[Mlir-commits] [mlir] 9f0aa05 - [mlir][vector] Add ElementwiseToOuterproduct (#93664)

llvmlistbot at llvm.org llvmlistbot at llvm.org
Fri Jun 21 05:34:40 PDT 2024


Author: Hugo Trachino
Date: 2024-06-21T13:34:37+01:00
New Revision: 9f0aa05bfb40c077a5b1c2ea8cac88fdd51f0c5c

URL: https://github.com/llvm/llvm-project/commit/9f0aa05bfb40c077a5b1c2ea8cac88fdd51f0c5c
DIFF: https://github.com/llvm/llvm-project/commit/9f0aa05bfb40c077a5b1c2ea8cac88fdd51f0c5c.diff

LOG: [mlir][vector] Add ElementwiseToOuterproduct (#93664)

1D multi-reduction are lowered to arith which can prevent some
optimisations. I propose `ElementwiseToOuterproduct` matching a series of
ops to generate `vector.outerproduct`.
As part of some `ElementwiseToVectorOpsPatterns`, it could allow to fuse
other elementwiseOps to vector dialect.
Originally discussed
https://discourse.llvm.org/t/on-improving-arm-sme-lowering-resilience-in-mlir/78543/24.

quote @MacDue
```
%lhsBcast = vector.broadcast %lhsCast : vector<[4]xf32> to vector<[4]x[4]xf32>
%lhsT = vector.transpose %lhsBcast, [1, 0] : vector<[4]x[4]xf32> to vector<[4]x[4]xf32>
%rhsBcast = vector.broadcast %rhs : vector<[4]xf32> to vector<[4]x[4]xf32>
%mul = arith.mulf %lhsT, %rhsBcast : vector<[4]x[4]xf32>
```

Can be rewritten as:

```
%mul = vector.outerproduct $lhs, $rhs : vector<[4]xf32>, vector<[4]xf32>
```

---------

Co-authored-by: Han-Chung Wang <hanhan0912 at gmail.com>

Added: 
    

Modified: 
    mlir/include/mlir/Dialect/Vector/IR/VectorOps.h
    mlir/include/mlir/Dialect/Vector/TransformOps/VectorTransformOps.td
    mlir/lib/Dialect/Vector/TransformOps/VectorTransformOps.cpp
    mlir/lib/Dialect/Vector/Transforms/VectorTransforms.cpp
    mlir/test/Dialect/Vector/transform-vector.mlir

Removed: 
    


################################################################################
diff  --git a/mlir/include/mlir/Dialect/Vector/IR/VectorOps.h b/mlir/include/mlir/Dialect/Vector/IR/VectorOps.h
index 4603953cb40fa..ac55433fadb2f 100644
--- a/mlir/include/mlir/Dialect/Vector/IR/VectorOps.h
+++ b/mlir/include/mlir/Dialect/Vector/IR/VectorOps.h
@@ -80,6 +80,10 @@ void populateVectorToVectorCanonicalizationPatterns(RewritePatternSet &patterns,
 /// into vector contract for the backends with native support.
 void populateFoldArithExtensionPatterns(RewritePatternSet &patterns);
 
+/// Collect a set of patterns that fold elementwise op on vectors to the vector
+/// dialect.
+void populateElementwiseToVectorOpsPatterns(RewritePatternSet &patterns);
+
 /// Returns the integer type required for subscripts in the vector dialect.
 IntegerType getVectorSubscriptType(Builder &builder);
 

diff  --git a/mlir/include/mlir/Dialect/Vector/TransformOps/VectorTransformOps.td b/mlir/include/mlir/Dialect/Vector/TransformOps/VectorTransformOps.td
index c91e8fbbae90f..820a18731ffdb 100644
--- a/mlir/include/mlir/Dialect/Vector/TransformOps/VectorTransformOps.td
+++ b/mlir/include/mlir/Dialect/Vector/TransformOps/VectorTransformOps.td
@@ -406,6 +406,17 @@ def ApplyFoldArithExtensionPatternsOp : Op<Transform_Dialect,
   let assemblyFormat = "attr-dict";
 }
 
+def ApplyFoldElementwiseToVectorPatternsOp : Op<Transform_Dialect,
+    "apply_patterns.vector.elementwise_to_vector",
+    [DeclareOpInterfaceMethods<PatternDescriptorOpInterface>]> {
+  let description = [{
+    Collect a set of patterns that fold elementwise op on vectors to the vector 
+    dialect.
+  }];
+
+  let assemblyFormat = "attr-dict";
+}
+
 def ApplyVectorReductionToContractPatternsOp : Op<Transform_Dialect,
     "apply_patterns.vector.reduction_to_contract",
     [DeclareOpInterfaceMethods<PatternDescriptorOpInterface>]> {

diff  --git a/mlir/lib/Dialect/Vector/TransformOps/VectorTransformOps.cpp b/mlir/lib/Dialect/Vector/TransformOps/VectorTransformOps.cpp
index 23960269095e5..2e9aa88011825 100644
--- a/mlir/lib/Dialect/Vector/TransformOps/VectorTransformOps.cpp
+++ b/mlir/lib/Dialect/Vector/TransformOps/VectorTransformOps.cpp
@@ -59,6 +59,11 @@ void transform::ApplyFoldArithExtensionPatternsOp::populatePatterns(
   vector::populateFoldArithExtensionPatterns(patterns);
 }
 
+void transform::ApplyFoldElementwiseToVectorPatternsOp::populatePatterns(
+    RewritePatternSet &patterns) {
+  vector::populateElementwiseToVectorOpsPatterns(patterns);
+}
+
 void transform::ApplyVectorReductionToContractPatternsOp::populatePatterns(
     RewritePatternSet &patterns) {
   vector::populateVectorReductionToContractPatterns(patterns);

diff  --git a/mlir/lib/Dialect/Vector/Transforms/VectorTransforms.cpp b/mlir/lib/Dialect/Vector/Transforms/VectorTransforms.cpp
index b824508728ac8..eac6db585aad7 100644
--- a/mlir/lib/Dialect/Vector/Transforms/VectorTransforms.cpp
+++ b/mlir/lib/Dialect/Vector/Transforms/VectorTransforms.cpp
@@ -1813,6 +1813,84 @@ struct BreakDownVectorReduction final : OpRewritePattern<vector::ReductionOp> {
   unsigned maxNumElementsToExtract = 0;
 };
 
+/// Fold `mulf(tr(broadcast(A)), broadcast(B))` into `vector.outerproduct(A,
+/// B)`.
+/// Example:
+///  %lhsBcast = vector.broadcast %lhs : vector<4xi32> to vector<4x4xi32>
+///  %lhsT = vector.transpose %lhsBcast, [1, 0] : vector<4x4xi32> to
+///  vector<4x4xi32> %rhsBcast = vector.broadcast %rhs : vector<4xi32> to
+///  vector<4x4xi32> %mul = arith.muli %lhsT, %rhsBcast : vector<4x4xi32>
+///
+/// Becomes :
+///
+///  %res = vector.outerproduct %lhs, %rhs : vector<4xi32>, vector<4xi32>
+///
+/// Supports only 1D-to-2D broadcasts. The following cases are not supported.
+/// %ex1 = vector.broadcast %lhsCast : vector<1x4xf32> to vector<4x4xf32>
+/// %ex2 = vector.broadcast %lhsCast : f32 to vector<4x4xf32>
+/// %ex3 = vector.broadcast %lhsCast : vector<1x1xf32> to vector<4x4xf32>
+template <typename MulOpType>
+struct FoldArithToVectorOuterProduct : public OpRewritePattern<MulOpType> {
+  using OpRewritePattern<MulOpType>::OpRewritePattern;
+  // Returns whether a vector.broadcast matches requirements for an outerproduct
+  // pattern. aka a 1D-to-2D broadcastOp without broadcasted unit dimension.
+  bool isValidBroadcastSource(vector::BroadcastOp broadcastOp) const {
+    // Fail if it is not a 1-to-2 dimension to broadcast to avoid generating
+    // shape_casts/broadcasts which does not belong in this pattern.
+    if (!broadcastOp.computeBroadcastedUnitDims().empty())
+      return false;
+    // Avoid broadcast like f32 or vector<f32> -> ResType
+    auto srcType = dyn_cast<VectorType>(broadcastOp.getSourceType());
+    return srcType && srcType.getRank() != 2;
+  }
+
+  LogicalResult matchAndRewrite(MulOpType mulOp,
+                                PatternRewriter &rewriter) const override {
+    auto resType = llvm::cast<VectorType>(mulOp.getResult().getType());
+    if (!resType)
+      return failure();
+    if (resType.getRank() != 2)
+      return failure();
+    /// If operandA can be written as tr(broadcast(A)) and operandB as
+    /// broadcast(B) where broadcasts are 1D-to-2D, create and return
+    /// vector.outerproduct(A, B). Returns failure() otherwise.
+    auto matchOuterProduct =
+        [&](Value operandA,
+            Value operandB) -> FailureOr<vector::OuterProductOp> {
+      auto transposedLhs = operandA.getDefiningOp<vector::TransposeOp>();
+      if (!transposedLhs)
+        return failure();
+      // Fail unless this is a true 2-D matrix transpose.
+      ArrayRef<int64_t> permutation = transposedLhs.getPermutation();
+      if (permutation.size() != 2 || permutation[0] != 1 || permutation[1] != 0)
+        return failure();
+
+      auto broadcastedLhs =
+          transposedLhs.getVector().getDefiningOp<vector::BroadcastOp>();
+      if (!broadcastedLhs || !isValidBroadcastSource(broadcastedLhs))
+        return failure();
+
+      auto broadcastedRhs = operandB.getDefiningOp<vector::BroadcastOp>();
+      if (!broadcastedRhs || !isValidBroadcastSource(broadcastedRhs))
+        return failure();
+
+      return rewriter.create<vector::OuterProductOp>(
+          mulOp->getLoc(), resType, broadcastedLhs.getSource(),
+          broadcastedRhs.getSource(), Value(), vector::CombiningKind::ADD);
+    };
+
+    Value lhs = mulOp->getOperand(0), rhs = mulOp->getOperand(1);
+    auto maybeOuterP = matchOuterProduct(lhs, rhs);
+    // Handle commutativity, the transposed op is the outerproduct LHS.
+    if (failed(maybeOuterP))
+      maybeOuterP = matchOuterProduct(rhs, lhs);
+    if (failed(maybeOuterP))
+      return failure();
+    rewriter.replaceOp(mulOp, maybeOuterP->getResult());
+    return success();
+  }
+};
+
 } // namespace
 
 void mlir::vector::populateFoldArithExtensionPatterns(
@@ -1900,6 +1978,13 @@ void mlir::vector::populateBreakDownVectorReductionPatterns(
                                          maxNumElementsToExtract, benefit);
 }
 
+void mlir::vector::populateElementwiseToVectorOpsPatterns(
+    RewritePatternSet &patterns) {
+  patterns.add<FoldArithToVectorOuterProduct<arith::MulFOp>,
+               FoldArithToVectorOuterProduct<arith::MulIOp>>(
+      patterns.getContext());
+}
+
 //===----------------------------------------------------------------------===//
 // TableGen'd enum attribute definitions
 //===----------------------------------------------------------------------===//

diff  --git a/mlir/test/Dialect/Vector/transform-vector.mlir b/mlir/test/Dialect/Vector/transform-vector.mlir
index 75b29e22b4d2c..4b38db79bff3e 100644
--- a/mlir/test/Dialect/Vector/transform-vector.mlir
+++ b/mlir/test/Dialect/Vector/transform-vector.mlir
@@ -92,3 +92,41 @@ module attributes {transform.with_named_sequence} {
     transform.yield
   }
 }
+
+// -----
+
+// CHECK-LABEL: func.func @arith_to_outerproduct_scalable_i32
+//  CHECK-SAME:   %[[LHS:.*]]: vector<[4]xi32>,
+//  CHECK-SAME:   %[[RHS:.*]]: vector<[4]xi32>) -> vector<[4]x[4]xi32> {
+//       CHECK:     %[[RES:.*]] = vector.outerproduct %[[LHS]], %[[RHS]] : vector<[4]xi32>, vector<[4]xi32>
+//       CHECK:     return %[[RES]] : vector<[4]x[4]xi32>
+func.func @arith_to_outerproduct_scalable_i32(%lhs: vector<[4]xi32>, %rhs: vector<[4]xi32>) -> vector<[4]x[4]xi32> {
+  %lhsBcast = vector.broadcast %lhs : vector<[4]xi32> to vector<[4]x[4]xi32>
+  %lhsT = vector.transpose %lhsBcast, [1, 0] : vector<[4]x[4]xi32> to vector<[4]x[4]xi32>
+  %rhsBcast = vector.broadcast %rhs : vector<[4]xi32> to vector<[4]x[4]xi32>
+  %mul = arith.muli %lhsT, %rhsBcast : vector<[4]x[4]xi32>
+  return %mul: vector<[4]x[4]xi32>
+}
+
+// CHECK-LABEL: func.func @arith_to_outerproduct_trans_rhs_f32
+//  CHECK-SAME:   %[[LHS:.*]]: vector<16xf32>,
+//  CHECK-SAME:   %[[RHS:.*]]: vector<8xf32>) -> vector<8x16xf32> {
+//       CHECK:     %[[RES:.*]] = vector.outerproduct %[[RHS]], %[[LHS]] : vector<8xf32>, vector<16xf32>
+//       CHECK:     return %[[RES]] : vector<8x16xf32>
+func.func @arith_to_outerproduct_trans_rhs_f32(%lhs: vector<16xf32>, %rhs: vector<8xf32>) -> vector<8x16xf32> {
+  %rhsBcast = vector.broadcast %rhs : vector<8xf32> to vector<16x8xf32>
+  %rhsT = vector.transpose %rhsBcast, [1, 0] : vector<16x8xf32> to vector<8x16xf32>
+  %lhsBcast = vector.broadcast %lhs : vector<16xf32> to vector<8x16xf32>
+  %mul = arith.mulf %lhsBcast, %rhsT : vector<8x16xf32>
+  return %mul: vector<8x16xf32>
+}
+
+module attributes {transform.with_named_sequence} {
+  transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) {
+    %func = transform.structured.match ops{["func.func"]} in %module_op : (!transform.any_op) -> !transform.any_op
+    transform.apply_patterns to %func {
+      transform.apply_patterns.vector.elementwise_to_vector
+    } : !transform.any_op
+    transform.yield
+  }
+}


        


More information about the Mlir-commits mailing list