[Mlir-commits] [mlir] [mlir][sparse] reuse tensor.insert operation to insert elements into … (PR #84987)
Peiming Liu
llvmlistbot at llvm.org
Tue Mar 12 14:46:34 PDT 2024
https://github.com/PeimingLiu created https://github.com/llvm/llvm-project/pull/84987
…a sparse tensor.
>From 7a135a6053506f7a2005959952e7536a351ac5ca Mon Sep 17 00:00:00 2001
From: Peiming Liu <peiming at google.com>
Date: Tue, 12 Mar 2024 21:45:35 +0000
Subject: [PATCH] [mlir][sparse] reuse tensor.insert operation to insert
elements into a sparse tensor.
---
.../SparseTensor/IR/SparseTensorOps.td | 42 -------------------
.../SparseTensor/IR/SparseTensorDialect.cpp | 9 ----
.../BufferizableOpInterfaceImpl.cpp | 22 ----------
.../Transforms/SparseReinterpretMap.cpp | 4 +-
.../Transforms/SparseTensorCodegen.cpp | 18 ++++----
.../Transforms/SparseTensorConversion.cpp | 21 ++++++----
.../Transforms/SparseTensorRewriting.cpp | 6 ++-
.../Transforms/Sparsification.cpp | 5 ++-
mlir/test/Dialect/SparseTensor/codegen.mlir | 6 +--
.../SparseTensor/constant_index_map.mlir | 2 +-
.../test/Dialect/SparseTensor/conversion.mlir | 2 +-
mlir/test/Dialect/SparseTensor/invalid.mlir | 18 --------
mlir/test/Dialect/SparseTensor/roundtrip.mlir | 4 +-
mlir/test/Dialect/SparseTensor/sparse_2d.mlir | 10 ++---
.../SparseTensor/sparse_broadcast.mlir | 2 +-
.../sparse_conv_2d_slice_based.mlir | 2 +-
.../Dialect/SparseTensor/sparse_fp_ops.mlir | 4 +-
.../Dialect/SparseTensor/sparse_index.mlir | 2 +-
.../test/Dialect/SparseTensor/sparse_out.mlir | 4 +-
.../SparseTensor/sparse_reinterpret_map.mlir | 2 +-
.../Dialect/SparseTensor/sparse_reshape.mlir | 8 ++--
.../SparseTensor/sparse_tensor_reshape.mlir | 2 +-
.../SparseTensor/sparse_transpose.mlir | 2 +-
.../SparseTensor/CPU/sparse_insert_1d.mlir | 10 ++---
.../SparseTensor/CPU/sparse_insert_2d.mlir | 40 +++++++++---------
.../SparseTensor/CPU/sparse_insert_3d.mlir | 40 +++++++++---------
26 files changed, 105 insertions(+), 182 deletions(-)
diff --git a/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td b/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td
index feed15d6af0544..0498576fcffc51 100644
--- a/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td
+++ b/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td
@@ -668,48 +668,6 @@ def SparseTensor_CrdTranslateOp : SparseTensor_Op<"crd_translate", [Pure]>,
// refined over time as our sparse abstractions evolve.
//===----------------------------------------------------------------------===//
-def SparseTensor_InsertOp : SparseTensor_Op<"insert",
- [TypesMatchWith<"value type matches element type of tensor",
- "tensor", "value",
- "::llvm::cast<ShapedType>($_self).getElementType()">,
- AllTypesMatch<["tensor", "result"]>]>,
- Arguments<(ins AnyType:$value,
- AnySparseTensor:$tensor,
- Variadic<Index>:$lvlCoords)>,
- Results<(outs AnySparseTensor:$result)> {
- string summary = "Inserts a value into the sparse tensor";
- string description = [{
- Inserts the value into the underlying storage of the tensor at the
- given level-coordinates. The arity of `lvlCoords` must match the
- level-rank of the tensor. This operation can only be applied when
- the tensor materializes unintialized from a `tensor.empty` operation
- and the final tensor is constructed with a `load` operation which
- has the `hasInserts` attribute set.
-
- The level-properties of the sparse tensor type fully describe what
- kind of insertion order is allowed. When all levels have "unique"
- and "ordered" properties, for example, insertions should occur in
- strict lexicographical level-coordinate order. Other properties
- define different insertion regimens. Inserting in a way contrary
- to these properties results in undefined behavior.
-
- Note that this operation is "impure" in the sense that even though
- the result is modeled through an SSA value, the insertion is eventually
- done "in place", and referencing the old SSA value is undefined behavior.
- This operation is scheduled to be unified with the dense counterpart
- `tensor.insert` that has pure SSA semantics.
-
- Example:
-
- ```mlir
- %result = sparse_tensor.insert %val into %tensor[%i,%j] : tensor<1024x1024xf64, #CSR>
- ```
- }];
- let assemblyFormat = "$value `into` $tensor `[` $lvlCoords `]` attr-dict"
- "`:` type($tensor)";
- let hasVerifier = 1;
-}
-
def SparseTensor_PushBackOp : SparseTensor_Op<"push_back",
[TypesMatchWith<"value type matches element type of inBuffer",
"inBuffer", "value",
diff --git a/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp b/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp
index c19907a945d3bb..7750efdd9add0f 100644
--- a/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp
+++ b/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp
@@ -1741,15 +1741,6 @@ LogicalResult ConcatenateOp::verify() {
return success();
}
-LogicalResult InsertOp::verify() {
- const auto stt = getSparseTensorType(getTensor());
- if (stt.getEncoding().getBatchLvlRank() > 0)
- return emitOpError("batched sparse tensor insertion not implemented");
- if (stt.getLvlRank() != static_cast<Level>(getLvlCoords().size()))
- return emitOpError("incorrect number of coordinates");
- return success();
-}
-
void PushBackOp::build(OpBuilder &builder, OperationState &result,
Value curSize, Value inBuffer, Value value) {
build(builder, result, curSize, inBuffer, value, Value());
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/BufferizableOpInterfaceImpl.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/BufferizableOpInterfaceImpl.cpp
index 3f4ae1f67de150..a942a721e218fe 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/BufferizableOpInterfaceImpl.cpp
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/BufferizableOpInterfaceImpl.cpp
@@ -187,27 +187,6 @@ struct DisassembleOpInterface
}
};
-struct InsertOpInterface : public SparseBufferizableOpInterfaceExternalModel<
- InsertOpInterface, sparse_tensor::InsertOp> {
- bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
- const AnalysisState &state) const {
- return true;
- }
-
- bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
- const AnalysisState &state) const {
- // InsertOp writes to memory.
- return true;
- }
-
- AliasingValueList getAliasingValues(Operation *op, OpOperand &opOperand,
- const AnalysisState &state) const {
- // InsertOp returns an alias of its operand.
- assert(op->getNumResults() == 1);
- return {{op->getOpResult(0), BufferRelation::Equivalent}};
- }
-};
-
struct NumberOfEntriesOpInterface
: public SparseBufferizableOpInterfaceExternalModel<
NumberOfEntriesOpInterface, sparse_tensor::NumberOfEntriesOp> {
@@ -324,7 +303,6 @@ void mlir::sparse_tensor::registerBufferizableOpInterfaceExternalModels(
sparse_tensor::ConvertOp::attachInterface<ConvertOpInterface>(*ctx);
sparse_tensor::LoadOp::attachInterface<LoadOpInterface>(*ctx);
sparse_tensor::NewOp::attachInterface<NewOpInterface>(*ctx);
- sparse_tensor::InsertOp::attachInterface<InsertOpInterface>(*ctx);
sparse_tensor::NumberOfEntriesOp::attachInterface<
NumberOfEntriesOpInterface>(*ctx);
sparse_tensor::AssembleOp::attachInterface<AssembleOpInterface>(*ctx);
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/SparseReinterpretMap.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/SparseReinterpretMap.cpp
index fbe2fc31ab8b15..f93b59de29e57b 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/SparseReinterpretMap.cpp
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/SparseReinterpretMap.cpp
@@ -640,14 +640,14 @@ struct TensorInsertDemapper
using DemapInsRewriter::DemapInsRewriter;
LogicalResult rewriteOp(tensor::InsertOp op, OpAdaptor adaptor,
PatternRewriter &rewriter) const {
- if (!hasAnySparseResult(op))
+ if (!hasAnySparseResult(op) || !hasAnyNonIdentityOperandsOrResults(op))
return failure();
Location loc = op.getLoc();
auto stt = getSparseTensorType(op.getResult());
ValueRange lvlCrd = stt.translateCrds(rewriter, loc, op.getIndices(),
CrdTransDirectionKind::dim2lvl);
- auto insertOp = rewriter.create<sparse_tensor::InsertOp>(
+ auto insertOp = rewriter.create<tensor::InsertOp>(
loc, op.getScalar(), adaptor.getDest(), lvlCrd);
Value out = genRemap(rewriter, stt.getEncoding(), insertOp.getResult());
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorCodegen.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorCodegen.cpp
index 44c5d4dbe485bf..56c51c1ab1a84f 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorCodegen.cpp
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorCodegen.cpp
@@ -1014,24 +1014,28 @@ class SparseCompressConverter : public OpConversionPattern<CompressOp> {
};
/// Sparse codegen rule for the insert operator.
-class SparseInsertConverter : public OpConversionPattern<InsertOp> {
+class SparseInsertConverter : public OpConversionPattern<tensor::InsertOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
- matchAndRewrite(InsertOp op, OpAdaptor adaptor,
+ matchAndRewrite(tensor::InsertOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
+ if (auto stt = getSparseTensorType(adaptor.getDest()); !stt.hasEncoding()) {
+ assert(stt.isIdentity() && "Run reinterpret-map before conversion.");
+ return failure();
+ }
Location loc = op.getLoc();
- auto desc = getDescriptorFromTensorTuple(adaptor.getTensor());
+ auto desc = getDescriptorFromTensorTuple(adaptor.getDest());
TypeRange flatSpTensorTps = desc.getFields().getTypes();
SmallVector<Value> params = llvm::to_vector(desc.getFields());
- params.append(adaptor.getLvlCoords().begin(), adaptor.getLvlCoords().end());
- params.push_back(adaptor.getValue());
- SparseInsertGenerator insertGen(op.getTensor().getType(), flatSpTensorTps,
+ params.append(adaptor.getIndices().begin(), adaptor.getIndices().end());
+ params.push_back(adaptor.getScalar());
+ SparseInsertGenerator insertGen(op.getDest().getType(), flatSpTensorTps,
params, /*genCall=*/true);
SmallVector<Value> ret = insertGen.genCallOrInline(rewriter, loc);
// Replace operation with resulting memrefs.
rewriter.replaceOp(op,
- genTuple(rewriter, loc, op.getTensor().getType(), ret));
+ genTuple(rewriter, loc, op.getDest().getType(), ret));
return success();
}
};
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorConversion.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorConversion.cpp
index 010c3aa58b72c7..0937c10f257283 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorConversion.cpp
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorConversion.cpp
@@ -580,17 +580,24 @@ class SparseTensorLoadConverter : public OpConversionPattern<LoadOp> {
};
/// Sparse conversion rule for the insertion operator.
-class SparseTensorInsertConverter : public OpConversionPattern<InsertOp> {
+class SparseTensorInsertConverter
+ : public OpConversionPattern<tensor::InsertOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
- matchAndRewrite(InsertOp op, OpAdaptor adaptor,
+ matchAndRewrite(tensor::InsertOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Note that the current regime only allows for strict lexicographic
// coordinate order. All values are passed by reference through stack
// allocated memrefs.
Location loc = op->getLoc();
- const auto stt = getSparseTensorType(op.getTensor());
+ const auto stt = getSparseTensorType(op.getDest());
+
+ // Dense tensor insertion.
+ if (!stt.hasEncoding())
+ return failure();
+
+ assert(stt.isIdentity() && "Run reinterpret-map before conversion.");
const auto elemTp = stt.getElementType();
const Level lvlRank = stt.getLvlRank();
Value lvlCoords, vref;
@@ -608,12 +615,12 @@ class SparseTensorInsertConverter : public OpConversionPattern<InsertOp> {
lvlCoords = genAlloca(rewriter, loc, lvlRank, rewriter.getIndexType());
vref = genAllocaScalar(rewriter, loc, elemTp);
}
- storeAll(rewriter, loc, lvlCoords, adaptor.getLvlCoords());
- rewriter.create<memref::StoreOp>(loc, adaptor.getValue(), vref);
+ storeAll(rewriter, loc, lvlCoords, adaptor.getIndices());
+ rewriter.create<memref::StoreOp>(loc, adaptor.getScalar(), vref);
SmallString<12> name{"lexInsert", primaryTypeFunctionSuffix(elemTp)};
createFuncCall(rewriter, loc, name, {},
- {adaptor.getTensor(), lvlCoords, vref}, EmitCInterface::On);
- rewriter.replaceOp(op, adaptor.getTensor());
+ {adaptor.getDest(), lvlCoords, vref}, EmitCInterface::On);
+ rewriter.replaceOp(op, adaptor.getDest());
return success();
}
};
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorRewriting.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorRewriting.cpp
index a65bce78d095cf..17f70d0796ccfc 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorRewriting.cpp
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorRewriting.cpp
@@ -817,7 +817,8 @@ struct TensorReshapeRewriter : public OpRewritePattern<tensor::ReshapeOp> {
reshapeCvs(builder, loc, expandReass, collapsedSizes, collapsedDcvs,
dstSizes, dstDcvs);
- auto t = builder.create<InsertOp>(loc, v, reduc.front(), dstDcvs);
+ auto t =
+ builder.create<tensor::InsertOp>(loc, v, reduc.front(), dstDcvs);
builder.create<sparse_tensor::YieldOp>(loc, t);
});
@@ -901,7 +902,8 @@ struct Sparse2SparseReshapeRewriter : public OpRewritePattern<ReshapeOp> {
SmallVector<Value> dstDcvs;
reshapeCvs(builder, loc, op.getReassociationIndices(), srcSizes,
srcDcvs, dstSizes, dstDcvs);
- auto t = builder.create<InsertOp>(loc, v, reduc.front(), dstDcvs);
+ auto t =
+ builder.create<tensor::InsertOp>(loc, v, reduc.front(), dstDcvs);
builder.create<sparse_tensor::YieldOp>(loc, t);
});
diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/Sparsification.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/Sparsification.cpp
index 1fb70ed5035c03..cd046b670d9a8e 100644
--- a/mlir/lib/Dialect/SparseTensor/Transforms/Sparsification.cpp
+++ b/mlir/lib/Dialect/SparseTensor/Transforms/Sparsification.cpp
@@ -428,7 +428,7 @@ static void genInsertionStore(CodegenEnv &env, OpBuilder &builder, OpOperand *t,
/*else=*/true);
// True branch.
builder.setInsertionPointToStart(ifValidLexInsert.thenBlock());
- Value res = builder.create<InsertOp>(loc, rhs, chain, ivs);
+ Value res = builder.create<tensor::InsertOp>(loc, rhs, chain, ivs);
builder.create<scf::YieldOp>(loc, res);
// False branch.
builder.setInsertionPointToStart(ifValidLexInsert.elseBlock());
@@ -438,7 +438,8 @@ static void genInsertionStore(CodegenEnv &env, OpBuilder &builder, OpOperand *t,
env.updateInsertionChain(ifValidLexInsert.getResult(0));
} else {
// Generates regular insertion chain.
- env.updateInsertionChain(builder.create<InsertOp>(loc, rhs, chain, ivs));
+ env.updateInsertionChain(
+ builder.create<tensor::InsertOp>(loc, rhs, chain, ivs));
}
return;
}
diff --git a/mlir/test/Dialect/SparseTensor/codegen.mlir b/mlir/test/Dialect/SparseTensor/codegen.mlir
index b63762485c961f..40bfa1e4e2a501 100644
--- a/mlir/test/Dialect/SparseTensor/codegen.mlir
+++ b/mlir/test/Dialect/SparseTensor/codegen.mlir
@@ -643,7 +643,7 @@ func.func @sparse_compression_unordered(%tensor: tensor<8x8xf64, #UCSR>,
// CHECK: %[[R:.*]]:4 = call @_insert_compressed_128_f64_0_0(%[[A1]], %[[A2]], %[[A3]], %[[A4]], %[[A5]], %[[A6]])
// CHECK: return %[[R]]#0, %[[R]]#1, %[[R]]#2, %[[R]]#3
func.func @sparse_insert(%arg0: tensor<128xf64, #SV>, %arg1: index, %arg2: f64) -> tensor<128xf64, #SV> {
- %0 = sparse_tensor.insert %arg2 into %arg0[%arg1] : tensor<128xf64, #SV>
+ %0 = tensor.insert %arg2 into %arg0[%arg1] : tensor<128xf64, #SV>
%1 = sparse_tensor.load %0 hasInserts : tensor<128xf64, #SV>
return %1 : tensor<128xf64, #SV>
}
@@ -666,7 +666,7 @@ func.func @sparse_insert(%arg0: tensor<128xf64, #SV>, %arg1: index, %arg2: f64)
// CHECK: %[[R:.*]]:4 = call @_insert_compressed_128_f64_64_32(%[[A1]], %[[A2]], %[[A3]], %[[A4]], %[[A5]], %[[A6]])
// CHECK: return %[[R]]#0, %[[R]]#1, %[[R]]#2, %[[R]]#3
func.func @sparse_insert_typed(%arg0: tensor<128xf64, #SparseVector>, %arg1: index, %arg2: f64) -> tensor<128xf64, #SparseVector> {
- %0 = sparse_tensor.insert %arg2 into %arg0[%arg1] : tensor<128xf64, #SparseVector>
+ %0 = tensor.insert %arg2 into %arg0[%arg1] : tensor<128xf64, #SparseVector>
%1 = sparse_tensor.load %0 hasInserts : tensor<128xf64, #SparseVector>
return %1 : tensor<128xf64, #SparseVector>
}
@@ -690,7 +690,7 @@ func.func @sparse_insert_typed(%arg0: tensor<128xf64, #SparseVector>, %arg1: ind
// CHECK: %[[R:.*]]:4 = call @_insert_compressed_nonunique_singleton_5_6_f64_0_0(%[[A0]], %[[A1]], %[[A2]], %[[A3]], %[[A4]], %[[A4]], %[[A5]])
// CHECK: return %[[R]]#0, %[[R]]#1, %[[R]]#2, %[[R]]#3
func.func @sparse_insert_coo(%arg0: tensor<5x6xf64, #Coo>, %arg1: index, %arg2: f64) -> tensor<5x6xf64, #Coo> {
- %0 = sparse_tensor.insert %arg2 into %arg0[%arg1, %arg1] : tensor<5x6xf64, #Coo>
+ %0 = tensor.insert %arg2 into %arg0[%arg1, %arg1] : tensor<5x6xf64, #Coo>
%1 = sparse_tensor.load %0 hasInserts : tensor<5x6xf64, #Coo>
return %1 : tensor<5x6xf64, #Coo>
}
diff --git a/mlir/test/Dialect/SparseTensor/constant_index_map.mlir b/mlir/test/Dialect/SparseTensor/constant_index_map.mlir
index eaef6a31585292..f9559ce648c783 100644
--- a/mlir/test/Dialect/SparseTensor/constant_index_map.mlir
+++ b/mlir/test/Dialect/SparseTensor/constant_index_map.mlir
@@ -20,7 +20,7 @@
// CHECK: %[[VAL_11:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_3]], %[[VAL_9]]] : memref<1x77xi1>
// CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_3]], %[[VAL_9]]] : memref<1x77xi1>
// CHECK: %[[VAL_13:.*]] = arith.addi %[[VAL_11]], %[[VAL_12]] : i1
-// CHECK: %[[VAL_14:.*]] = sparse_tensor.insert %[[VAL_13]] into %[[VAL_10]]{{\[}}%[[VAL_9]]] : tensor<77xi1, #{{.*}}>
+// CHECK: %[[VAL_14:.*]] = tensor.insert %[[VAL_13]] into %[[VAL_10]]{{\[}}%[[VAL_9]]] : tensor<77xi1, #{{.*}}>
// CHECK: scf.yield %[[VAL_14]] : tensor<77xi1, #{{.*}}>
// CHECK: }
// CHECK: %[[VAL_15:.*]] = sparse_tensor.load %[[VAL_16:.*]] hasInserts : tensor<77xi1, #{{.*}}>
diff --git a/mlir/test/Dialect/SparseTensor/conversion.mlir b/mlir/test/Dialect/SparseTensor/conversion.mlir
index 465f2108626606..f23f6ac4f181e2 100644
--- a/mlir/test/Dialect/SparseTensor/conversion.mlir
+++ b/mlir/test/Dialect/SparseTensor/conversion.mlir
@@ -318,7 +318,7 @@ func.func @sparse_reconstruct_ins(%arg0: tensor<128xf32, #SparseVector>) -> tens
func.func @sparse_insert(%arg0: tensor<128xf32, #SparseVector>,
%arg1: index,
%arg2: f32) -> tensor<128xf32, #SparseVector> {
- %0 = sparse_tensor.insert %arg2 into %arg0[%arg1] : tensor<128xf32, #SparseVector>
+ %0 = tensor.insert %arg2 into %arg0[%arg1] : tensor<128xf32, #SparseVector>
return %0 : tensor<128xf32, #SparseVector>
}
diff --git a/mlir/test/Dialect/SparseTensor/invalid.mlir b/mlir/test/Dialect/SparseTensor/invalid.mlir
index eac97f702f58bd..48f28ef390ed53 100644
--- a/mlir/test/Dialect/SparseTensor/invalid.mlir
+++ b/mlir/test/Dialect/SparseTensor/invalid.mlir
@@ -290,24 +290,6 @@ func.func @sparse_unannotated_load(%arg0: tensor<16x32xf64>) -> tensor<16x32xf64
// -----
-func.func @sparse_unannotated_insert(%arg0: tensor<128xf64>, %arg1: index, %arg2: f64) {
- // expected-error at +1 {{'sparse_tensor.insert' 'tensor' must be sparse tensor of any type values, but got 'tensor<128xf64>'}}
- sparse_tensor.insert %arg2 into %arg0[%arg1] : tensor<128xf64>
- return
-}
-
-// -----
-
-#CSR = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : dense, d1 : compressed)}>
-
-func.func @sparse_wrong_arity_insert(%arg0: tensor<128x64xf64, #CSR>, %arg1: index, %arg2: f64) {
- // expected-error at +1 {{'sparse_tensor.insert' op incorrect number of coordinates}}
- sparse_tensor.insert %arg2 into %arg0[%arg1] : tensor<128x64xf64, #CSR>
- return
-}
-
-// -----
-
func.func @sparse_push_back(%arg0: index, %arg1: memref<?xf64>, %arg2: f32) -> (memref<?xf64>, index) {
// expected-error at +1 {{'sparse_tensor.push_back' op failed to verify that value type matches element type of inBuffer}}
%0:2 = sparse_tensor.push_back %arg0, %arg1, %arg2 : index, memref<?xf64>, f32
diff --git a/mlir/test/Dialect/SparseTensor/roundtrip.mlir b/mlir/test/Dialect/SparseTensor/roundtrip.mlir
index 41094fbad9218f..e9e458e805ba47 100644
--- a/mlir/test/Dialect/SparseTensor/roundtrip.mlir
+++ b/mlir/test/Dialect/SparseTensor/roundtrip.mlir
@@ -311,10 +311,10 @@ func.func @sparse_load_ins(%arg0: tensor<16x32xf64, #DenseMatrix>) -> tensor<16x
// CHECK-SAME: %[[A:.*]]: tensor<128xf64, #sparse{{[0-9]*}}>,
// CHECK-SAME: %[[B:.*]]: index,
// CHECK-SAME: %[[C:.*]]: f64)
-// CHECK: %[[T:.*]] = sparse_tensor.insert %[[C]] into %[[A]][%[[B]]] : tensor<128xf64, #{{.*}}>
+// CHECK: %[[T:.*]] = tensor.insert %[[C]] into %[[A]][%[[B]]] : tensor<128xf64, #{{.*}}>
// CHECK: return %[[T]] : tensor<128xf64, #{{.*}}>
func.func @sparse_insert(%arg0: tensor<128xf64, #SparseVector>, %arg1: index, %arg2: f64) -> tensor<128xf64, #SparseVector> {
- %0 = sparse_tensor.insert %arg2 into %arg0[%arg1] : tensor<128xf64, #SparseVector>
+ %0 = tensor.insert %arg2 into %arg0[%arg1] : tensor<128xf64, #SparseVector>
return %0 : tensor<128xf64, #SparseVector>
}
diff --git a/mlir/test/Dialect/SparseTensor/sparse_2d.mlir b/mlir/test/Dialect/SparseTensor/sparse_2d.mlir
index 85ae0db916899e..4afa0a8ceccd4b 100644
--- a/mlir/test/Dialect/SparseTensor/sparse_2d.mlir
+++ b/mlir/test/Dialect/SparseTensor/sparse_2d.mlir
@@ -1090,20 +1090,20 @@ func.func @cmp_ss_ss(%arga: tensor<32x16xf32, #Tss>, %argb: tensor<32x16xf32, #T
// CHECK: %[[VAL_41:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_30]]] : memref<?xf64>
// CHECK: %[[VAL_42:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_31]]] : memref<?xf64>
// CHECK: %[[VAL_43:.*]] = arith.subf %[[VAL_41]], %[[VAL_42]] : f64
-// CHECK: %[[VAL_44:.*]] = sparse_tensor.insert %[[VAL_43]] into %[[VAL_32]]{{\[}}%[[VAL_13]], %[[VAL_36]]] : tensor<2x3xf64, #sparse{{[0-9]*}}>
+// CHECK: %[[VAL_44:.*]] = tensor.insert %[[VAL_43]] into %[[VAL_32]]{{\[}}%[[VAL_13]], %[[VAL_36]]] : tensor<2x3xf64, #sparse{{[0-9]*}}>
// CHECK: scf.yield %[[VAL_44]] : tensor<2x3xf64, #sparse{{[0-9]*}}>
// CHECK: } else {
// CHECK: %[[VAL_45:.*]] = arith.cmpi eq, %[[VAL_33]], %[[VAL_36]] : index
// CHECK: %[[VAL_46:.*]] = scf.if %[[VAL_45]] -> (tensor<2x3xf64, #sparse{{[0-9]*}}>) {
// CHECK: %[[VAL_47:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_30]]] : memref<?xf64>
-// CHECK: %[[VAL_48:.*]] = sparse_tensor.insert %[[VAL_47]] into %[[VAL_32]]{{\[}}%[[VAL_13]], %[[VAL_36]]] : tensor<2x3xf64, #sparse{{[0-9]*}}>
+// CHECK: %[[VAL_48:.*]] = tensor.insert %[[VAL_47]] into %[[VAL_32]]{{\[}}%[[VAL_13]], %[[VAL_36]]] : tensor<2x3xf64, #sparse{{[0-9]*}}>
// CHECK: scf.yield %[[VAL_48]] : tensor<2x3xf64, #sparse{{[0-9]*}}>
// CHECK: } else {
// CHECK: %[[VAL_49:.*]] = arith.cmpi eq, %[[VAL_34]], %[[VAL_36]] : index
// CHECK: %[[VAL_50:.*]] = scf.if %[[VAL_49]] -> (tensor<2x3xf64, #sparse{{[0-9]*}}>) {
// CHECK: %[[VAL_51:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_31]]] : memref<?xf64>
// CHECK: %[[VAL_52:.*]] = arith.negf %[[VAL_51]] : f64
-// CHECK: %[[VAL_53:.*]] = sparse_tensor.insert %[[VAL_52]] into %[[VAL_32]]{{\[}}%[[VAL_13]], %[[VAL_36]]] : tensor<2x3xf64, #sparse{{[0-9]*}}>
+// CHECK: %[[VAL_53:.*]] = tensor.insert %[[VAL_52]] into %[[VAL_32]]{{\[}}%[[VAL_13]], %[[VAL_36]]] : tensor<2x3xf64, #sparse{{[0-9]*}}>
// CHECK: scf.yield %[[VAL_53]] : tensor<2x3xf64, #sparse{{[0-9]*}}>
// CHECK: } else {
// CHECK: scf.yield %[[VAL_32]] : tensor<2x3xf64, #sparse{{[0-9]*}}>
@@ -1123,14 +1123,14 @@ func.func @cmp_ss_ss(%arga: tensor<32x16xf32, #Tss>, %argb: tensor<32x16xf32, #T
// CHECK: %[[VAL_63:.*]] = scf.for %[[VAL_64:.*]] = %[[VAL_65:.*]]#0 to %[[VAL_18]] step %[[VAL_4]] iter_args(%[[VAL_66:.*]] = %[[VAL_65]]#2)
// CHECK: %[[VAL_67:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_64]]] : memref<?xindex>
// CHECK: %[[VAL_68:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_64]]] : memref<?xf64>
-// CHECK: %[[VAL_69:.*]] = sparse_tensor.insert %[[VAL_68]] into %[[VAL_66]]{{\[}}%[[VAL_13]], %[[VAL_67]]] : tensor<2x3xf64, #sparse{{[0-9]*}}>
+// CHECK: %[[VAL_69:.*]] = tensor.insert %[[VAL_68]] into %[[VAL_66]]{{\[}}%[[VAL_13]], %[[VAL_67]]] : tensor<2x3xf64, #sparse{{[0-9]*}}>
// CHECK: scf.yield %[[VAL_69]] : tensor<2x3xf64, #sparse{{[0-9]*}}>
// CHECK: }
// CHECK: %[[VAL_70:.*]] = scf.for %[[VAL_71:.*]] = %[[VAL_72:.*]]#1 to %[[VAL_22]] step %[[VAL_4]] iter_args(%[[VAL_73:.*]] = %[[VAL_74:.*]])
// CHECK: %[[VAL_75:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_71]]] : memref<?xindex>
// CHECK: %[[VAL_76:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_71]]] : memref<?xf64>
// CHECK: %[[VAL_77:.*]] = arith.negf %[[VAL_76]] : f64
-// CHECK: %[[VAL_78:.*]] = sparse_tensor.insert %[[VAL_77]] into %[[VAL_73]]{{\[}}%[[VAL_13]], %[[VAL_75]]] : tensor<2x3xf64, #sparse{{[0-9]*}}>
+// CHECK: %[[VAL_78:.*]] = tensor.insert %[[VAL_77]] into %[[VAL_73]]{{\[}}%[[VAL_13]], %[[VAL_75]]] : tensor<2x3xf64, #sparse{{[0-9]*}}>
// CHECK: scf.yield %[[VAL_78]] : tensor<2x3xf64, #sparse{{[0-9]*}}>
// CHECK: }
// CHECK: scf.yield %[[VAL_79:.*]] : tensor<2x3xf64, #sparse{{[0-9]*}}>
diff --git a/mlir/test/Dialect/SparseTensor/sparse_broadcast.mlir b/mlir/test/Dialect/SparseTensor/sparse_broadcast.mlir
index 278450fabd74ec..a409329700ffd7 100644
--- a/mlir/test/Dialect/SparseTensor/sparse_broadcast.mlir
+++ b/mlir/test/Dialect/SparseTensor/sparse_broadcast.mlir
@@ -33,7 +33,7 @@
// CHECK: %[[L2:.*]] = scf.for %[[TMP_arg3:.*]] = %[[TMP_10]] to %[[TMP_12]] step %[[TMP_c1]] {{.*}} {
// CHECK: %[[TMP_13:.*]] = memref.load %[[TMP_4]][%[[TMP_arg3]]] : memref<?xindex>
// CHECK: %[[TMP_14:.*]] = memref.load %[[TMP_5]][%[[TMP_arg3]]] : memref<?xi32>
-// CHECK: %[[Y:.*]] = sparse_tensor.insert %[[TMP_14]] into %{{.*}}[%[[TMP_9]], %[[TMP_arg2]], %[[TMP_13]]]
+// CHECK: %[[Y:.*]] = tensor.insert %[[TMP_14]] into %{{.*}}[%[[TMP_9]], %[[TMP_arg2]], %[[TMP_13]]]
// CHECK: scf.yield %[[Y]]
// CHECK: }
// CHECK: scf.yield %[[L2]]
diff --git a/mlir/test/Dialect/SparseTensor/sparse_conv_2d_slice_based.mlir b/mlir/test/Dialect/SparseTensor/sparse_conv_2d_slice_based.mlir
index 6076c1fbe76f21..bf3473ead204eb 100644
--- a/mlir/test/Dialect/SparseTensor/sparse_conv_2d_slice_based.mlir
+++ b/mlir/test/Dialect/SparseTensor/sparse_conv_2d_slice_based.mlir
@@ -41,7 +41,7 @@
// CHECK: scf.yield
// CHECK: }
// CHECK: scf.if {{.*}} {
-// CHECK: sparse_tensor.insert %{{.*}} into %{{.*}}{{\[}}%[[D0]], %[[D1]]]
+// CHECK: tensor.insert %{{.*}} into %{{.*}}{{\[}}%[[D0]], %[[D1]]]
// CHECK: scf.yield
// CHECK: } else {
// CHECK: scf.yield
diff --git a/mlir/test/Dialect/SparseTensor/sparse_fp_ops.mlir b/mlir/test/Dialect/SparseTensor/sparse_fp_ops.mlir
index 8c09523174bd76..07b2c3c22995d1 100644
--- a/mlir/test/Dialect/SparseTensor/sparse_fp_ops.mlir
+++ b/mlir/test/Dialect/SparseTensor/sparse_fp_ops.mlir
@@ -371,7 +371,7 @@ func.func @divbyc(%arga: tensor<32xf64, #SV>,
// CHECK: %[[VAL_17:.*]] = math.log1p %[[VAL_16]] : f64
// CHECK: %[[VAL_18:.*]] = math.sin %[[VAL_17]] : f64
// CHECK: %[[VAL_19:.*]] = math.tanh %[[VAL_18]] : f64
-// CHECK: %[[Y:.*]] = sparse_tensor.insert %[[VAL_19]] into %{{.*}}[%[[VAL_10]]] : tensor<32xf64, #sparse{{[0-9]*}}>
+// CHECK: %[[Y:.*]] = tensor.insert %[[VAL_19]] into %{{.*}}[%[[VAL_10]]] : tensor<32xf64, #sparse{{[0-9]*}}>
// CHECK: scf.yield %[[Y]]
// CHECK: }
// CHECK: %[[VAL_20:.*]] = sparse_tensor.load %[[T]] hasInserts : tensor<32xf64, #sparse{{[0-9]*}}>
@@ -412,7 +412,7 @@ func.func @zero_preserving_math(%arga: tensor<32xf64, #SV>) -> tensor<32xf64, #S
// CHECK: %[[VAL_11:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_10]]] : memref<?xindex>
// CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_10]]] : memref<?xcomplex<f64>>
// CHECK: %[[VAL_13:.*]] = complex.div %[[VAL_12]], %[[VAL_3]] : complex<f64>
-// CHECK: %[[Y:.*]] = sparse_tensor.insert %[[VAL_13]] into %{{.*}}[%[[VAL_11]]] : tensor<32xcomplex<f64>, #sparse{{[0-9]*}}>
+// CHECK: %[[Y:.*]] = tensor.insert %[[VAL_13]] into %{{.*}}[%[[VAL_11]]] : tensor<32xcomplex<f64>, #sparse{{[0-9]*}}>
// CHECK: scf.yield %[[Y]]
// CHECK: }
// CHECK: %[[VAL_14:.*]] = sparse_tensor.load %[[T]] hasInserts : tensor<32xcomplex<f64>, #sparse{{[0-9]*}}>
diff --git a/mlir/test/Dialect/SparseTensor/sparse_index.mlir b/mlir/test/Dialect/SparseTensor/sparse_index.mlir
index 3e8b485f63df97..7fe662893f4b18 100644
--- a/mlir/test/Dialect/SparseTensor/sparse_index.mlir
+++ b/mlir/test/Dialect/SparseTensor/sparse_index.mlir
@@ -95,7 +95,7 @@ func.func @dense_index(%arga: tensor<?x?xi64, #DenseMatrix>)
// CHECK: %[[VAL_22:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_18]]] : memref<?xi64>
// CHECK: %[[VAL_23:.*]] = arith.muli %[[VAL_21]], %[[VAL_22]] : i64
// CHECK: %[[VAL_24:.*]] = arith.muli %[[VAL_20]], %[[VAL_23]] : i64
-// CHECK: %[[Y:.*]] = sparse_tensor.insert %[[VAL_24]] into %{{.*}}[%[[VAL_14]], %[[VAL_19]]] : tensor<?x?xi64, #sparse{{[0-9]*}}>
+// CHECK: %[[Y:.*]] = tensor.insert %[[VAL_24]] into %{{.*}}[%[[VAL_14]], %[[VAL_19]]] : tensor<?x?xi64, #sparse{{[0-9]*}}>
// CHECK: scf.yield %[[Y]]
// CHECK: }
// CHECK: scf.yield %[[L]]
diff --git a/mlir/test/Dialect/SparseTensor/sparse_out.mlir b/mlir/test/Dialect/SparseTensor/sparse_out.mlir
index b1795ff2e1a226..08b81b54a9e63c 100644
--- a/mlir/test/Dialect/SparseTensor/sparse_out.mlir
+++ b/mlir/test/Dialect/SparseTensor/sparse_out.mlir
@@ -114,7 +114,7 @@ func.func @sparse_simply_dynamic2(%argx: tensor<32x16xf32, #DCSR>) -> tensor<32x
// CHECK: %[[VAL_18:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_16]]] : memref<?xindex>
// CHECK: %[[VAL_19:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_16]]] : memref<?xf32>
// CHECK: %[[VAL_20:.*]] = arith.mulf %[[VAL_19]], %[[VAL_4]] : f32
-// CHECK: %[[VAL_21:.*]] = sparse_tensor.insert %[[VAL_20]] into %[[VAL_17]]{{\[}}%[[VAL_10]], %[[VAL_18]]] : tensor<10x20xf32, #sparse{{[0-9]*}}>
+// CHECK: %[[VAL_21:.*]] = tensor.insert %[[VAL_20]] into %[[VAL_17]]{{\[}}%[[VAL_10]], %[[VAL_18]]] : tensor<10x20xf32, #sparse{{[0-9]*}}>
// CHECK: scf.yield %[[VAL_21]] : tensor<10x20xf32, #sparse{{[0-9]*}}>
// CHECK: }
// CHECK: scf.yield %[[VAL_22:.*]] : tensor<10x20xf32, #sparse{{[0-9]*}}>
@@ -248,7 +248,7 @@ func.func @sparse_truly_dynamic(%arga: tensor<10x20xf32, #CSR>) -> tensor<10x20x
// CHECK: scf.yield %[[VAL_100]], %[[VAL_103]], %[[VAL_104:.*]]#0, %[[VAL_104]]#1, %[[VAL_104]]#2 : index, index, i32, i1, tensor<?x?xi32, #sparse{{[0-9]*}}>
// CHECK: }
// CHECK: %[[VAL_202:.*]] = scf.if %[[VAL_74]]#3 -> (tensor<?x?xi32, #sparse{{[0-9]*}}>) {
-// CHECK: %[[VAL_105:.*]] = sparse_tensor.insert %[[VAL_74]]#2 into %[[VAL_74]]#4{{\[}}%[[VAL_39]], %[[VAL_63]]] : tensor<?x?xi32, #sparse{{[0-9]*}}>
+// CHECK: %[[VAL_105:.*]] = tensor.insert %[[VAL_74]]#2 into %[[VAL_74]]#4{{\[}}%[[VAL_39]], %[[VAL_63]]] : tensor<?x?xi32, #sparse{{[0-9]*}}>
// CHECK: scf.yield %[[VAL_105]] : tensor<?x?xi32, #sparse{{[0-9]*}}>
// CHECK: } else {
// CHECK: scf.yield %[[VAL_74]]#4 : tensor<?x?xi32, #sparse{{[0-9]*}}>
diff --git a/mlir/test/Dialect/SparseTensor/sparse_reinterpret_map.mlir b/mlir/test/Dialect/SparseTensor/sparse_reinterpret_map.mlir
index aa17261724dbc0..97c668716eecc3 100644
--- a/mlir/test/Dialect/SparseTensor/sparse_reinterpret_map.mlir
+++ b/mlir/test/Dialect/SparseTensor/sparse_reinterpret_map.mlir
@@ -63,7 +63,7 @@ func.func @mul(%arg0: tensor<32x32xf32>,
// CHECK: %[[VAL_2:.*]] = sparse_tensor.reinterpret_map %[[VAL_0]] : tensor<2x4xf64, #[[$remap]]> to tensor<1x2x2x2xf64, #[[$demap]]>
// CHECK: %[[VAL_4:.*]] = sparse_tensor.foreach in %[[VAL_2]] init(%[[VAL_1]])
// CHECK: ^bb0(%[[VAL_5:.*]]: index, %[[VAL_6:.*]]: index, %[[VAL_7:.*]]: index, %[[VAL_8:.*]]: index, %[[VAL_9:.*]]: f64, %[[VAL_10:.*]]: tensor<1x2x2x2xf64, #[[$demap]]>
-// CHECK: %[[VAL_11:.*]] = sparse_tensor.insert %[[VAL_9]] into %[[VAL_10]]{{\[}}%[[VAL_5]], %[[VAL_6]], %[[VAL_7]], %[[VAL_8]]] : tensor<1x2x2x2xf64, #[[$demap]]>
+// CHECK: %[[VAL_11:.*]] = tensor.insert %[[VAL_9]] into %[[VAL_10]]{{\[}}%[[VAL_5]], %[[VAL_6]], %[[VAL_7]], %[[VAL_8]]] : tensor<1x2x2x2xf64, #[[$demap]]>
// CHECK: sparse_tensor.yield %[[VAL_11]] : tensor<1x2x2x2xf64, #sparse{{[0-9]*}}>
// CHECK: }
// CHECK: %[[VAL_12:.*]] = sparse_tensor.reinterpret_map %[[VAL_4]] : tensor<1x2x2x2xf64, #[[$demap]]> to tensor<2x4xf64, #[[$remap]]>
diff --git a/mlir/test/Dialect/SparseTensor/sparse_reshape.mlir b/mlir/test/Dialect/SparseTensor/sparse_reshape.mlir
index eea77c6e5a6cc6..edb53fa024c26b 100644
--- a/mlir/test/Dialect/SparseTensor/sparse_reshape.mlir
+++ b/mlir/test/Dialect/SparseTensor/sparse_reshape.mlir
@@ -31,7 +31,7 @@
// CHECK: %[[SV:.*]] = memref.load %[[V]]{{\[}}%[[I]]] : memref<?xf64>
// CHECK: %[[DI0:.*]] = arith.divui %[[SI]], %[[C10]] : index
// CHECK: %[[DI1:.*]] = arith.remui %[[SI]], %[[C10]] : index
-// CHECK: %[[NT:.*]] = sparse_tensor.insert %[[SV]] into %[[R]]{{\[}}%[[DI0]], %[[DI1]]]
+// CHECK: %[[NT:.*]] = tensor.insert %[[SV]] into %[[R]]{{\[}}%[[DI0]], %[[DI1]]]
// CHECK: scf.yield %[[NT:.*]]
// CHECK: }
// CHECK: %[[NT1:.*]] = sparse_tensor.load %[[RET]] hasInserts
@@ -75,7 +75,7 @@ func.func @sparse_expand(%arg0: tensor<100xf64, #SparseVector>) -> tensor<10x10x
// CHECK: %[[SV:.*]] = memref.load %[[V]]{{\[}}%[[J]]] : memref<?xf64>
// CHECK: %[[T:.*]] = arith.muli %[[SI0]], %[[C10]] : index
// CHECK: %[[DI:.*]] = arith.addi %[[T]], %[[SI1]] : index
-// CHECK: %[[R1:.*]] = sparse_tensor.insert %[[SV]] into %[[A1]]{{\[}}%[[DI]]]
+// CHECK: %[[R1:.*]] = tensor.insert %[[SV]] into %[[A1]]{{\[}}%[[DI]]]
// CHECK scf.yield %[[R1]]
// CHECK }
// CHECK scf.yield %[[RET_1]]
@@ -120,7 +120,7 @@ func.func @sparse_collapse(%arg0: tensor<10x10xf64, #SparseMatrix>) -> tensor<10
// CHECK: %[[T3:.*]] = arith.remui %[[SI]], %[[T2]] : index
// CHECK: %[[T4:.*]] = arith.divui %[[T2]], %[[C10]] : index
// CHECK: %[[DI1:.*]] = arith.divui %[[T3]], %[[T4]] : index
-// CHECK: %[[NT:.*]] = sparse_tensor.insert %[[SV]] into %[[R]]{{\[}}%[[DI0]], %[[DI1]]]
+// CHECK: %[[NT:.*]] = tensor.insert %[[SV]] into %[[R]]{{\[}}%[[DI0]], %[[DI1]]]
// CHECK: scf.yield %[[NT]]
// CHECK: }
// CHECK: %[[NT1:.*]] = sparse_tensor.load %[[RET]] hasInserts
@@ -169,7 +169,7 @@ func.func @dynamic_sparse_expand(%arg0: tensor<?xf64, #SparseVector>) -> tensor<
// CHECK: %[[T3:.*]] = arith.divui %[[T1]], %[[SD1]] : index
// CHECK: %[[T4:.*]] = arith.muli %[[SI1]], %[[T3]] : index
// CHECK: %[[DI:.*]] = arith.addi %[[T2]], %[[T4]] : index
-// CHECK: %[[NT:.*]] = sparse_tensor.insert %[[SV]] into %[[R1]]{{\[}}%[[DI]]]
+// CHECK: %[[NT:.*]] = tensor.insert %[[SV]] into %[[R1]]{{\[}}%[[DI]]]
// CHECK scf.yield %[[NT]]
// CHECK }
// CHECK scf.yield %[[RET_1]]
diff --git a/mlir/test/Dialect/SparseTensor/sparse_tensor_reshape.mlir b/mlir/test/Dialect/SparseTensor/sparse_tensor_reshape.mlir
index 47d24ebf24fc6a..89826ebfe14d1a 100644
--- a/mlir/test/Dialect/SparseTensor/sparse_tensor_reshape.mlir
+++ b/mlir/test/Dialect/SparseTensor/sparse_tensor_reshape.mlir
@@ -29,7 +29,7 @@
// CHECK: %[[DI:.*]] = arith.addi %[[T]], %[[SI1]] : index
// CHECK: %[[D:.*]] = arith.divui %[[DI]], %[[C10]] : index
// CHECK: %[[R:.*]] = arith.remui %[[DI]], %[[C10]] : index
-// CHECK: %[[R1:.*]] = sparse_tensor.insert %[[SV]] into %[[A1]]{{\[}}%[[D]], %[[R]]]
+// CHECK: %[[R1:.*]] = tensor.insert %[[SV]] into %[[A1]]{{\[}}%[[D]], %[[R]]]
// CHECK: scf.yield %[[R1]]
// CHECK: }
// CHECK: scf.yield %[[RET_1]]
diff --git a/mlir/test/Dialect/SparseTensor/sparse_transpose.mlir b/mlir/test/Dialect/SparseTensor/sparse_transpose.mlir
index 80a989d789df21..5038e977688dc9 100644
--- a/mlir/test/Dialect/SparseTensor/sparse_transpose.mlir
+++ b/mlir/test/Dialect/SparseTensor/sparse_transpose.mlir
@@ -37,7 +37,7 @@
// CHECK: %[[VAL_19:.*]] = scf.for %[[VAL_20:.*]] = %[[VAL_16]] to %[[VAL_18]] step %[[VAL_2]] iter_args(%[[VAL_21:.*]] = %[[VAL_14]]) -> (tensor<4x3xf64, #sparse{{[0-9]*}}>) {
// CHECK: %[[VAL_22:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_20]]] : memref<?xindex>
// CHECK: %[[VAL_23:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_20]]] : memref<?xf64>
-// CHECK: %[[VAL_24:.*]] = sparse_tensor.insert %[[VAL_23]] into %[[VAL_21]]{{\[}}%[[VAL_15]], %[[VAL_22]]] : tensor<4x3xf64, #sparse{{[0-9]*}}>
+// CHECK: %[[VAL_24:.*]] = tensor.insert %[[VAL_23]] into %[[VAL_21]]{{\[}}%[[VAL_15]], %[[VAL_22]]] : tensor<4x3xf64, #sparse{{[0-9]*}}>
// CHECK: scf.yield %[[VAL_24]] : tensor<4x3xf64, #sparse{{[0-9]*}}>
// CHECK: }
// CHECK: scf.yield %[[VAL_25:.*]] : tensor<4x3xf64, #sparse{{[0-9]*}}>
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_insert_1d.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_insert_1d.mlir
index 61c68507ea5198..12e0d2267a265b 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_insert_1d.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_insert_1d.mlir
@@ -54,10 +54,10 @@ module {
// Build the sparse vector from straightline code.
%0 = tensor.empty() : tensor<1024xf32, #SparseVector>
- %1 = sparse_tensor.insert %f1 into %0[%c0] : tensor<1024xf32, #SparseVector>
- %2 = sparse_tensor.insert %f2 into %1[%c1] : tensor<1024xf32, #SparseVector>
- %3 = sparse_tensor.insert %f3 into %2[%c3] : tensor<1024xf32, #SparseVector>
- %4 = sparse_tensor.insert %f4 into %3[%c1023] : tensor<1024xf32, #SparseVector>
+ %1 = tensor.insert %f1 into %0[%c0] : tensor<1024xf32, #SparseVector>
+ %2 = tensor.insert %f2 into %1[%c1] : tensor<1024xf32, #SparseVector>
+ %3 = tensor.insert %f3 into %2[%c3] : tensor<1024xf32, #SparseVector>
+ %4 = tensor.insert %f4 into %3[%c1023] : tensor<1024xf32, #SparseVector>
%5 = sparse_tensor.load %4 hasInserts : tensor<1024xf32, #SparseVector>
//
@@ -76,7 +76,7 @@ module {
%6 = tensor.empty() : tensor<1024xf32, #SparseVector>
%7 = scf.for %i = %c0 to %c8 step %c1 iter_args(%vin = %6) -> tensor<1024xf32, #SparseVector> {
%ii = arith.muli %i, %c3 : index
- %vout = sparse_tensor.insert %f1 into %vin[%ii] : tensor<1024xf32, #SparseVector>
+ %vout = tensor.insert %f1 into %vin[%ii] : tensor<1024xf32, #SparseVector>
scf.yield %vout : tensor<1024xf32, #SparseVector>
}
%8 = sparse_tensor.load %7 hasInserts : tensor<1024xf32, #SparseVector>
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_insert_2d.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_insert_2d.mlir
index d51b67792337d1..8831091506533f 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_insert_2d.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_insert_2d.mlir
@@ -72,10 +72,10 @@ module {
// CHECK-NEXT: ----
//
%densea = tensor.empty() : tensor<4x3xf64, #Dense>
- %dense1 = sparse_tensor.insert %f1 into %densea[%c0, %c0] : tensor<4x3xf64, #Dense>
- %dense2 = sparse_tensor.insert %f2 into %dense1[%c2, %c2] : tensor<4x3xf64, #Dense>
- %dense3 = sparse_tensor.insert %f3 into %dense2[%c3, %c0] : tensor<4x3xf64, #Dense>
- %dense4 = sparse_tensor.insert %f4 into %dense3[%c3, %c2] : tensor<4x3xf64, #Dense>
+ %dense1 = tensor.insert %f1 into %densea[%c0, %c0] : tensor<4x3xf64, #Dense>
+ %dense2 = tensor.insert %f2 into %dense1[%c2, %c2] : tensor<4x3xf64, #Dense>
+ %dense3 = tensor.insert %f3 into %dense2[%c3, %c0] : tensor<4x3xf64, #Dense>
+ %dense4 = tensor.insert %f4 into %dense3[%c3, %c2] : tensor<4x3xf64, #Dense>
%densem = sparse_tensor.load %dense4 hasInserts : tensor<4x3xf64, #Dense>
sparse_tensor.print %densem : tensor<4x3xf64, #Dense>
@@ -93,10 +93,10 @@ module {
// CHECK-NEXT: ----
//
%cooa = tensor.empty() : tensor<4x3xf64, #SortedCOO>
- %coo1 = sparse_tensor.insert %f1 into %cooa[%c0, %c0] : tensor<4x3xf64, #SortedCOO>
- %coo2 = sparse_tensor.insert %f2 into %coo1[%c2, %c2] : tensor<4x3xf64, #SortedCOO>
- %coo3 = sparse_tensor.insert %f3 into %coo2[%c3, %c0] : tensor<4x3xf64, #SortedCOO>
- %coo4 = sparse_tensor.insert %f4 into %coo3[%c3, %c2] : tensor<4x3xf64, #SortedCOO>
+ %coo1 = tensor.insert %f1 into %cooa[%c0, %c0] : tensor<4x3xf64, #SortedCOO>
+ %coo2 = tensor.insert %f2 into %coo1[%c2, %c2] : tensor<4x3xf64, #SortedCOO>
+ %coo3 = tensor.insert %f3 into %coo2[%c3, %c0] : tensor<4x3xf64, #SortedCOO>
+ %coo4 = tensor.insert %f4 into %coo3[%c3, %c2] : tensor<4x3xf64, #SortedCOO>
%coom = sparse_tensor.load %coo4 hasInserts : tensor<4x3xf64, #SortedCOO>
sparse_tensor.print %coom : tensor<4x3xf64, #SortedCOO>
@@ -113,10 +113,10 @@ module {
// CHECK-NEXT: ----
//
%csra = tensor.empty() : tensor<4x3xf64, #CSR>
- %csr1 = sparse_tensor.insert %f1 into %csra[%c0, %c0] : tensor<4x3xf64, #CSR>
- %csr2 = sparse_tensor.insert %f2 into %csr1[%c2, %c2] : tensor<4x3xf64, #CSR>
- %csr3 = sparse_tensor.insert %f3 into %csr2[%c3, %c0] : tensor<4x3xf64, #CSR>
- %csr4 = sparse_tensor.insert %f4 into %csr3[%c3, %c2] : tensor<4x3xf64, #CSR>
+ %csr1 = tensor.insert %f1 into %csra[%c0, %c0] : tensor<4x3xf64, #CSR>
+ %csr2 = tensor.insert %f2 into %csr1[%c2, %c2] : tensor<4x3xf64, #CSR>
+ %csr3 = tensor.insert %f3 into %csr2[%c3, %c0] : tensor<4x3xf64, #CSR>
+ %csr4 = tensor.insert %f4 into %csr3[%c3, %c2] : tensor<4x3xf64, #CSR>
%csrm = sparse_tensor.load %csr4 hasInserts : tensor<4x3xf64, #CSR>
sparse_tensor.print %csrm : tensor<4x3xf64, #CSR>
@@ -135,10 +135,10 @@ module {
// CHECK-NEXT: ----
//
%dcsra = tensor.empty() : tensor<4x3xf64, #DCSR>
- %dcsr1 = sparse_tensor.insert %f1 into %dcsra[%c0, %c0] : tensor<4x3xf64, #DCSR>
- %dcsr2 = sparse_tensor.insert %f2 into %dcsr1[%c2, %c2] : tensor<4x3xf64, #DCSR>
- %dcsr3 = sparse_tensor.insert %f3 into %dcsr2[%c3, %c0] : tensor<4x3xf64, #DCSR>
- %dcsr4 = sparse_tensor.insert %f4 into %dcsr3[%c3, %c2] : tensor<4x3xf64, #DCSR>
+ %dcsr1 = tensor.insert %f1 into %dcsra[%c0, %c0] : tensor<4x3xf64, #DCSR>
+ %dcsr2 = tensor.insert %f2 into %dcsr1[%c2, %c2] : tensor<4x3xf64, #DCSR>
+ %dcsr3 = tensor.insert %f3 into %dcsr2[%c3, %c0] : tensor<4x3xf64, #DCSR>
+ %dcsr4 = tensor.insert %f4 into %dcsr3[%c3, %c2] : tensor<4x3xf64, #DCSR>
%dcsrm = sparse_tensor.load %dcsr4 hasInserts : tensor<4x3xf64, #DCSR>
sparse_tensor.print %dcsrm : tensor<4x3xf64, #DCSR>
@@ -155,10 +155,10 @@ module {
// CHECK-NEXT: ----
//
%rowa = tensor.empty() : tensor<4x3xf64, #Row>
- %row1 = sparse_tensor.insert %f1 into %rowa[%c0, %c0] : tensor<4x3xf64, #Row>
- %row2 = sparse_tensor.insert %f2 into %row1[%c2, %c2] : tensor<4x3xf64, #Row>
- %row3 = sparse_tensor.insert %f3 into %row2[%c3, %c0] : tensor<4x3xf64, #Row>
- %row4 = sparse_tensor.insert %f4 into %row3[%c3, %c2] : tensor<4x3xf64, #Row>
+ %row1 = tensor.insert %f1 into %rowa[%c0, %c0] : tensor<4x3xf64, #Row>
+ %row2 = tensor.insert %f2 into %row1[%c2, %c2] : tensor<4x3xf64, #Row>
+ %row3 = tensor.insert %f3 into %row2[%c3, %c0] : tensor<4x3xf64, #Row>
+ %row4 = tensor.insert %f4 into %row3[%c3, %c2] : tensor<4x3xf64, #Row>
%rowm = sparse_tensor.load %row4 hasInserts : tensor<4x3xf64, #Row>
sparse_tensor.print %rowm : tensor<4x3xf64, #Row>
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_insert_3d.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_insert_3d.mlir
index 1917fd987c5d7d..364a188cf37c4c 100644
--- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_insert_3d.mlir
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_insert_3d.mlir
@@ -71,11 +71,11 @@ module {
// CHECK-NEXT: values : ( 1.1, 2.2, 3.3, 4.4, 5.5
// CHECK-NEXT: ----
%tensora = tensor.empty() : tensor<5x4x3xf64, #TensorCSR>
- %tensor1 = sparse_tensor.insert %f1 into %tensora[%c3, %c0, %c1] : tensor<5x4x3xf64, #TensorCSR>
- %tensor2 = sparse_tensor.insert %f2 into %tensor1[%c3, %c0, %c2] : tensor<5x4x3xf64, #TensorCSR>
- %tensor3 = sparse_tensor.insert %f3 into %tensor2[%c3, %c3, %c1] : tensor<5x4x3xf64, #TensorCSR>
- %tensor4 = sparse_tensor.insert %f4 into %tensor3[%c4, %c2, %c2] : tensor<5x4x3xf64, #TensorCSR>
- %tensor5 = sparse_tensor.insert %f5 into %tensor4[%c4, %c3, %c2] : tensor<5x4x3xf64, #TensorCSR>
+ %tensor1 = tensor.insert %f1 into %tensora[%c3, %c0, %c1] : tensor<5x4x3xf64, #TensorCSR>
+ %tensor2 = tensor.insert %f2 into %tensor1[%c3, %c0, %c2] : tensor<5x4x3xf64, #TensorCSR>
+ %tensor3 = tensor.insert %f3 into %tensor2[%c3, %c3, %c1] : tensor<5x4x3xf64, #TensorCSR>
+ %tensor4 = tensor.insert %f4 into %tensor3[%c4, %c2, %c2] : tensor<5x4x3xf64, #TensorCSR>
+ %tensor5 = tensor.insert %f5 into %tensor4[%c4, %c3, %c2] : tensor<5x4x3xf64, #TensorCSR>
%tensorm = sparse_tensor.load %tensor5 hasInserts : tensor<5x4x3xf64, #TensorCSR>
sparse_tensor.print %tensorm : tensor<5x4x3xf64, #TensorCSR>
@@ -90,11 +90,11 @@ module {
// CHECK-NEXT: values : ( 0, 1.1, 2.2, 0, 3.3, 0, 0, 0, 4.4, 0, 0, 5.5
// CHECK-NEXT: ----
%rowa = tensor.empty() : tensor<5x4x3xf64, #TensorRow>
- %row1 = sparse_tensor.insert %f1 into %rowa[%c3, %c0, %c1] : tensor<5x4x3xf64, #TensorRow>
- %row2 = sparse_tensor.insert %f2 into %row1[%c3, %c0, %c2] : tensor<5x4x3xf64, #TensorRow>
- %row3 = sparse_tensor.insert %f3 into %row2[%c3, %c3, %c1] : tensor<5x4x3xf64, #TensorRow>
- %row4 = sparse_tensor.insert %f4 into %row3[%c4, %c2, %c2] : tensor<5x4x3xf64, #TensorRow>
- %row5 = sparse_tensor.insert %f5 into %row4[%c4, %c3, %c2] : tensor<5x4x3xf64, #TensorRow>
+ %row1 = tensor.insert %f1 into %rowa[%c3, %c0, %c1] : tensor<5x4x3xf64, #TensorRow>
+ %row2 = tensor.insert %f2 into %row1[%c3, %c0, %c2] : tensor<5x4x3xf64, #TensorRow>
+ %row3 = tensor.insert %f3 into %row2[%c3, %c3, %c1] : tensor<5x4x3xf64, #TensorRow>
+ %row4 = tensor.insert %f4 into %row3[%c4, %c2, %c2] : tensor<5x4x3xf64, #TensorRow>
+ %row5 = tensor.insert %f5 into %row4[%c4, %c3, %c2] : tensor<5x4x3xf64, #TensorRow>
%rowm = sparse_tensor.load %row5 hasInserts : tensor<5x4x3xf64, #TensorRow>
sparse_tensor.print %rowm : tensor<5x4x3xf64, #TensorRow>
@@ -109,11 +109,11 @@ module {
// CHECK-NEXT: values : ( 1.1, 2.2, 3.3, 4.4, 5.5
// CHECK-NEXT: ----
%ccoo = tensor.empty() : tensor<5x4x3xf64, #CCoo>
- %ccoo1 = sparse_tensor.insert %f1 into %ccoo[%c3, %c0, %c1] : tensor<5x4x3xf64, #CCoo>
- %ccoo2 = sparse_tensor.insert %f2 into %ccoo1[%c3, %c0, %c2] : tensor<5x4x3xf64, #CCoo>
- %ccoo3 = sparse_tensor.insert %f3 into %ccoo2[%c3, %c3, %c1] : tensor<5x4x3xf64, #CCoo>
- %ccoo4 = sparse_tensor.insert %f4 into %ccoo3[%c4, %c2, %c2] : tensor<5x4x3xf64, #CCoo>
- %ccoo5 = sparse_tensor.insert %f5 into %ccoo4[%c4, %c3, %c2] : tensor<5x4x3xf64, #CCoo>
+ %ccoo1 = tensor.insert %f1 into %ccoo[%c3, %c0, %c1] : tensor<5x4x3xf64, #CCoo>
+ %ccoo2 = tensor.insert %f2 into %ccoo1[%c3, %c0, %c2] : tensor<5x4x3xf64, #CCoo>
+ %ccoo3 = tensor.insert %f3 into %ccoo2[%c3, %c3, %c1] : tensor<5x4x3xf64, #CCoo>
+ %ccoo4 = tensor.insert %f4 into %ccoo3[%c4, %c2, %c2] : tensor<5x4x3xf64, #CCoo>
+ %ccoo5 = tensor.insert %f5 into %ccoo4[%c4, %c3, %c2] : tensor<5x4x3xf64, #CCoo>
%ccoom = sparse_tensor.load %ccoo5 hasInserts : tensor<5x4x3xf64, #CCoo>
sparse_tensor.print %ccoom : tensor<5x4x3xf64, #CCoo>
@@ -126,11 +126,11 @@ module {
// CHECK-NEXT: values : ( 1.1, 2.2, 3.3, 4.4, 5.5
// CHECK-NEXT: ----
%dcoo = tensor.empty() : tensor<5x4x3xf64, #DCoo>
- %dcoo1 = sparse_tensor.insert %f1 into %dcoo[%c3, %c0, %c1] : tensor<5x4x3xf64, #DCoo>
- %dcoo2 = sparse_tensor.insert %f2 into %dcoo1[%c3, %c0, %c2] : tensor<5x4x3xf64, #DCoo>
- %dcoo3 = sparse_tensor.insert %f3 into %dcoo2[%c3, %c3, %c1] : tensor<5x4x3xf64, #DCoo>
- %dcoo4 = sparse_tensor.insert %f4 into %dcoo3[%c4, %c2, %c2] : tensor<5x4x3xf64, #DCoo>
- %dcoo5 = sparse_tensor.insert %f5 into %dcoo4[%c4, %c3, %c2] : tensor<5x4x3xf64, #DCoo>
+ %dcoo1 = tensor.insert %f1 into %dcoo[%c3, %c0, %c1] : tensor<5x4x3xf64, #DCoo>
+ %dcoo2 = tensor.insert %f2 into %dcoo1[%c3, %c0, %c2] : tensor<5x4x3xf64, #DCoo>
+ %dcoo3 = tensor.insert %f3 into %dcoo2[%c3, %c3, %c1] : tensor<5x4x3xf64, #DCoo>
+ %dcoo4 = tensor.insert %f4 into %dcoo3[%c4, %c2, %c2] : tensor<5x4x3xf64, #DCoo>
+ %dcoo5 = tensor.insert %f5 into %dcoo4[%c4, %c3, %c2] : tensor<5x4x3xf64, #DCoo>
%dcoom = sparse_tensor.load %dcoo5 hasInserts : tensor<5x4x3xf64, #DCoo>
sparse_tensor.print %dcoom : tensor<5x4x3xf64, #DCoo>
More information about the Mlir-commits
mailing list