[Mlir-commits] [mlir] Fixes in 'tosa.reshape' lowering and folder (PR #85798)
llvmlistbot at llvm.org
llvmlistbot at llvm.org
Tue Mar 19 07:43:32 PDT 2024
github-actions[bot] wrote:
<!--LLVM CODE FORMAT COMMENT: {clang-format}-->
:warning: C/C++ code formatter, clang-format found issues in your code. :warning:
<details>
<summary>
You can test this locally with the following command:
</summary>
``````````bash
git-clang-format --diff 276847a65af67bdc4eb79989f196d1968cb50ae6 482e127e33011dd25c6a9468255cafbcd9b28259 -- mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp
``````````
</details>
<details>
<summary>
View the diff from clang-format here.
</summary>
``````````diff
diff --git a/mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp b/mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp
index 62ed41ebda..2bda5829ca 100644
--- a/mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp
+++ b/mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp
@@ -24,16 +24,18 @@
using namespace mlir;
using namespace tosa;
-static Value getIndexConstant(OpBuilder& builder, Location loc, int64_t index) {
+static Value getIndexConstant(OpBuilder &builder, Location loc, int64_t index) {
return builder.create<arith::ConstantIndexOp>(loc, index);
}
// Return the total size of the given input tensor.
-static Value getTensorSize(OpBuilder& builder, Location loc, TypedValue<TensorType> input) {
+static Value getTensorSize(OpBuilder &builder, Location loc,
+ TypedValue<TensorType> input) {
// If the input tensor is statically shaped, return its size as a constant.
if (input.getType().hasStaticShape()) {
auto shape = input.getType().getShape();
- auto size = std::accumulate(shape.begin(), shape.end(), 1, std::multiplies());
+ auto size =
+ std::accumulate(shape.begin(), shape.end(), 1, std::multiplies());
return getIndexConstant(builder, loc, size);
}
@@ -41,10 +43,10 @@ static Value getTensorSize(OpBuilder& builder, Location loc, TypedValue<TensorTy
// a 1D tensor and get its size.
auto rank = input.getType().getRank();
auto elementType = input.getType().getElementType();
- auto collapsedType = RankedTensorType::get({ShapedType::kDynamic}, elementType);
+ auto collapsedType =
+ RankedTensorType::get({ShapedType::kDynamic}, elementType);
auto reassociationIndices = SmallVector<ReassociationIndices>{
- llvm::to_vector(llvm::seq<int64_t>(rank))
- };
+ llvm::to_vector(llvm::seq<int64_t>(rank))};
auto collapsed = builder.create<tensor::CollapseShapeOp>(
loc, collapsedType, input, reassociationIndices);
return builder.create<tensor::DimOp>(loc, collapsed, 0);
@@ -101,14 +103,14 @@ public:
// Create list of values for new shape
SmallVector<Value> newShapeVector(reshape.getNewShape().size());
for (auto [index, size] : llvm::enumerate(reshape.getNewShape())) {
- newShapeVector[index] = size == -1 ?
- getReshapePlaceholderDimSize(rewriter, reshape, index) :
- getIndexConstant(rewriter, loc, size);
+ newShapeVector[index] =
+ size == -1 ? getReshapePlaceholderDimSize(rewriter, reshape, index)
+ : getIndexConstant(rewriter, loc, size);
}
// Reshape tensor
- auto newShapeTensor = rewriter.createOrFold<tensor::FromElementsOp>(
- loc, newShapeVector);
+ auto newShapeTensor =
+ rewriter.createOrFold<tensor::FromElementsOp>(loc, newShapeVector);
rewriter.replaceOpWithNewOp<tensor::ReshapeOp>(
reshape, reshape.getResult().getType(), input, newShapeTensor);
return success();
@@ -297,10 +299,7 @@ struct ConcatConverter : public OpConversionPattern<tosa::ConcatOp> {
void mlir::tosa::populateTosaToTensorConversionPatterns(
RewritePatternSet *patterns) {
- patterns->add<
- ConcatConverter,
- PadConverter,
- ReshapeConverter,
- SliceConverter
- >(patterns->getContext());
+ patterns
+ ->add<ConcatConverter, PadConverter, ReshapeConverter, SliceConverter>(
+ patterns->getContext());
}
``````````
</details>
https://github.com/llvm/llvm-project/pull/85798
More information about the Mlir-commits
mailing list