[Mlir-commits] [mlir] 002e819 - [mlir][linalg] Fix empty outer dim case for packing reshape op (#96732)
llvmlistbot at llvm.org
llvmlistbot at llvm.org
Wed Jun 26 23:57:29 PDT 2024
Author: yifeizh2
Date: 2024-06-27T08:57:26+02:00
New Revision: 002e819247b59debe71605aad9967203a119886b
URL: https://github.com/llvm/llvm-project/commit/002e819247b59debe71605aad9967203a119886b
DIFF: https://github.com/llvm/llvm-project/commit/002e819247b59debe71605aad9967203a119886b.diff
LOG: [mlir][linalg] Fix empty outer dim case for packing reshape op (#96732)
This PR fixes the issue reported in
[comment](https://github.com/llvm/llvm-project/pull/93529#discussion_r1653311765).
Added:
Modified:
mlir/lib/Dialect/Linalg/Transforms/DataLayoutPropagation.cpp
mlir/test/Dialect/Linalg/data-layout-propagation.mlir
Removed:
################################################################################
diff --git a/mlir/lib/Dialect/Linalg/Transforms/DataLayoutPropagation.cpp b/mlir/lib/Dialect/Linalg/Transforms/DataLayoutPropagation.cpp
index e51ae2264a36a..6984bc2dff498 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/DataLayoutPropagation.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/DataLayoutPropagation.cpp
@@ -605,7 +605,8 @@ static bool isDimsDivisibleByTileSizes(ArrayRef<int64_t> dimsPos,
static int64_t applyPermutationAndReindexReassoc(
SmallVector<ReassociationIndices> &reassocIndices,
ArrayRef<int64_t> permutation) {
- applyPermutationToVector<ReassociationIndices>(reassocIndices, permutation);
+ if (!permutation.empty())
+ applyPermutationToVector<ReassociationIndices>(reassocIndices, permutation);
int64_t nextPos = 0;
for (ReassociationIndices &indices : reassocIndices) {
for (auto &index : indices) {
diff --git a/mlir/test/Dialect/Linalg/data-layout-propagation.mlir b/mlir/test/Dialect/Linalg/data-layout-propagation.mlir
index 78505d0aa4140..626dd8b697e59 100644
--- a/mlir/test/Dialect/Linalg/data-layout-propagation.mlir
+++ b/mlir/test/Dialect/Linalg/data-layout-propagation.mlir
@@ -926,6 +926,24 @@ func.func @bubble_up_pack_through_collapse(%1: tensor<?x16x4xf32>, %dim : index)
// -----
+func.func @bubble_up_pack_through_collapse_empty_outer_dims_perm(%1: tensor<?x16x4xf32>, %dim : index) -> tensor<?x4x8x1xf32> {
+ %collapsed = tensor.collapse_shape %1 [[0, 1], [2]] : tensor<?x16x4xf32> into tensor<?x4xf32>
+ %2 = tensor.empty(%dim) : tensor<?x4x8x1xf32>
+ %pack = tensor.pack %collapsed inner_dims_pos = [0, 1] inner_tiles = [8, 1] into %2 : tensor<?x4xf32> -> tensor<?x4x8x1xf32>
+ func.return %pack : tensor<?x4x8x1xf32>
+}
+// CHECK-LABEL: func.func @bubble_up_pack_through_collapse_empty_outer_dims_perm
+// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
+// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
+// CHECK: %[[C0:.+]] = arith.constant 0 : index
+// CHECK: %[[DIM:.+]] = tensor.dim %[[ARG0]], %[[C0]] : tensor<?x16x4xf32>
+// CHECK: %[[EMPTY:.+]] = tensor.empty(%[[DIM]]) : tensor<?x2x4x8x1xf32>
+// CHECK: %[[PACK:.+]] = tensor.pack %[[ARG0]] inner_dims_pos = [1, 2] inner_tiles = [8, 1] into %[[EMPTY]] : tensor<?x16x4xf32> -> tensor<?x2x4x8x1xf32>
+// CHECK: %[[COLLAPSED:.+]] = tensor.collapse_shape %[[PACK]] {{\[}}[0, 1], [2], [3], [4]] : tensor<?x2x4x8x1xf32> into tensor<?x4x8x1xf32>
+// CHECK: return %[[COLLAPSED]] : tensor<?x4x8x1xf32>
+
+// -----
+
func.func @bubble_up_permuted_pack_through_collapse(%1: tensor<4x192x16x256xf32>) -> tensor<4x32x3072x8x1xf32> {
%collapsed = tensor.collapse_shape %1 [[0], [1, 2], [3]] : tensor<4x192x16x256xf32> into tensor<4x3072x256xf32>
%2 = tensor.empty() : tensor<4x32x3072x8x1xf32>
@@ -1269,6 +1287,27 @@ func.func @push_down_unpack_through_expand(%5: tensor<?x32x8x8xf32>, %dim: index
// -----
+func.func @push_down_unpack_through_expand_empty_outer_dims_perm(%5: tensor<?x32x8x8xf32>, %dim: index, %sz0: index) -> tensor<?x256x256xf32> {
+ %6 = tensor.empty(%dim) : tensor<?x256xf32>
+ %unpack = tensor.unpack %5 inner_dims_pos = [0, 1] inner_tiles = [8, 8] into %6 : tensor<?x32x8x8xf32> -> tensor<?x256xf32>
+ %expanded = tensor.expand_shape %unpack [[0, 1], [2]] output_shape [%sz0, 256, 256] : tensor<?x256xf32> into tensor<?x256x256xf32>
+ func.return %expanded : tensor<?x256x256xf32>
+}
+// CHECK-LABEL: func.func @push_down_unpack_through_expand_empty_outer_dims_perm
+// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]
+// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]
+// CHECK: %[[C32:.+]] = arith.constant 32 : index
+// CHECK: %[[C0:.+]] = arith.constant 0 : index
+// CHECK: %[[DIM0:.+]] = tensor.dim %[[ARG0]], %[[C0]] : tensor<?x32x8x8xf32>
+// CHECK: %[[SZ0:.+]] = arith.divui %[[DIM0]], %[[C32]] : index
+// CHECK: %[[EXPANDED:.+]] = tensor.expand_shape %[[ARG0]] {{\[}}[0, 1], [2], [3], [4]] output_shape [%[[SZ0]], 32, 32, 8, 8] : tensor<?x32x8x8xf32> into tensor<?x32x32x8x8xf32>
+// CHECK: %[[DIM:.+]] = tensor.dim %[[EXPANDED]], %[[C0]] : tensor<?x32x32x8x8xf32>
+// CHECK: %[[EMPTY:.+]] = tensor.empty(%[[DIM]]) : tensor<?x256x256xf32>
+// CHECK: %[[UNPACK:.+]] = tensor.unpack %[[EXPANDED:.+]] inner_dims_pos = [1, 2] inner_tiles = [8, 8] into %[[EMPTY]] : tensor<?x32x32x8x8xf32> -> tensor<?x256x256xf32>
+// CHECK: return %[[UNPACK]] : tensor<?x256x256xf32>
+
+// -----
+
func.func @push_down_permuted_unpack_through_expand(%5: tensor<4x32x384x8x8xf32>) -> tensor<4x12x256x256xf32> {
%6 = tensor.empty() : tensor<4x3072x256xf32>
%unpack = tensor.unpack %5 outer_dims_perm = [0, 2, 1] inner_dims_pos = [2, 1] inner_tiles = [8, 8] into %6 : tensor<4x32x384x8x8xf32> -> tensor<4x3072x256xf32>
More information about the Mlir-commits
mailing list