
+  if (auto impVal = getImplicitVal()) {
+    Type attrType = llvm::dyn_cast<TypedAttr>(impVal).getType();
+    if (attrType != elementType) {
+      return emitError() << "implicit value type mismatch between encoding and "
+                         << "tensor element type: " << attrType
+                         << " != " << elementType;
     }
     // Currently, we only support zero as the implicit value.
     auto impFVal = llvm::dyn_cast<FloatAttr>(impVal);
     auto impIntVal = llvm::dyn_cast<IntegerAttr>(impVal);
-    if ((impFVal && impFVal.getValueAsDouble() != 0.0) ||
-        (impIntVal && impIntVal.getInt() != 0)) {
+    auto impComplexVal = llvm::dyn_cast<complex::NumberAttr>(impVal);
+    if ((impFVal && impFVal.getValue().isNonZero()) ||
+        (impIntVal && !impIntVal.getValue().isZero()) ||
+        (impComplexVal && (impComplexVal.getImag().isNonZero() ||
+                           impComplexVal.getReal().isNonZero()))) {
       return emitError() << "implicit value must be zero";
     }
   }
   return success();
 }
 
-//===----------------------------------------------------------------------===//
-// SparseTensorType Methods.
-//===----------------------------------------------------------------------===//
-
-bool mlir::sparse_tensor::SparseTensorType::isCOOType(Level startLvl,
-                                                      bool isUnique) const {
-  if (!hasEncoding())
-    return false;
-  if (!isCompressedLvl(startLvl) && !isLooseCompressedLvl(startLvl))
-    return false;
-  for (Level l = startLvl + 1; l < lvlRank; ++l)
-    if (!isSingletonLvl(l))
-      return false;
-  // If isUnique is true, then make sure that the last level is unique,
-  // that is, when lvlRank == 1, the only compressed level is unique,
-  // and when lvlRank > 1, the last singleton is unique.
-  return !isUnique || isUniqueLvl(lvlRank - 1);
-}
-
-Level mlir::sparse_tensor::SparseTensorType::getAoSCOOStart() const {
+Level mlir::sparse_tensor::SparseTensorEncodingAttr::getAoSCOOStart() const {
   SmallVector<COOSegment> coo = getCOOSegments();
   assert(coo.size() == 1 || coo.empty());
   if (!coo.empty() && coo.front().isAoS()) {
     return coo.front().lvlRange.first;
   }
-  return lvlRank;
+  return getLvlRank();
 }
 
-SmallVector<COOSegment>
-mlir::sparse_tensor::SparseTensorType::getCOOSegments() const {
+SmallVector<SparseTensorEncodingAttr::COOSegment>
+mlir::sparse_tensor::SparseTensorEncodingAttr::getCOOSegments() const {
   SmallVector<COOSegment> ret;
-  if (!hasEncoding() || lvlRank <= 1)
+  if (getLvlRank() <= 1)
     return ret;
 
   ArrayRef<LevelType> lts = getLvlTypes();
   Level l = 0;
-  while (l < lvlRank) {
+  while (l < getLvlRank()) {
     auto lt = lts[l];
     if (lt.isa<LevelFormat::Compressed, LevelFormat::LooseCompressed>()) {
       auto cur = lts.begin() + l;
@@ -1007,6 +983,25 @@ mlir::sparse_tensor::SparseTensorType::getCOOSegments() const {
   return ret;
 }
 
+//===----------------------------------------------------------------------===//
+// SparseTensorType Methods.
+//===----------------------------------------------------------------------===//
+
+bool mlir::sparse_tensor::SparseTensorType::isCOOType(Level startLvl,
+                                                      bool isUnique) const {
+  if (!hasEncoding())
+    return false;
+  if (!isCompressedLvl(startLvl) && !isLooseCompressedLvl(startLvl))
+    return false;
+  for (Level l = startLvl + 1; l < lvlRank; ++l)
+    if (!isSingletonLvl(l))
+      return false;
+  // If isUnique is true, then make sure that the last level is unique,
+  // that is, when lvlRank == 1, the only compressed level is unique,
+  // and when lvlRank > 1, the last singleton is unique.
+  return !isUnique || isUniqueLvl(lvlRank - 1);
+}
+
 RankedTensorType
 mlir::sparse_tensor::SparseTensorType::getCOOType(bool ordered) const {
   SmallVector<LevelType> lvlTypes;
diff --git a/mlir/test/Dialect/SparseTensor/invalid_encoding.mlir b/mlir/test/Dialect/SparseTensor/invalid_encoding.mlir
index 19e8fc95e22813..a3f72bd3ae971c 100644
--- a/mlir/test/Dialect/SparseTensor/invalid_encoding.mlir
+++ b/mlir/test/Dialect/SparseTensor/invalid_encoding.mlir
@@ -515,3 +515,16 @@ func.func private @sparse_csr(tensor<?x?xi32, #CSR_ImpVal>)
 
 // expected-error at +1 {{implicit value must be zero}}
 func.func private @sparse_csr(tensor<?x?xf32, #CSR_ImpVal>)
+
+// -----
+
+#CSR_OnlyOnes = #sparse_tensor.encoding<{
+  map = (d0, d1) -> (d0 : dense, d1 : compressed),
+  posWidth = 64,
+  crdWidth = 64,
+  explicitVal = #complex.number<:f32 1.0, 0.0>,
+  implicitVal = #complex.number<:f32 1.0, 0.0>
+}>
+
+// expected-error at +1 {{implicit value must be zero}}
+func.func private @sparse_csr(tensor<?x?xcomplex<f32>, #CSR_OnlyOnes>)



More information about the Mlir-commits mailing list