[Mlir-commits] [mlir] [mlir][nvgpu] NVGPU Tutorials (PR #87065)
Guray Ozen
llvmlistbot at llvm.org
Fri Mar 29 06:12:56 PDT 2024
https://github.com/grypp created https://github.com/llvm/llvm-project/pull/87065
I have a tutorial at EuroLLVM 2024 ([Zero to Hero: Programming Nvidia Hopper Tensor Core with MLIR's NVGPU Dialect](https://llvm.swoogo.com/2024eurollvm/session/2086997/zero-to-hero-programming-nvidia-hopper-tensor-core-with-mlir's-nvgpu-dialect)). For that, I implemented tutorial codes in Python. The focus is the nvgpu dialect and how to use its advanced features. I thought it might be useful to upstream this.
The tutorial codes are as follows:
- **Ch0.py:** Hello World
- **Ch1.py:** 2D Saxpy
- **Ch2.py:** 2D Saxpy using TMA engine
- **Ch3.py:** GEMM 64x64x64 using Tensor Core and TMA
- **Ch4.py:** Multistage performant GEMM using Tensor Core and TMA
I might implement two more chapters, but they are more like GPU programming than compiler related.
- **Ch5.py:** Warp Specilized GEMM
- **Ch6.py:** Warp Specilized Persistent GEMM
This PR also introduces the nvdsl class, making IR building in the tutorial easier.
>From 5a2e21c9c071a8ba2b7a4cbbf68dc65889256efd Mon Sep 17 00:00:00 2001
From: grypp <guray.ozen at gmail.com>
Date: Fri, 29 Mar 2024 13:09:45 +0000
Subject: [PATCH] [mlir][nvgpu] Zero to Hero: Programming Nvidia Hopper Tensor
Core with MLIR's NVGPU Dialect
I have a tutorial on nvgpu dialect using python bindings at EuroLLVM 2024. For that, I implemented tutorial codes in Python. The focus is the nvgpu dialect and how to use its advanced features. I thought it might be useful to upstream this.
The tutorial codes are as follows:
- **Ch0.py:** Hello World
- **Ch1.py:** 2D Saxpy
- **Ch2.py:** 2D Saxpy using TMA engine
- **Ch3.py:** GEMM 64x64x64 using Tensor Core and TMA
- **Ch4.py:** Multistage performant GEMM using Tensor Core and TMA
I might implement two more chapters, but they are more like GPU programming than compiler related.
- **Ch5.py:** Warp Specilized GEMM
- **Ch6.py:** Warp Specilized Persistent GEMM
This PR also introduces the nvdsl class, making IR building in the tutorial easier.
---
mlir/test/Examples/nvgpu/Ch0.py | 46 ++
mlir/test/Examples/nvgpu/Ch1.py | 68 +++
mlir/test/Examples/nvgpu/Ch2.py | 94 ++++
mlir/test/Examples/nvgpu/Ch3.py | 92 ++++
mlir/test/Examples/nvgpu/Ch4.py | 291 +++++++++++++
mlir/test/Examples/nvgpu/lit.local.cfg | 3 +
mlir/test/Examples/nvgpu/tools/lit.local.cfg | 3 +
mlir/test/Examples/nvgpu/tools/nvdsl.py | 404 ++++++++++++++++++
.../Examples/nvgpu/tools/nvgpucompiler.py | 45 ++
9 files changed, 1046 insertions(+)
create mode 100644 mlir/test/Examples/nvgpu/Ch0.py
create mode 100644 mlir/test/Examples/nvgpu/Ch1.py
create mode 100644 mlir/test/Examples/nvgpu/Ch2.py
create mode 100644 mlir/test/Examples/nvgpu/Ch3.py
create mode 100644 mlir/test/Examples/nvgpu/Ch4.py
create mode 100644 mlir/test/Examples/nvgpu/lit.local.cfg
create mode 100644 mlir/test/Examples/nvgpu/tools/lit.local.cfg
create mode 100644 mlir/test/Examples/nvgpu/tools/nvdsl.py
create mode 100644 mlir/test/Examples/nvgpu/tools/nvgpucompiler.py
diff --git a/mlir/test/Examples/nvgpu/Ch0.py b/mlir/test/Examples/nvgpu/Ch0.py
new file mode 100644
index 00000000000000..221ca43d37307a
--- /dev/null
+++ b/mlir/test/Examples/nvgpu/Ch0.py
@@ -0,0 +1,46 @@
+# RUN: env SUPPORT_LIB=%mlir_cuda_runtime \
+# RUN: %PYTHON %s | FileCheck %s
+
+# ===----------------------------------------------------------------------===//
+# Chapter 0 : Hello World
+# ===----------------------------------------------------------------------===//
+#
+# This program demonstrates Hello World
+#
+# This chapter introduces demonstrates:
+# 1. Build MLIR function with arguments
+# 2. Build MLIR GPU kernel
+# 3. Print from a GPU thread
+# 4. Pass arguments, JIT compile and run the MLIR function
+#
+# ===----------------------------------------------------------------------===//
+
+
+from mlir.dialects import gpu
+from tools.nvdsl import *
+
+
+# 1. Build function with arguments
+ at NVDSL.mlir_func
+def main(alpha):
+ # 2. Build GPU kernel
+ @NVDSL.mlir_gpu_launch(grid=(1, 1, 1), block=(4, 1, 1))
+ def kernel():
+ tidx = gpu.thread_id(gpu.Dimension.x)
+ myValue = alpha + tidx
+ # Print from a GPU thread
+ gpu.printf("GPU thread %llu has %llu\n", [tidx, myValue])
+
+ # 3. Call the GPU kernel
+ kernel()
+
+
+# 4. Pass arguments, JIT compile and run the MLIR function
+alpha = 100
+main(alpha)
+
+
+# CHECK: GPU thread 0 has 100
+# CHECK: GPU thread 1 has 101
+# CHECK: GPU thread 2 has 102
+# CHECK: GPU thread 3 has 103
diff --git a/mlir/test/Examples/nvgpu/Ch1.py b/mlir/test/Examples/nvgpu/Ch1.py
new file mode 100644
index 00000000000000..a888c61358a024
--- /dev/null
+++ b/mlir/test/Examples/nvgpu/Ch1.py
@@ -0,0 +1,68 @@
+# RUN: env SUPPORT_LIB=%mlir_cuda_runtime \
+# RUN: %PYTHON %s | FileCheck %s
+
+# ===----------------------------------------------------------------------===//
+# Chapter 1 : 2D Saxpy
+# ===----------------------------------------------------------------------===//
+#
+# This program demonstrates 2D Saxpy
+#
+# This chapter introduces demonstrates:
+# 1. Use MLIR GPU dialect to allocate and copy memory
+# 2. Compute 2D SAXPY kernel
+# 3. Pass numpy arrays to MLIR
+# 4. Verify MLIR with reference computation
+#
+# ===----------------------------------------------------------------------===//
+
+
+from mlir import ir
+from mlir.dialects import gpu, memref
+from tools.nvdsl import *
+import numpy as np
+
+
+ at NVDSL.mlir_func
+def saxpy(x, y, alpha):
+ # 1. Use MLIR GPU dialect to allocate and copy memory
+ token_ty = ir.Type.parse("!gpu.async.token")
+ t1 = gpu.wait(token_ty, [])
+ x_dev, t2 = gpu.alloc(x.type, token_ty, [t1], [], [])
+ y_dev, t3 = gpu.alloc(y.type, token_ty, [t2], [], [])
+ t4 = gpu.memcpy(token_ty, [t3], x_dev, x)
+ t5 = gpu.memcpy(token_ty, [t4], y_dev, y)
+ t6 = gpu.wait(token_ty, [t5])
+
+ # 2. Compute 2D SAXPY kernel
+ @NVDSL.mlir_gpu_launch(grid=(M, 1, 1), block=(N, 1, 1))
+ def saxpy_kernel():
+ bidx = gpu.block_id(gpu.Dimension.x)
+ tidx = gpu.thread_id(gpu.Dimension.x)
+ x_val = memref.load(x_dev, [bidx, tidx])
+ y_val = memref.load(y_dev, [bidx, tidx])
+
+ # SAXPY: y[i] += a * x[i];
+ y_val += x_val * alpha
+
+ memref.store(y_val, y_dev, [bidx, tidx])
+
+ saxpy_kernel()
+
+ t7 = gpu.memcpy(token_ty, [t6], y, y_dev)
+ gpu.wait(token_ty, [t7])
+
+
+# 3. Pass numpy arrays to MLIR
+M = 256
+N = 32
+alpha = 2.0
+x = np.ones((M, N), np.float32)
+y = np.ones((M, N), np.float32)
+ref = np.ones((M, N), np.float32)
+saxpy(x, y, alpha)
+
+# 4. Verify MLIR with reference computation
+ref += x * alpha
+np.testing.assert_allclose(y, ref, rtol=5e-03, atol=1e-01)
+print("PASS")
+# CHECK-NOT: Mismatched elements
diff --git a/mlir/test/Examples/nvgpu/Ch2.py b/mlir/test/Examples/nvgpu/Ch2.py
new file mode 100644
index 00000000000000..caa2691a06d69e
--- /dev/null
+++ b/mlir/test/Examples/nvgpu/Ch2.py
@@ -0,0 +1,94 @@
+# RUN: env SUPPORT_LIB=%mlir_cuda_runtime \
+# RUN: %PYTHON %s | FileCheck %s
+
+# ===----------------------------------------------------------------------===//
+# Chapter 2 : 2D Saxpy with TMA
+# ===----------------------------------------------------------------------===//
+#
+# This program demonstrates 2D Saxpy. It is same as Chapter 1,
+# but it loads data using TMA (Tensor Memory Accelerator)
+#
+# This chapter introduces demonstrates:
+# 1. Create and initialize asynchronous transactional barrier (mbarrier)
+# 2. Execute Tensor Memory Accelerator (TMA) Load
+# 3. Wait for completion of TMA load with mbarrier
+#
+# ===----------------------------------------------------------------------===//
+
+from mlir import ir
+from mlir.dialects import nvgpu, scf, arith, memref, vector, gpu
+from tools.nvdsl import *
+from mlir import runtime as rt
+from mlir.extras import types as T
+import numpy as np
+
+
+ at NVDSL.mlir_func
+def saxpy_tma(x, y, alpha):
+ token_ty = ir.Type.parse("!gpu.async.token")
+ t1 = gpu.wait(token_ty, [])
+ x_dev, t2 = gpu.alloc(x.type, token_ty, [t1], [], [])
+ y_dev, t3 = gpu.alloc(y.type, token_ty, [t2], [], [])
+ t4 = gpu.memcpy(token_ty, [t3], x_dev, x)
+ t5 = gpu.memcpy(token_ty, [t4], y_dev, y)
+ t6 = gpu.wait(token_ty, [t5])
+
+ x_tma = TMA((M, N), x.type)
+ y_tma = TMA((M, N), y.type)
+ x_tma.create_descriptor(x_dev)
+ y_tma.create_descriptor(y_dev)
+
+ @NVDSL.mlir_gpu_launch(grid=(M, 1, 1), block=(N, 1, 1), smem=65536)
+ def saxpy_tma_kernel():
+ bidx = gpu.block_id(gpu.Dimension.x)
+ tidx = gpu.thread_id(gpu.Dimension.x)
+ isThread0 = tidx == 0
+
+ # 1. Create and initialize asynchronous transactional barrier (mbarrier)
+ mbar_group = Mbarriers(number_of_barriers=1)
+ with ir.InsertionPoint(scf.IfOp(isThread0).then_block):
+ mbar_group[0].init(1)
+ x_tma.prefetch()
+ y_tma.prefetch()
+ scf.yield_([])
+
+ x_smem = get_dynamic_shared_memory((M, N), T.f32())
+ y_smem = get_dynamic_shared_memory((M, N), T.f32(), offset=M * N * 2)
+
+ # 2. Execute Tensor Memory Accelerator (TMA) Load
+ with ir.InsertionPoint(scf.IfOp(isThread0).then_block):
+ x_tma.load(x_smem, mbar_group[0])
+ y_tma.load(y_smem, mbar_group[0])
+ mbar_group[0].arrive(txcount=M * N * 2 * 4)
+ scf.yield_([])
+
+ # 3. Wait for completion of TMA load with mbarrier
+ mbar_group[0].try_wait()
+
+ x_val = memref.load(x_smem, [bidx, tidx])
+ y_val = memref.load(y_smem, [bidx, tidx])
+
+ # SAXPY: y[i] += a * x[i];
+ y_val += x_val * alpha
+
+ memref.store(y_val, y_dev, [bidx, tidx])
+
+ saxpy_tma_kernel()
+
+ t7 = gpu.memcpy(token_ty, [t6], y, y_dev)
+ gpu.wait(token_ty, [t7])
+
+
+M = 256
+N = 32
+alpha = 2.0
+x = np.ones((M, N), np.float32)
+y = np.ones((M, N), np.float32)
+ref = np.ones((M, N), np.float32)
+saxpy_tma(x, y, alpha)
+
+# 4. Verify MLIR with reference computation
+ref += x * alpha
+np.testing.assert_allclose(y, ref, rtol=5e-03, atol=1e-01)
+print("PASS")
+# CHECK-NOT: Mismatched elements
diff --git a/mlir/test/Examples/nvgpu/Ch3.py b/mlir/test/Examples/nvgpu/Ch3.py
new file mode 100644
index 00000000000000..802cb59ead1555
--- /dev/null
+++ b/mlir/test/Examples/nvgpu/Ch3.py
@@ -0,0 +1,92 @@
+# RUN: env SUPPORT_LIB=%mlir_cuda_runtime \
+# RUN: %PYTHON %s | FileCheck %s
+
+# ===----------------------------------------------------------------------===//
+# Chapter 3 : GEMM 64x64x64 with Tensor Core
+# ===----------------------------------------------------------------------===//
+#
+# This program demonstrates a GEMM operation with 64x64x64 matrix multiplication
+#
+# This chapter introduces demonstrates:
+# 1. Execute TMA Load for two input matrices
+# 2. Performs Tensor Core GEMM 64x64x64 by warpgroup
+# 3. Stores fragmented registers to global memory by warpgroup
+#
+# ===----------------------------------------------------------------------===//
+
+
+from mlir import ir
+from mlir.dialects import nvgpu, scf, arith, memref, vector, gpu
+from tools.nvdsl import *
+from mlir.extras import types as T
+import numpy as np
+
+
+ at NVDSL.mlir_func
+def gemm_64_64_64(x, y, z):
+ token_ty = ir.Type.parse("!gpu.async.token")
+ t1 = gpu.wait(token_ty, [])
+ x_dev, t2 = gpu.alloc(x.type, token_ty, [t1], [], [])
+ y_dev, t3 = gpu.alloc(y.type, token_ty, [t2], [], [])
+ z_dev, t4 = gpu.alloc(z.type, token_ty, [t3], [], [])
+ t5 = gpu.memcpy(token_ty, [t4], x_dev, x)
+ t6 = gpu.memcpy(token_ty, [t5], y_dev, y)
+ t7 = gpu.wait(token_ty, [t6])
+
+ sw = nvgpu.TensorMapSwizzleKind.SWIZZLE_128B
+ x_tma = TMA([N, N], x.type, swizzle=sw)
+ y_tma = TMA([N, N], y.type, swizzle=sw)
+ x_tma.create_descriptor(x_dev)
+ y_tma.create_descriptor(y_dev)
+
+ @NVDSL.mlir_gpu_launch(grid=(1, 1, 1), block=(128, 1, 1), smem=16384)
+ def gemm_tma_kernel():
+ tidx = gpu.thread_id(gpu.Dimension.x)
+
+ mbar_group = Mbarriers(number_of_barriers=1)
+ isThread0 = tidx == 0
+ with ir.InsertionPoint(scf.IfOp(isThread0).then_block):
+ mbar_group[0].init(1)
+ x_tma.prefetch()
+ y_tma.prefetch()
+ scf.yield_([])
+
+ x_smem = get_dynamic_shared_memory((N, N), T.f16())
+ y_smem = get_dynamic_shared_memory((N, N), T.f16(), offset=N * N * 2)
+
+ # 1. Execute TMA Load for two input matrices
+ with ir.InsertionPoint(scf.IfOp(isThread0).then_block):
+ x_tma.load(x_smem, mbar_group[0])
+ y_tma.load(y_smem, mbar_group[0])
+ tx_count = get_type_size(x_tma.tma_memref) + get_type_size(y_tma.tma_memref)
+ mbar_group[0].arrive(tx_count)
+ scf.yield_([])
+
+ mbar_group[0].try_wait()
+
+ # 2. Performs Tensor Core GEMM 64x64x64 by warpgroup
+ A = Matrix(x_smem, x_tma, N, N)
+ B = Matrix(y_smem, y_tma, N, N)
+ C = MatrixAccumulator(N, N, T.f32()).op()
+ D = Matrix.matmul(A, B, C)
+
+ # 3. Stores fragmented registers to global memory by warpgroup
+ nvgpu.warpgroup_mma_store(D, z_dev)
+
+ gemm_tma_kernel()
+
+ t8 = gpu.memcpy(token_ty, [t7], z, z_dev)
+ gpu.wait(None, [t8])
+
+
+# Python pass arguments to MLIR
+N = 64
+x = np.random.randn(N, N).astype(np.float16)
+y = np.random.randn(N, N).astype(np.float16)
+z = np.zeros((N, N), np.float32)
+gemm_64_64_64(x, y, z)
+
+ref = x.astype(np.float16) @ y.astype(np.float16)
+np.testing.assert_allclose(z, ref, rtol=5e-03, atol=1e-01)
+print("PASS")
+# CHECK-NOT: Mismatched elements
diff --git a/mlir/test/Examples/nvgpu/Ch4.py b/mlir/test/Examples/nvgpu/Ch4.py
new file mode 100644
index 00000000000000..d222d6e60aafad
--- /dev/null
+++ b/mlir/test/Examples/nvgpu/Ch4.py
@@ -0,0 +1,291 @@
+# RUN: env SUPPORT_LIB=%mlir_cuda_runtime \
+# RUN: %PYTHON %s | FileCheck %s
+
+# ===----------------------------------------------------------------------===//
+# Chapter 4 : Multistage GEMM with Tensor Core
+# ===----------------------------------------------------------------------===//
+#
+# This program demonstrates a GEMM operation with 64x64x64 matrix multiplication
+#
+# This chapter introduces demonstrates:
+# 1. Partition shape based on block IDs
+# 2. Prologue
+# 2.1 Execute TMA Load for two input matrices for each stage
+# 3. Main loop
+# 3.1 Wait for completion of TMA load with mbarrier
+# 3.2 Performs Tensor Core GEMM 64x128x64 by warpgroup
+# 3.3 Load next stage if needed
+# 4. Epilogue
+# 4.1 Store fragmented registers to shared memory
+# 4.2 Store shared memory to global
+#
+# ===----------------------------------------------------------------------===//
+
+
+from mlir import ir
+from mlir.dialects import gpu, scf, nvgpu, nvvm
+from mlir.extras import types as T
+from tools.nvdsl import *
+import numpy as np
+
+
+def partition_shape():
+ """
+ Calculate the partition shape based on the block IDs.
+
+ It partitions the shape like below:
+ for(.. i < M ...) --> blockIdx.x
+ for(.. j < N ...) --> blockIdx.y
+ for(.. k < K ...)
+
+ Returns:
+ dimX (int): Dimension along the x-axis.
+ dimY (int): Dimension along the y-axis.
+ """
+ bidx = gpu.block_id(gpu.Dimension.x)
+ bidy = gpu.block_id(gpu.Dimension.y)
+ dimX = bidx * TILE_M
+ dimY = bidy * TILE_N
+ return dimX, dimY
+
+
+def tma_load(
+ mbar_group: Mbarriers,
+ x_tma: TMA,
+ y_tma: TMA,
+ slot,
+ stage,
+ p=None,
+):
+ """
+ TMA loads two input matrices from global memory to shared memory. It performs the following operations:
+
+ - tma.load x_shared_memory[offset] at coordinate [x, y] (Loads 128x64)
+ - tma.load y_shared_memory[offset] at coordinate [x, y] (Loads 64x64)
+ - tma.load y_shared_memory[offset] at coordinate [x, y] (Loads 64x64)
+
+ mbarrier.arrive tx_count = 128x64x2x4
+ """
+ dimX, dimY = partition_shape()
+
+ tidx = gpu.thread_id(gpu.Dimension.x)
+ begin_y = NUM_STAGES * get_type_size(x_tma.tma_memref)
+ size_tma_x = get_type_size(x_tma.tma_memref)
+ size_tma_y = get_type_size(y_tma.tma_memref)
+ tx_count = size_tma_x + (size_tma_y * 2)
+ tidx = gpu.thread_id(gpu.Dimension.x)
+
+ p = tidx == 0 if p is None else p
+
+ off_x = slot * size_tma_x
+ off_y = (slot * size_tma_x) + begin_y
+ off_y2 = off_y + size_tma_y
+ x = get_dynamic_shared_memory(
+ x_tma.tma_memref.shape, x_tma.tma_memref.element_type, off_x
+ )
+ y1 = get_dynamic_shared_memory(
+ y_tma.tma_memref.shape, y_tma.tma_memref.element_type, off_y
+ )
+ y2 = get_dynamic_shared_memory(
+ y_tma.tma_memref.shape, y_tma.tma_memref.element_type, off_y2
+ )
+
+ mbar_group[slot].arrive(tx_count, predicate=p)
+
+ c1 = stage * 64
+ x_tma.load(x, mbar_group[slot], coords=[c1, dimX], predicate=p)
+ y_tma.load(y1, mbar_group[slot], coords=[dimY, c1], predicate=p)
+ y_tma.load(y2, mbar_group[slot], coords=[dimY + 64, c1], predicate=p)
+
+
+def bootstrap(x_tma: TMA, y_tma: TMA):
+ """
+ Initialize mbarriers and prefetch TMA descriptors.
+ """
+ tidx = gpu.thread_id(gpu.Dimension.x)
+ mbar_group = Mbarriers(number_of_barriers=NUM_STAGES)
+ isThread0 = tidx == const(0)
+ with ir.InsertionPoint(scf.IfOp(isThread0).then_block):
+ for i in scf.for_(0, NUM_STAGES, 1):
+ mbar_group[i].init(1)
+ scf.yield_([])
+ x_tma.prefetch()
+ y_tma.prefetch()
+ scf.yield_([])
+
+ return mbar_group
+
+
+def prologue(mbar_group: Mbarriers, x_tma: TMA, y_tma: TMA):
+ """
+ Prologue of the GEMM kernel. It loads 2 input matrices for each stage in loop like below:
+
+ for stage in range(NUM_STAGES):
+ tma_load x, y, stage
+
+ """
+ ns = NUM_STAGES if NUM_STAGES == 1 else NUM_STAGES - 1
+ for iv in scf.for_(0, ns, 1):
+ tma_load(mbar_group, x_tma, y_tma, iv, iv)
+ scf.yield_([])
+
+
+def mainloop(mbar_group: Mbarriers, x_tma: TMA, y_tma: TMA):
+ """
+ Main loop of the Multistage GEMM kernel. It iterates through
+ stages and performs matrix multiplication, loading data by TMA to shared memory. It like following
+
+ MatrixAccumulator D
+ for k in range(K // TILE_K):
+
+ try_wait(stage, ...) # Wait TMA load
+
+ Matrix A(stage, ...) # Find shared memory slot
+ Matrix B(stage, ...) # Find shared memory slot
+ D += A @ B # Multiply and accumulate
+
+ if(needLoad) # Load next stage if needed
+ tma_load(x, y, nextSlot, nextStage)
+
+ """
+ ns = NUM_STAGES if NUM_STAGES == 1 else NUM_STAGES - 1
+
+ tidx = gpu.thread_id(gpu.Dimension.x)
+ begin_y = NUM_STAGES * get_type_size(x_tma.tma_memref)
+
+ size_x = TILE_M * TILE_K * get_type_size(T.f16())
+
+ C = MatrixAccumulator(TILE_M, TILE_N, T.f32()).op()
+ pp = const(False, ty=T.bool())
+
+ # Main Loop
+ for_op = scf.ForOp(const(0), const(K // TILE_K), const(1), [C, pp])
+ with ir.InsertionPoint(for_op.body):
+ pp = for_op.inner_iter_args[1]
+ iv = for_op.induction_variable
+ stage = iv % NUM_STAGES
+
+ # Wait for current stage
+ mbar_group[stage].try_wait(phase=pp)
+
+ # Find shared memory slot
+ offset_x = stage * size_x
+ offset_y = offset_x + begin_y
+ x_smem = get_dynamic_shared_memory([TILE_M, TILE_K], T.f16(), offset_x)
+ y_smem = get_dynamic_shared_memory([TILE_K, TILE_N], T.f16(), offset_y)
+
+ # Matrix Multiply
+ A = Matrix(x_smem, x_tma, TILE_M, TILE_K)
+ B = Matrix(y_smem, y_tma, TILE_K, TILE_N)
+ C = for_op.inner_iter_args[0]
+ D = Matrix.matmul(A, B, C)
+ if NUM_STAGES == 1:
+ nvvm.WgmmaWaitGroupSyncOp(0)
+
+ # Load next stage
+ pred = ((iv + ns) < const(K // TILE_K)) & (tidx == 0)
+ nextStage = iv + ns
+ nextSlot = nextStage % NUM_STAGES
+ tma_load(mbar_group, x_tma, y_tma, nextSlot, nextStage, pred)
+
+ # Switch phase parity for the mbarrier
+ switched = pp ^ const(True, ty=T.bool())
+ newPP = arith.select(
+ stage == (NUM_STAGES - 1),
+ switched,
+ pp,
+ )
+ scf.yield_([D, newPP])
+
+ nvvm.WgmmaWaitGroupSyncOp(0)
+
+ return for_op.results[0]
+
+
+def epilogue(D, z_dev):
+ """
+ Epilogue of the GEMM kernel. It stores the fragmented registers to global memory.
+
+ MatrixAccumulator D # Fragmented results
+ store D -> Shared Memory # Store Shared Memory
+ Shared Memory -> Z[dimX][dimY] # Store Shared Memory to Global Memory
+
+ """
+ tidx = gpu.thread_id(gpu.Dimension.x)
+ dimX, dimY = partition_shape()
+
+ z_smem = get_dynamic_shared_memory([TILE_M, TILE_N], T.f32())
+ z_gmem = memref.subview(z_dev, [dimX, dimY], [TILE_M, TILE_N], [1, 1])
+
+ # Store (registers -> shared memory)
+ nvgpu.WarpgroupMmaStoreOp(D, z_smem)
+ gpu.barrier()
+
+ # Store (shared memory --> global memory)
+ for i in scf.for_(0, TILE_M, 1):
+ val = memref.load(z_smem, [i, tidx])
+ memref.store(val, z_gmem, [i, tidx])
+ scf.yield_([])
+
+
+ at NVDSL.mlir_func
+def gemm_multistage(x, y, z):
+ token_ty = ir.Type.parse("!gpu.async.token")
+ t1 = gpu.wait(token_ty, [])
+ x_dev, t2 = gpu.alloc(x.type, token_ty, [t1], [], [])
+ y_dev, t3 = gpu.alloc(y.type, token_ty, [t2], [], [])
+ z_dev, t4 = gpu.alloc(z.type, token_ty, [t3], [], [])
+ t5 = gpu.memcpy(token_ty, [t4], x_dev, x)
+ t6 = gpu.memcpy(token_ty, [t5], y_dev, y)
+ t7 = gpu.wait(token_ty, [t6])
+
+ sw = nvgpu.TensorMapSwizzleKind.SWIZZLE_128B
+ x_tma = TMA([128, 64], x.type, swizzle=sw)
+ y_tma = TMA([64, 64], y.type, swizzle=sw)
+ x_tma.create_descriptor(x_dev)
+ y_tma.create_descriptor(y_dev)
+
+ grid = [(M // TILE_M), (N // TILE_N), 1]
+ block = [128, 1, 1]
+ @NVDSL.mlir_gpu_launch(grid=grid, block=block, smem=229440)
+ def gemm_multistage_kernel():
+ # Initialize mbarriers and prefetch TMA descriptors
+ mbar_group = bootstrap(x_tma, y_tma)
+
+ # Fill the pipeline stages
+ prologue(mbar_group, x_tma, y_tma)
+
+ # Main loop
+ D = mainloop(mbar_group, x_tma, y_tma)
+
+ # Store registers to global memory
+ epilogue(D, z_dev)
+
+ gemm_multistage_kernel()
+
+ t8 = gpu.memcpy(token_ty, [t7], z, z_dev)
+ gpu.wait(None, [t8])
+
+
+# Python pass arguments to MLIR
+NUM_STAGES = 7
+N = 256
+M = 512
+K = 1024
+TILE_M = 128
+TILE_N = 128
+TILE_K = 64
+x = np.random.randn(M, K).astype(np.float16)
+y = np.random.randn(K, N).astype(np.float16)
+z = np.zeros((M, N), np.float32)
+
+gemm_multistage(x, y, z)
+
+
+# Verify MLIR with reference computation
+ref = x.astype(np.float16) @ y.astype(np.float16)
+np.testing.assert_allclose(z, ref, rtol=5e-03, atol=1e-01)
+
+
+print("PASS")
+# CHECK-NOT: Mismatched elements
diff --git a/mlir/test/Examples/nvgpu/lit.local.cfg b/mlir/test/Examples/nvgpu/lit.local.cfg
new file mode 100644
index 00000000000000..e586b55573898a
--- /dev/null
+++ b/mlir/test/Examples/nvgpu/lit.local.cfg
@@ -0,0 +1,3 @@
+config.unsupported = False
+if not config.enable_cuda_runner or not config.mlir_run_cuda_sm90_tests:
+ config.unsupported = True
\ No newline at end of file
diff --git a/mlir/test/Examples/nvgpu/tools/lit.local.cfg b/mlir/test/Examples/nvgpu/tools/lit.local.cfg
new file mode 100644
index 00000000000000..d9f34f219c4d95
--- /dev/null
+++ b/mlir/test/Examples/nvgpu/tools/lit.local.cfg
@@ -0,0 +1,3 @@
+# Files in this directory are tools, not tests.
+config.unsupported = True
+
diff --git a/mlir/test/Examples/nvgpu/tools/nvdsl.py b/mlir/test/Examples/nvgpu/tools/nvdsl.py
new file mode 100644
index 00000000000000..4c774f4d4deac9
--- /dev/null
+++ b/mlir/test/Examples/nvgpu/tools/nvdsl.py
@@ -0,0 +1,404 @@
+from enum import Enum
+import functools, sys, ctypes, os, errno
+import numpy as np
+from functools import partialmethod
+from mlir import ir
+from mlir.dialects import arith, func, gpu, memref, nvgpu
+from mlir.extras import types as T
+from mlir import runtime as rt
+from tools import nvgpucompiler
+
+DEBUG = True
+MLIR_DYNAMIC = -9223372036854775808
+
+
+def const(value: int, ty=None):
+ ty = T.index() if ty is None else ty
+ if isinstance(value, ir.Value) and (value.type.isinstance(value.type) or T.bool().isinstance(value.type)):
+ return value
+ return arith.constant(ty, value)
+
+
+def get_type_size(ty):
+ if ir.MemRefType.isinstance(ty):
+ size = get_type_size(ty.element_type)
+ for sz in ty.shape:
+ size *= sz
+ return size
+ if ir.FloatType.isinstance(ty):
+ return ir.FloatType(ty).width // 8
+ if ir.IntegerType.isinstance(ty):
+ return ir.IntegerType(ty).width // 8
+ raise NotImplementedError(ty)
+
+def get_mlir_func_obj_ty(inputArgs):
+ args = []
+ c_int_p = ctypes.c_int * 1
+ c_float_p = ctypes.c_float * 1
+ c_bool_p = ctypes.c_bool * 1
+ for arg in inputArgs:
+ if isinstance(arg, bool):
+ args.append(c_bool_p(arg))
+ elif isinstance(arg, int):
+ args.append(c_int_p(arg))
+ elif isinstance(arg, float):
+ args.append(c_float_p(arg))
+ elif isinstance(arg, np.ndarray):
+ args.append(
+ ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(arg)))
+ )
+ else:
+ raise NotImplementedError(arg)
+ return args
+
+
+class Mbarriers:
+ def __init__(self, number_of_barriers=1):
+ self.mbar_ty = ir.Type.parse(
+ "!nvgpu.mbarrier.group<memorySpace=#gpu.address_space<workgroup>, num_barriers = "
+ + str(number_of_barriers)
+ + ">"
+ )
+ self.mbar_group_op = nvgpu.mbarrier_create(self.mbar_ty)
+ self.number_of_barriers = number_of_barriers
+
+ def __getitem__(self, key):
+ self.id_op = const(key)
+ return self
+
+ def init(self, count: int, predicate=None):
+ count_op = const(count)
+ if predicate is None:
+ nvgpu.mbarrier_init(self.mbar_group_op, count_op, self.id_op)
+ else:
+ nvgpu.mbarrier_init(
+ self.mbar_group_op, count_op, self.id_op, predicate=predicate
+ )
+
+ def arrive(self, txcount: int = 0, predicate=None):
+ if txcount != 0:
+ txcount_op = const(txcount)
+ nvgpu.mbarrier_arrive_expect_tx(
+ self.mbar_group_op, txcount_op, self.id_op, predicate=predicate
+ )
+ else:
+ nvgpu.mbarrier_arrive(self.mbar_group_op, self.id_op, predicate=predicate)
+
+ def try_wait(self, phase: bool = False, ticks: int = 10000000):
+ ticks_op = const(ticks)
+ phase_op = const(phase, T.bool())
+ nvgpu.MBarrierTryWaitParityOp(
+ self.mbar_group_op,
+ phase_op,
+ ticks_op,
+ mbarId=self.id_op,
+ )
+
+
+class TMA:
+ """A class that builds a TMA descriptor."""
+
+ def __init__(
+ self,
+ shape,
+ memref_ty,
+ swizzle=nvgpu.TensorMapSwizzleKind.SWIZZLE_NONE,
+ l2promo=nvgpu.TensorMapL2PromoKind.L2PROMO_NONE,
+ oob=nvgpu.TensorMapOOBKind.OOB_ZERO,
+ interleave=nvgpu.TensorMapInterleaveKind.INTERLEAVE_NONE,
+ ):
+ self.swizzle = swizzle # mlir.nvgpu.TensorMapSwizzleKind
+ self.l2promo = l2promo # mlir.nvgpu.TensorMapL2PromoKind
+ self.oob = oob # mlir.nvgpu.TensorMapOOBKind
+ self.interleave = interleave # mlir.nvgpu.TensorMapInterleaveKind
+ self.shape = shape
+ self.memref_ty = memref_ty # MemRefType
+ self.lastDim = 64
+ self.requiredLoad = 1
+ self.tma_shape = shape
+ self.tma_memref = ir.MemRefType.get(shape, memref_ty.element_type)
+
+ @property
+ def tensormap_descriptor_ty(self):
+ """Returns a tensormap descriptor type."""
+ memref_str = f"memref<{self.tma_shape[0]}x{self.tma_shape[1]}x{self.memref_ty.element_type}, 3>"
+ parse_str = f"!nvgpu.tensormap.descriptor<tensor = {memref_str},\
+ swizzle = {self.swizzle},\
+ l2promo = {self.l2promo},\
+ oob = {self.oob},\
+ interleave = {self.interleave}>"
+
+ return ir.Type.parse(parse_str)
+
+ def create_descriptor(self, device_ptr):
+ tma_descriptor_ty = self.tensormap_descriptor_ty
+ device_unranked_memref = memref.CastOp(
+ ir.UnrankedMemRefType.get(self.memref_ty.element_type,
+ self.memref_ty.memory_space),
+ device_ptr,
+ )
+ self.tma_descriptor = nvgpu.TmaCreateDescriptorOp(
+ tma_descriptor_ty, device_unranked_memref,
+ map(const, self.tma_shape))
+ return self.tma_descriptor.result
+
+ def prefetch(self, predicate=None):
+ nvgpu.tma_prefetch_descriptor(self.tma_descriptor, predicate=predicate)
+
+ def load(self, dest, mbarrier: Mbarriers, coords=[0,0], predicate=None):
+ coord_ops = [const(c) for c in coords]
+ nvgpu.TmaAsyncLoadOp(
+ dest,
+ mbarrier.mbar_group_op,
+ self.tma_descriptor,
+ coordinates=coord_ops,
+ mbarId=mbarrier.id_op,
+ predicate=predicate,
+ )
+
+
+class MatrixAccumulator:
+ def __init__(self, M, N, ty):
+ self.M = M
+ self.N = N
+ self.ty = ty
+
+ @property
+ def acc_ty(self):
+ return ir.Type.parse(
+ "!nvgpu.warpgroup.accumulator<fragmented=vector<"
+ + str(self.M)
+ + "x"
+ + str(self.N)
+ + "x"
+ + str(self.ty)
+ + ">>"
+ )
+
+ def op(self):
+ return nvgpu.warpgroup_mma_init_accumulator(self.acc_ty)
+
+
+class Matrix:
+
+ def __init__(self, smem, tma_descriptor: TMA, M, N):
+ self.tma_descriptor = tma_descriptor
+ self.smem = smem
+ self.M = M
+ self.N = N
+
+ @property
+ def wgmma_ty(self):
+ return ir.Type.parse("!nvgpu.warpgroup.descriptor<tensor=memref<" +
+ str(self.M) + "x" +
+ str(self.N) + "x" +
+ str(self.tma_descriptor.memref_ty.element_type) +
+ ", #gpu.address_space<workgroup>>>")
+
+ def matmul(lhs, rhs, acc):
+ wgmma_desc_lhs = nvgpu.warpgroup_generate_descriptor(
+ lhs.wgmma_ty, lhs.smem, lhs.tma_descriptor.tma_descriptor)
+ wgmma_desc_rhs = nvgpu.warpgroup_generate_descriptor(
+ rhs.wgmma_ty, rhs.smem, rhs.tma_descriptor.tma_descriptor)
+ return nvgpu.WarpgroupMmaOp(acc.type,
+ wgmma_desc_lhs,
+ wgmma_desc_rhs,
+ acc,
+ transposeB=True)
+
+def get_dynamic_shared_memory(shape=None, ty=None, offset: int = 0):
+ smem_space_str = "#gpu.address_space<workgroup>"
+ smem_space = ir.Attribute.parse(smem_space_str)
+ dynamic_smem = gpu.dynamic_shared_memory(
+ ir.MemRefType.get((MLIR_DYNAMIC,), T.i8(), memory_space=smem_space)
+ )
+ if shape is None:
+ return dynamic_smem
+ memref_ty = ir.MemRefType.get(shape, ty, memory_space=smem_space)
+ return memref.view(
+ ir.MemRefType.get(
+ memref_ty.shape, memref_ty.element_type, memory_space=smem_space
+ ),
+ dynamic_smem,
+ const(offset),
+ [],
+ )
+
+ at staticmethod
+def get_mlir_ty(arg):
+ def get_mlir_ty_from_np(dtype):
+ if dtype == np.float16:
+ return T.f16()
+ if dtype == np.float32:
+ return T.f32()
+ if dtype == np.float64:
+ return T.f64()
+ if dtype == np.int32:
+ return T.i32()
+ if dtype == np.int64:
+ return T.i64()
+ raise NotImplementedError(dtype)
+ if isinstance(arg, bool):
+ return T.bool()
+ elif isinstance(arg, int):
+ return T.index()
+ elif isinstance(arg, float):
+ return T.f32()
+ elif isinstance(arg, np.ndarray):
+ descriptor = rt.get_ranked_memref_descriptor(arg)
+ dtype = get_mlir_ty_from_np(arg.dtype)
+ shape = descriptor.shape
+ return memref.MemRefType.get(shape, dtype)
+ raise NotImplementedError(arg)
+
+class NVDSL:
+ @staticmethod
+ def mlir_gpu_launch(grid=(1, 1, 1), block=(1, 1, 1), smem=0):
+ def decorator(func):
+ @functools.wraps(func)
+ def wrapper(*args, **kwargs):
+ launch_op = gpu.LaunchOp(
+ None,
+ [],
+ *map(const, grid),
+ *map(const, block),
+ dynamicSharedMemorySize=arith.constant(T.i32(), smem),
+ )
+ launch_op.body.blocks.append(*([T.index()] * 12))
+ with ir.InsertionPoint(launch_op.body.blocks[0]):
+ result = func(*args, **kwargs)
+ gpu.terminator()
+ return result
+
+ return wrapper
+
+ return decorator
+
+ @staticmethod
+ def mlir_func(funcBody):
+ @functools.wraps(funcBody)
+ def wrapper(*args, **kwargs):
+ function_name = funcBody.__name__
+
+ def saveIR(module):
+ """Save generated IR"""
+ if True: # self.saveIR:
+ # print(mlir_nvgpu_module)
+ original_stdout = sys.stdout
+ with open("nvdsl.mlir", "w") as f:
+ sys.stdout = f
+ print(module)
+ sys.stdout = original_stdout
+
+ def _binary_op(lhs, rhs, op: str, predAtt="") -> "ArithValue":
+ """Generate MLIR's Arith dialects binary operations."""
+ rhs = const(rhs)
+ if arith._is_float_type(lhs.type) and arith._is_float_type(rhs.type):
+ op += "F"
+ if op.startswith("Cmp"):
+ predicateAttr = getattr(arith, f"CmpFPredicate").__dict__[
+ predAtt
+ ]
+ elif arith._is_integer_like_type(
+ lhs.type
+ ) and arith._is_integer_like_type(lhs.type):
+ if op == "Div" or op == "Rem":
+ op += "U"
+ op += "I"
+ if op.startswith("Cmp"):
+ predicateAttr = getattr(arith, f"CmpIPredicate").__dict__[
+ predAtt
+ ]
+ else:
+ raise NotImplementedError(
+ f"Unsupported '{op}' operands: {lhs}, {rhs}"
+ )
+
+ if op.startswith("Cmp"):
+ op = getattr(arith, f"{op}Op")
+
+ return op(predicateAttr, lhs, rhs).result
+ else:
+ op = getattr(arith, f"{op}Op")
+ return op(lhs, rhs).result
+
+ @ir.register_value_caster(ir.IndexType.static_typeid)
+ @ir.register_value_caster(ir.F32Type.static_typeid)
+ @ir.register_value_caster(ir.F16Type.static_typeid)
+ @ir.register_value_caster(ir.F64Type.static_typeid)
+ @ir.register_value_caster(ir.IntegerType.static_typeid)
+ class ArithValue(ir.Value):
+ """Overloads operators for MLIR's Arith dialects binary operations."""
+
+ def __init__(self, v):
+ super().__init__(v)
+
+ __add__ = partialmethod(_binary_op, op="Add")
+ __sub__ = partialmethod(_binary_op, op="Sub")
+ __mul__ = partialmethod(_binary_op, op="Mul")
+ __truediv__ = partialmethod(_binary_op, op="Div")
+ __mod__ = partialmethod(_binary_op, op="Rem")
+ __xor__ = partialmethod(_binary_op, op="XOr")
+ __lt__ = partialmethod(_binary_op, op="Cmp", predAtt="ult")
+ __le__ = partialmethod(_binary_op, op="Cmp", predAtt="ule")
+ __eq__ = partialmethod(_binary_op, op="Cmp", predAtt="eq")
+ __ne__ = partialmethod(_binary_op, op="Cmp", predAtt="ne")
+ __gt__ = partialmethod(_binary_op, op="Cmp", predAtt="ugt")
+ __ge__ = partialmethod(_binary_op, op="Cmp", predAtt="uge")
+ __and__ = partialmethod(_binary_op, op="And")
+ __or__ = partialmethod(_binary_op, op="Or")
+
+ def __str__(self):
+ return (
+ super()
+ .__str__()
+ .replace(ir.Value.__name__, ArithValue.__name__)
+ )
+
+ # Generate MLIR Context and start generating IR
+ with ir.Context(), ir.Location.unknown():
+ types = []
+ for arg in args:
+ types.append(get_mlir_ty(arg))
+
+ # Build IR
+ module = ir.Module.create()
+ with ir.InsertionPoint(module.body):
+ fop = func.FuncOp(function_name, (types, []))
+ fop.attributes["llvm.emit_c_interface"] = ir.UnitAttr.get()
+ with ir.InsertionPoint(fop.add_entry_block()):
+ fargs = []
+ for i, a in enumerate(types):
+ fargs.append(fop.arguments[i])
+
+ # Call user function body
+ result = funcBody(*fargs, **kwargs)
+ func.ReturnOp([])
+
+ # Verify the module
+ module.operation.verify()
+
+ # Save IR in a file
+ # saveIR(module)
+
+ # Compile and JIT MLIR module
+ options = f"cubin-chip=sm_90a cubin-features=+ptx80 opt-level=3"
+ support_lib = os.getenv("SUPPORT_LIB")
+ if not os.path.exists(support_lib):
+ raise FileNotFoundError(
+ errno.ENOENT, os.strerror(errno.ENOENT), support_lib
+ )
+ compiler = nvgpucompiler.NvgpuCompiler(
+ options, opt_level=3, shared_libs=[support_lib]
+ )
+ engine = compiler.compile_and_jit(module)
+
+ # Convert input arguments to MLIR arguments
+ newArgs = get_mlir_func_obj_ty(args)
+
+ # Run the compiled program
+ engine.invoke(function_name, *newArgs)
+
+ return result
+
+ return wrapper
diff --git a/mlir/test/Examples/nvgpu/tools/nvgpucompiler.py b/mlir/test/Examples/nvgpu/tools/nvgpucompiler.py
new file mode 100644
index 00000000000000..1c9cc74fcd169c
--- /dev/null
+++ b/mlir/test/Examples/nvgpu/tools/nvgpucompiler.py
@@ -0,0 +1,45 @@
+# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+# See https://llvm.org/LICENSE.txt for license information.
+# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+
+# This file contains the Nvgpu class.
+
+from mlir import execution_engine
+from mlir import ir
+from mlir import passmanager
+from typing import Sequence
+import errno
+import os
+import sys
+
+_SCRIPT_PATH = os.path.dirname(os.path.abspath(__file__))
+sys.path.append(_SCRIPT_PATH)
+
+
+class NvgpuCompiler:
+ """Nvgpu class for compiling and building MLIR modules."""
+
+ def __init__(self, options: str, opt_level: int, shared_libs: Sequence[str]):
+ pipeline = f"builtin.module(gpu-lower-to-nvvm-pipeline{{{options}}})"
+ self.pipeline = pipeline
+ self.shared_libs = shared_libs
+ self.opt_level = opt_level
+
+ def __call__(self, module: ir.Module):
+ """Convenience application method."""
+ self.compile(module)
+
+ def compile(self, module: ir.Module):
+ """Compiles the module by invoking the nvgpu pipeline."""
+ passmanager.PassManager.parse(self.pipeline).run(module.operation)
+
+ def jit(self, module: ir.Module) -> execution_engine.ExecutionEngine:
+ """Wraps the module in a JIT execution engine."""
+ return execution_engine.ExecutionEngine(
+ module, opt_level=self.opt_level, shared_libs=self.shared_libs
+ )
+
+ def compile_and_jit(self, module: ir.Module) -> execution_engine.ExecutionEngine:
+ """Compiles and jits the module."""
+ self.compile(module)
+ return self.jit(module)
More information about the Mlir-commits
mailing list