[Mlir-commits] [mlir] [MLIR][XeGPU] Add XeGPU scattered ops (PR #86594)
Chao Chen
llvmlistbot at llvm.org
Tue Mar 26 07:51:41 PDT 2024
================
@@ -317,11 +324,327 @@ def XeGPU_StoreNdOp : XeGPU_Op<"store_nd", []> {
OptionalAttr<XeGPU_CacheHintAttr>: $l2_hint,
OptionalAttr<XeGPU_CacheHintAttr>: $l3_hint);
- let extraClassDeclaration = extraBaseClassDeclaration;
+ let extraClassDeclaration = extraBaseClassDeclaration # [{
+ VectorType getValueType() {
+ return llvm::dyn_cast<VectorType>(getValue().getType());
+ }
+
+ xegpu::TensorDescType getTensorDescType() {
+ return getTensorDesc().getType();
+ }
+ }];
- let assemblyFormat = [{$value `,` $TensorDesc prop-dict attr-dict
+ let assemblyFormat = [{$value `,` $TensorDesc prop-dict attr-dict
`:` type($value) `,` qualified(type($TensorDesc))}];
let hasVerifier = 1;
}
+def XeGPU_UpdateNdOffsetOp : XeGPU_Op<"update_nd_offset",
+ [AllTypesMatch<["TensorDesc", "result"]>]> {
+ let summary = "It updates the offsets for the TensorDesc.";
+ let description = [{The op updates the offset of the given TensorDesc.
+ The offsets are relative offset to the current position in the number
+ of elements. It will result in a same type TensorDesc as the input.
+
+ example:
+ ```
+ %2 = xegpu.update_nd_offset %1, [0, 16]: !xegpu.tensor_desc<8x16xf32>
+ ```
+ }];
+
+ let arguments = (ins
+ XeGPU_TensorDesc: $TensorDesc,
+ Variadic<Index>: $offsets,
+ DenseI64ArrayAttr: $const_offsets);
+
+ let results = (outs XeGPU_TensorDesc: $result);
+
+ let extraClassDeclaration = extraBaseClassDeclaration # [{
+ xegpu::TensorDescType getTensorDescType() {
+ return getTensorDesc().getType();
+ }
+
+ SmallVector<OpFoldResult> getMixedOffsets() {
+ Builder b(getContext());
+ return getMixedValues(getConstOffsets(), getOffsets(), b);
+ }
+
+ size_t getNumOffsets() {
+ return getMixedOffsets().size();
+ }
+
+ OpFoldResult getOffset(unsigned idx) {
+ assert(idx < getNumOffsets() && "Invalid out of bound access.");
+ return getMixedOffsets()[idx];
+ }
+ }];
+
+ let assemblyFormat = [{
+ $TensorDesc `,`
+ custom<DynamicIndexList>($offsets, $const_offsets)
+ attr-dict `:` qualified(type($result))
+ }];
+
+ let hasVerifier = 1;
+}
+
+def XeGPU_CreateDescOp: XeGPU_Op<"create_tdesc", [Pure, ViewLikeOpInterface]> {
+ let summary = "create scattered tensor descriptors (TensorDesc).";
+ let description = [{
+ "create_tdesc" is similar to "create_nd_tdesc" in terms that it creates
+ a Tensor Descriptor (TensorDescType) for a memory region. While "create_nd_tdesc"
+ is for creating continious subviews, "create_tdesc" is for creating non-continious
+ (scattered) subviews, allowing each work-item in a subgroup specifying their own offset.
+ It accepts the following parameters:
+
+ * source: a 1D memref or pointer (uint64_t) represents the flattened memory object.
+ * offsets: a array containing offsets of each access point. Its size
+ is fixed to the hardware supportted subgroup size, e.g., 16 on PVC,
+ implying each element in the array corresponds to a work-item (SIMT lane)
+ in the subgroup.
+ * chunk_size: [optional attribute] indicates number of continious
+ elements accessed for each offset, default is 1.
+
+ Example 1. It assumes subgroup size is 4, and accesses a[0], a[16], a[32], a[64]
+ %a = memref.alloc() : memref<1024xf32>
+ %1 = xegpu.create_tdesc %a[0, 16, 32, 64]: memref<1024xf32> -> TensorDesc<4xf32>
+
+ Example 2. It assumes subgroup size is 4, and each workitem access 8 elements.
+ It will access totally 32 data elements: a[0:7], a[16:23], a[32:39], a[64:71]
+ %0 = memref.alloc() : memref<1024xf32>
+ %1 = xegpu.create_tdesc %0[0, 16, 32, 64] {chunk_size = 8}: memref<1024xf32> -> TensorDesc<4x8xf32>
----------------
chencha3 wrote:
Yes, it is allowed.
https://github.com/llvm/llvm-project/pull/86594
More information about the Mlir-commits
mailing list