[Mlir-commits] [mlir] [mlir] Add `ScalableVectorType` support class (PR #96236)

llvmlistbot at llvm.org llvmlistbot at llvm.org
Thu Jun 20 13:52:39 PDT 2024


llvmbot wrote:


<!--LLVM PR SUMMARY COMMENT-->
@llvm/pr-subscribers-mlir-math

@llvm/pr-subscribers-mlir-core

Author: Benjamin Maxwell (MacDue)

<details>
<summary>Changes</summary>

This adds a pseudo-type that wraps a VectorType that aims to provide safe APIs for working with scalable vectors. Slightly contrary to the name, this class can represent both fixed and scalable vectors, however, if you are only dealing with fixed vectors the plain VectorType is likely more convenient.

The main difference from the regular VectorType is that vector dimensions are _not_ represented as `int64_t`, which does not allow encoding the scalability into the dimension. Instead, vector dimensions are represented by a VectorDim class. A VectorDim stores both the size and scalability of a dimension. This makes common errors like only checking the size (but not the scalability) impossible (without being explicit with your intention).

To make this convenient to work with there is VectorDimList which provides ArrayRef-like helper methods along with an iterator for VectorDims.

ScalableVectorType can freely converted to VectorType (and vice versa), though there are two main ways to acquire a ScalableVectorType.

Assignment:

This does not check the scalability of `myVectorType`. This is valid and the helpers on ScalableVectorType will function as normal.
```c++
VectorType myVectorType = ...;
ScalableVectorType scalableVector = myVectorType;
```

Casting:

This checks the scalability of myVectorType. In this case, `scalableVector` will be falsy if `myVectorType` contains no scalable dims.
```c++
VectorType myVectorType = ...;
auto scalableVector = dyn_cast<ScalableVectorType>(myVectorType);
```

Note: The use of this class is entirely optional! It only aims to make writing scalable-aware patterns safer and easier.

---

Patch is 40.94 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/96236.diff


11 Files Affected:

- (added) mlir/include/mlir/Support/ScalableVectorType.h (+360) 
- (modified) mlir/lib/Dialect/Math/Transforms/PolynomialApproximation.cpp (+23-34) 
- (modified) mlir/lib/Dialect/Vector/IR/VectorOps.cpp (+22-41) 
- (modified) mlir/lib/Dialect/Vector/Transforms/LowerVectorTransfer.cpp (+8-9) 
- (modified) mlir/lib/Dialect/Vector/Transforms/LowerVectorTranspose.cpp (+6-6) 
- (modified) mlir/lib/Dialect/Vector/Transforms/VectorDropLeadUnitDim.cpp (+8-17) 
- (modified) mlir/lib/Dialect/Vector/Transforms/VectorTransferOpTransforms.cpp (+11-14) 
- (modified) mlir/lib/Dialect/Vector/Transforms/VectorTransforms.cpp (+5-6) 
- (modified) mlir/lib/IR/AsmPrinter.cpp (+4-10) 
- (modified) mlir/unittests/Support/CMakeLists.txt (+2-1) 
- (added) mlir/unittests/Support/ScalableVectorTypeTest.cpp (+76) 


``````````diff
diff --git a/mlir/include/mlir/Support/ScalableVectorType.h b/mlir/include/mlir/Support/ScalableVectorType.h
new file mode 100644
index 0000000000000..0fa7716ea2bcb
--- /dev/null
+++ b/mlir/include/mlir/Support/ScalableVectorType.h
@@ -0,0 +1,360 @@
+//===- ScalableVectorType.h - Scalable Vector Helpers -----------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MLIR_SUPPORT_SCALABLEVECTORTYPE_H
+#define MLIR_SUPPORT_SCALABLEVECTORTYPE_H
+
+#include "mlir/IR/BuiltinTypes.h"
+#include "mlir/Support/LLVM.h"
+
+namespace mlir {
+
+//===----------------------------------------------------------------------===//
+// VectorDim
+//===----------------------------------------------------------------------===//
+
+/// This class represents a dimension of a vector type. Unlike other ShapedTypes
+/// vector dimensions can have scalable quantities, which means the dimension
+/// has a known minimum size, which is scaled by a constant that is only
+/// known at runtime.
+class VectorDim {
+public:
+  explicit constexpr VectorDim(int64_t quantity, bool scalable)
+      : quantity(quantity), scalable(scalable) {};
+
+  /// Constructs a new fixed dimension.
+  constexpr static VectorDim getFixed(int64_t quantity) {
+    return VectorDim(quantity, false);
+  }
+
+  /// Constructs a new scalable dimension.
+  constexpr static VectorDim getScalable(int64_t quantity) {
+    return VectorDim(quantity, true);
+  }
+
+  /// Returns true if this dimension is scalable;
+  constexpr bool isScalable() const { return scalable; }
+
+  /// Returns true if this dimension is fixed.
+  constexpr bool isFixed() const { return !isScalable(); }
+
+  /// Returns the minimum number of elements this dimension can contain.
+  constexpr int64_t getMinSize() const { return quantity; }
+
+  /// If this dimension is fixed returns the number of elements, otherwise
+  /// aborts.
+  constexpr int64_t getFixedSize() const {
+    assert(isFixed());
+    return quantity;
+  }
+
+  constexpr bool operator==(VectorDim const &dim) const {
+    return quantity == dim.quantity && scalable == dim.scalable;
+  }
+
+  constexpr bool operator!=(VectorDim const &dim) const {
+    return !(*this == dim);
+  }
+
+  /// Print the dim.
+  void print(raw_ostream &os) {
+    if (isScalable())
+      os << '[';
+    os << getMinSize();
+    if (isScalable())
+      os << ']';
+  }
+
+  /// Helper class for indexing into a list of sizes (and possibly empty) list
+  /// of scalable dimensions, extracting VectorDim elements.
+  struct Indexer {
+    explicit Indexer(ArrayRef<int64_t> sizes, ArrayRef<bool> scalableDims)
+        : sizes(sizes), scalableDims(scalableDims) {
+      assert(
+          scalableDims.empty() ||
+          sizes.size() == scalableDims.size() &&
+              "expected `scalableDims` to be empty or match `sizes` in length");
+    }
+
+    VectorDim operator[](size_t idx) const {
+      int64_t size = sizes[idx];
+      bool scalable = scalableDims.empty() ? false : scalableDims[idx];
+      return VectorDim(size, scalable);
+    }
+
+    ArrayRef<int64_t> sizes;
+    ArrayRef<bool> scalableDims;
+  };
+
+private:
+  int64_t quantity;
+  bool scalable;
+};
+
+inline raw_ostream &operator<<(raw_ostream &os, VectorDim dim) {
+  dim.print(os);
+  return os;
+}
+
+//===----------------------------------------------------------------------===//
+// VectorDimList
+//===----------------------------------------------------------------------===//
+
+/// Represents a non-owning list of vector dimensions. The underlying dimension
+/// sizes and scalability flags are stored a two seperate lists to match the
+/// storage of a VectorType.
+class VectorDimList : public VectorDim::Indexer {
+public:
+  using VectorDim::Indexer::Indexer;
+
+  class Iterator : public llvm::iterator_facade_base<
+                       Iterator, std::random_access_iterator_tag, VectorDim,
+                       std::ptrdiff_t, VectorDim, VectorDim> {
+  public:
+    Iterator(VectorDim::Indexer indexer, size_t index)
+        : indexer(indexer), index(index) {};
+
+    // Iterator boilerplate.
+    ptrdiff_t operator-(const Iterator &rhs) const { return index - rhs.index; }
+    bool operator==(const Iterator &rhs) const { return index == rhs.index; }
+    bool operator<(const Iterator &rhs) const { return index < rhs.index; }
+    Iterator &operator+=(ptrdiff_t offset) {
+      index += offset;
+      return *this;
+    }
+    Iterator &operator-=(ptrdiff_t offset) {
+      index -= offset;
+      return *this;
+    }
+    VectorDim operator*() const { return indexer[index]; }
+
+    VectorDim::Indexer getIndexer() const { return indexer; }
+    ptrdiff_t getIndex() const { return index; }
+
+  private:
+    VectorDim::Indexer indexer;
+    ptrdiff_t index;
+  };
+
+  // Generic definitions.
+  using value_type = VectorDim;
+  using iterator = Iterator;
+  using const_iterator = Iterator;
+  using reverse_iterator = std::reverse_iterator<iterator>;
+  using const_reverse_iterator = std::reverse_iterator<const_iterator>;
+  using size_type = size_t;
+  using difference_type = ptrdiff_t;
+
+  /// Construct from iterator pair.
+  VectorDimList(Iterator begin, Iterator end)
+      : VectorDimList(VectorDimList(begin.getIndexer())
+                          .slice(begin.getIndex(), end - begin)) {}
+
+  VectorDimList(VectorDim::Indexer indexer) : VectorDim::Indexer(indexer) {};
+
+  /// Construct from a VectorType.
+  static VectorDimList from(VectorType vectorType) {
+    if (!vectorType)
+      return VectorDimList({}, {});
+    return VectorDimList(vectorType.getShape(), vectorType.getScalableDims());
+  }
+
+  Iterator begin() const { return Iterator(*this, 0); }
+  Iterator end() const { return Iterator(*this, size()); }
+
+  /// Check if the dims are empty.
+  bool empty() const { return sizes.empty(); }
+
+  /// Get the number of dims.
+  size_t size() const { return sizes.size(); }
+
+  /// Return the first dim.
+  VectorDim front() const { return (*this)[0]; }
+
+  /// Return the last dim.
+  VectorDim back() const { return (*this)[size() - 1]; }
+
+  /// Chop of thie first \p n dims, and keep the remaining \p m
+  /// dims.
+  VectorDimList slice(size_t n, size_t m) const {
+    ArrayRef<int64_t> newSizes = sizes.slice(n, m);
+    ArrayRef<bool> newScalableDims =
+        scalableDims.empty() ? ArrayRef<bool>{} : scalableDims.slice(n, m);
+    return VectorDimList(newSizes, newScalableDims);
+  }
+
+  /// Drop the first \p n dims.
+  VectorDimList dropFront(size_t n = 1) const { return slice(n, size() - n); }
+
+  /// Drop the last \p n dims.
+  VectorDimList dropBack(size_t n = 1) const { return slice(0, size() - n); }
+
+  /// Return a copy of *this with only the first \p n elements.
+  VectorDimList takeFront(size_t n = 1) const {
+    if (n >= size())
+      return *this;
+    return dropBack(size() - n);
+  }
+
+  /// Return a copy of *this with only the last \p n elements.
+  VectorDimList takeBack(size_t n = 1) const {
+    if (n >= size())
+      return *this;
+    return dropFront(size() - n);
+  }
+
+  /// Return copy of *this with the first n dims matching the predicate removed.
+  template <class PredicateT>
+  VectorDimList dropWhile(PredicateT predicate) const {
+    return VectorDimList(llvm::find_if_not(*this, predicate), end());
+  }
+
+  /// Returns true if one or more of the dims are scalable.
+  bool hasScalableDims() const {
+    return llvm::is_contained(getScalableDims(), true);
+  }
+
+  /// Check for dim equality.
+  bool equals(VectorDimList rhs) const {
+    if (size() != rhs.size())
+      return false;
+    return std::equal(begin(), end(), rhs.begin());
+  }
+
+  /// Check for dim equality.
+  bool equals(ArrayRef<VectorDim> rhs) const {
+    if (size() != rhs.size())
+      return false;
+    return std::equal(begin(), end(), rhs.begin());
+  }
+
+  /// Return the underlying sizes.
+  ArrayRef<int64_t> getSizes() const { return sizes; }
+
+  /// Return the underlying scalable dims.
+  ArrayRef<bool> getScalableDims() const { return scalableDims; }
+};
+
+inline bool operator==(VectorDimList lhs, VectorDimList rhs) {
+  return lhs.equals(rhs);
+}
+
+inline bool operator!=(VectorDimList lhs, VectorDimList rhs) {
+  return !(lhs == rhs);
+}
+
+inline bool operator==(VectorDimList lhs, ArrayRef<VectorDim> rhs) {
+  return lhs.equals(rhs);
+}
+
+inline bool operator!=(VectorDimList lhs, ArrayRef<VectorDim> rhs) {
+  return !(lhs == rhs);
+}
+
+//===----------------------------------------------------------------------===//
+// ScalableVectorType
+//===----------------------------------------------------------------------===//
+
+/// A pseudo-type that wraps a VectorType that aims to provide safe APIs for
+/// working with scalable vectors. Slightly contrary to the name this class can
+/// represent both fixed and scalable vectors, however, if you only are always
+/// dealing with fixed vectors the plain VectorType is likely more convenient.
+///
+/// The main difference from the regular VectorType is that vector dimensions
+/// are _not_ represented as `int64_t`, which does not allow encoding the
+/// scalability into the dimension. Instead, vector dimensions are represented
+/// by a VectorDim class. A VectorDim stores both the size and scalability of a
+/// dimension. Makes common errors like only checking the size (but not the
+/// scalability) impossible (without being explicit with your intention).
+///
+/// To make this convenient to work with there's VectorDimList provides
+/// ArrayRef-like helper methods along with an iterator for VectorDims.
+///
+/// ScalableVectorType and VectorType can be freely converted between. However,
+/// there is one thing to note:
+///
+/// Assignment from a VectorType always succeeds (scalability is checked):
+/// ```
+/// VectorType someVectorType = ...;
+/// ScalableVectorType vector = someVectorType;
+/// ```
+///
+/// Casting from a Type/VectorType via dyn_cast (or cast) checks scalability:
+/// ```
+/// if (auto scalableVector = dyn_cast<ScalableVectorType>(someVectorType)) {
+///   <vector type has scalable dims>
+/// }
+/// ```
+class ScalableVectorType {
+public:
+  using Dim = VectorDim;
+  using DimList = VectorDimList;
+
+  ScalableVectorType(VectorType vectorType) : vectorType(vectorType) {};
+
+  /// Construct a new ScalableVectorType.
+  static ScalableVectorType get(DimList shape, Type elementType) {
+    return VectorType::get(shape.getSizes(), elementType,
+                           shape.getScalableDims());
+  }
+
+  /// Construct a new ScalableVectorType.
+  static ScalableVectorType get(ArrayRef<Dim> shape, Type elementType) {
+    SmallVector<int64_t> sizes;
+    SmallVector<bool> scalableDims;
+    sizes.reserve(shape.size());
+    scalableDims.reserve(shape.size());
+    for (Dim dim : shape) {
+      sizes.push_back(dim.getMinSize());
+      scalableDims.push_back(dim.isScalable());
+    }
+    return VectorType::get(sizes, elementType, scalableDims);
+  }
+
+  inline static bool classof(Type type) {
+    auto vectorType = dyn_cast_if_present<VectorType>(type);
+    return vectorType && vectorType.isScalable();
+  }
+
+  /// Returns the value of the specified dimension (including scalability).
+  Dim getDim(unsigned idx) const {
+    assert(idx < getRank() && "invalid dim index for vector type");
+    return getDims()[idx];
+  }
+
+  /// Returns the dimensions of this vector type (including scalability).
+  DimList getDims() const {
+    return DimList(vectorType.getShape(), vectorType.getScalableDims());
+  }
+
+  /// Returns the rank of this vector type.
+  int64_t getRank() const { return vectorType.getRank(); }
+
+  /// Returns true if the vector contains scalable dimensions.
+  bool isScalable() const { return vectorType.isScalable(); }
+  bool allDimsScalable() const { return vectorType.allDimsScalable(); }
+
+  /// Returns the element type of this vector type.
+  Type getElementType() const { return vectorType.getElementType(); }
+
+  /// Clones this vector type with a new element type.
+  ScalableVectorType clone(Type elementType) {
+    return vectorType.clone(elementType);
+  }
+
+  operator VectorType() const { return vectorType; }
+
+  explicit operator bool() const { return bool(vectorType); }
+
+private:
+  VectorType vectorType;
+};
+
+} // namespace mlir
+
+#endif
diff --git a/mlir/lib/Dialect/Math/Transforms/PolynomialApproximation.cpp b/mlir/lib/Dialect/Math/Transforms/PolynomialApproximation.cpp
index f4fae68da63b3..7c694ca7d55c8 100644
--- a/mlir/lib/Dialect/Math/Transforms/PolynomialApproximation.cpp
+++ b/mlir/lib/Dialect/Math/Transforms/PolynomialApproximation.cpp
@@ -29,6 +29,7 @@
 #include "mlir/IR/OpDefinition.h"
 #include "mlir/IR/PatternMatch.h"
 #include "mlir/IR/TypeUtilities.h"
+#include "mlir/Support/ScalableVectorType.h"
 #include "mlir/Transforms/DialectConversion.h"
 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
 #include "llvm/ADT/ArrayRef.h"
@@ -39,24 +40,14 @@ using namespace mlir;
 using namespace mlir::math;
 using namespace mlir::vector;
 
-// Helper to encapsulate a vector's shape (including scalable dims).
-struct VectorShape {
-  ArrayRef<int64_t> sizes;
-  ArrayRef<bool> scalableFlags;
-
-  bool empty() const { return sizes.empty(); }
-};
-
 // Returns vector shape if the type is a vector. Returns an empty shape if it is
 // not a vector.
-static VectorShape vectorShape(Type type) {
+static VectorDimList vectorShape(Type type) {
   auto vectorType = dyn_cast<VectorType>(type);
-  return vectorType
-             ? VectorShape{vectorType.getShape(), vectorType.getScalableDims()}
-             : VectorShape{};
+  return VectorDimList::from(vectorType);
 }
 
-static VectorShape vectorShape(Value value) {
+static VectorDimList vectorShape(Value value) {
   return vectorShape(value.getType());
 }
 
@@ -65,16 +56,14 @@ static VectorShape vectorShape(Value value) {
 //----------------------------------------------------------------------------//
 
 // Broadcasts scalar type into vector type (iff shape is non-scalar).
-static Type broadcast(Type type, VectorShape shape) {
+static Type broadcast(Type type, VectorDimList shape) {
   assert(!isa<VectorType>(type) && "must be scalar type");
-  return !shape.empty()
-             ? VectorType::get(shape.sizes, type, shape.scalableFlags)
-             : type;
+  return !shape.empty() ? ScalableVectorType::get(shape, type) : type;
 }
 
 // Broadcasts scalar value into vector (iff shape is non-scalar).
 static Value broadcast(ImplicitLocOpBuilder &builder, Value value,
-                       VectorShape shape) {
+                       VectorDimList shape) {
   assert(!isa<VectorType>(value.getType()) && "must be scalar value");
   auto type = broadcast(value.getType(), shape);
   return !shape.empty() ? builder.create<BroadcastOp>(type, value) : value;
@@ -227,7 +216,7 @@ static Value clamp(ImplicitLocOpBuilder &builder, Value value, Value lowerBound,
 static std::pair<Value, Value> frexp(ImplicitLocOpBuilder &builder, Value arg,
                                      bool isPositive = false) {
   assert(getElementTypeOrSelf(arg).isF32() && "arg must be f32 type");
-  VectorShape shape = vectorShape(arg);
+  VectorDimList shape = vectorShape(arg);
 
   auto bcast = [&](Value value) -> Value {
     return broadcast(builder, value, shape);
@@ -267,7 +256,7 @@ static std::pair<Value, Value> frexp(ImplicitLocOpBuilder &builder, Value arg,
 // Computes exp2 for an i32 argument.
 static Value exp2I32(ImplicitLocOpBuilder &builder, Value arg) {
   assert(getElementTypeOrSelf(arg).isInteger(32) && "arg must be i32 type");
-  VectorShape shape = vectorShape(arg);
+  VectorDimList shape = vectorShape(arg);
 
   auto bcast = [&](Value value) -> Value {
     return broadcast(builder, value, shape);
@@ -293,7 +282,7 @@ Value makePolynomialCalculation(ImplicitLocOpBuilder &builder,
   Type elementType = getElementTypeOrSelf(x);
   assert((elementType.isF32() || elementType.isF16()) &&
          "x must be f32 or f16 type");
-  VectorShape shape = vectorShape(x);
+  VectorDimList shape = vectorShape(x);
 
   if (coeffs.empty())
     return broadcast(builder, floatCst(builder, 0.0f, elementType), shape);
@@ -391,7 +380,7 @@ AtanApproximation::matchAndRewrite(math::AtanOp op,
   if (!getElementTypeOrSelf(operand).isF32())
     return rewriter.notifyMatchFailure(op, "unsupported operand type");
 
-  VectorShape shape = vectorShape(op.getOperand());
+  VectorDimList shape = vectorShape(op.getOperand());
 
   ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
   Value abs = builder.create<math::AbsFOp>(operand);
@@ -490,7 +479,7 @@ Atan2Approximation::matchAndRewrite(math::Atan2Op op,
     return rewriter.notifyMatchFailure(op, "unsupported operand type");
 
   ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
-  VectorShape shape = vectorShape(op.getResult());
+  VectorDimList shape = vectorShape(op.getResult());
 
   // Compute atan in the valid range.
   auto div = builder.create<arith::DivFOp>(y, x);
@@ -556,7 +545,7 @@ TanhApproximation::matchAndRewrite(math::TanhOp op,
   if (!getElementTypeOrSelf(op.getOperand()).isF32())
     return rewriter.notifyMatchFailure(op, "unsupported operand type");
 
-  VectorShape shape = vectorShape(op.getOperand());
+  VectorDimList shape = vectorShape(op.getOperand());
 
   ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
   auto bcast = [&](Value value) -> Value {
@@ -644,7 +633,7 @@ LogApproximationBase<Op>::logMatchAndRewrite(Op op, PatternRewriter &rewriter,
   if (!getElementTypeOrSelf(op.getOperand()).isF32())
     return rewriter.notifyMatchFailure(op, "unsupported operand type");
 
-  VectorShape shape = vectorShape(op.getOperand());
+  VectorDimList shape = vectorShape(op.getOperand());
 
   ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
   auto bcast = [&](Value value) -> Value {
@@ -791,7 +780,7 @@ Log1pApproximation::matchAndRewrite(math::Log1pOp op,
   if (!getElementTypeOrSelf(op.getOperand()).isF32())
     return rewriter.notifyMatchFailure(op, "unsupported operand type");
 
-  VectorShape shape = vectorShape(op.getOperand());
+  VectorDimList shape = vectorShape(op.getOperand());
 
   ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
   auto bcast = [&](Value value) -> Value {
@@ -846,7 +835,7 @@ AsinPolynomialApproximation::matchAndRewrite(math::AsinOp op,
   if (!(elementType.isF32() || elementType.isF16()))
     return rewriter.notifyMatchFailure(op,
                                        "only f32 and f16 type is supported.");
-  VectorShape shape = vectorShape(operand);
+  VectorDimList shape = vectorShape(operand);
 
   ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
   auto bcast = [&](Value value) -> Value {
@@ -910,7 +899,7 @@ AcosPolynomialApproximation::matchAndRewrite(math::AcosOp op,
   if (!(elementType.isF32() || elementType.isF16()))
     return rewriter.notifyMatchFailure(op,
                                        "only f32 and f16 type is supported.");
-  VectorShape shape = vectorShape(operand);
+  VectorDimList shape = vectorShape(operand);
 
   ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
   auto bcast = [&](Value value) -> Value {
@@ -988,7 +977,7 @@ ErfPolynomialApproximation::matchAndRewrite(math::ErfOp op,
   if (!(elementType.isF32() || elementType.isF16()))
     return rewriter.notifyMatchFailure(op,
                                        "only f32 and f16 type is supported.");
-  VectorShape shape = vectorShape(operand);
+  VectorDimList shape = vectorShape(operand);
 
   ImplicitLocOpBuilder builder(op->getLoc(), rewriter);
   auto bcast = [&](Value value) -> Value {
@@ -1097,7 +1086,7 @@ ErfPolynomialApproximation::matchAndRewrite(math::ErfOp op,
 
 namespace {
 
-Value clampWithNormals(ImplicitLocOpBuilder &builder, const VectorShape shape,
+Value clampWithNormals(ImplicitLocOpBuilder &builder, const VectorDimList shape,
                        Value value, float lowerBound, float upperBound) {
   assert(!std::isnan(lowerBound));
   assert(!std::isnan(upperBound));
@@ -1289,7 +1278,7 @@ ExpM1Approximation::matchAndRewrite(math::ExpM1Op op,
   if (!getElementTypeOrSelf(op.getOperand()).isF32())
     return re...
[truncated]

``````````

</details>


https://github.com/llvm/llvm-project/pull/96236


More information about the Mlir-commits mailing list