[Mlir-commits] [mlir] [mlir][linalg] Implement Conv2D using Winograd Conv2D algorithm (PR #96176)
Hsiangkai Wang
llvmlistbot at llvm.org
Thu Jun 20 04:51:40 PDT 2024
https://github.com/Hsiangkai created https://github.com/llvm/llvm-project/pull/96176
Define high level winograd operators and convert conv_2d_nhwc_fhwc into winograd operators. According to Winograd Conv2D algorithm, we need three transform operators for input, filter, and output transformation.
The formula of Winograd Conv2D algorithm is
Y = A^T x [(G x g x G^T) @ (B^T x d x B)] x A
filter transform: G x g x G^T
input transform: B^T x d x B
output transform: A^T x y x A
The implementation is based on the paper, Fast Algorithm for Convolutional Neural Networks. (https://arxiv.org/abs/1509.09308)
>From 276ed8981c5243696da3bf233a777e1b84f11131 Mon Sep 17 00:00:00 2001
From: Hsiangkai Wang <hsiangkai.wang at arm.com>
Date: Mon, 17 Jun 2024 11:24:07 +0100
Subject: [PATCH] [mlir][linalg] Implement Conv2D using Winograd Conv2D
algorithm
Define high level winograd operators and convert conv_2d_nhwc_fhwc into
winograd operators. According to Winograd Conv2D algorithm, we need
three transform operators for input, filter, and output transformation.
The formula of Winograd Conv2D algorithm is
Y = A^T x [(G x g x G^T) @ (B^T x d x B)] x A
filter transform: G x g x G^T
input transform: B^T x d x B
output transform: A^T x y x A
The implementation is based on the paper, Fast Algorithm for
Convolutional Neural Networks. (https://arxiv.org/abs/1509.09308)
---
.../mlir/Dialect/Linalg/IR/LinalgOps.td | 114 +++++++
.../Dialect/Linalg/Transforms/Transforms.h | 4 +
mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp | 78 +++++
.../Dialect/Linalg/Transforms/CMakeLists.txt | 1 +
.../Linalg/Transforms/WinogradConv2D.cpp | 321 ++++++++++++++++++
mlir/test/Dialect/Linalg/winograd-conv2d.mlir | 248 ++++++++++++++
.../Dialect/Linalg/TestLinalgTransforms.cpp | 13 +
7 files changed, 779 insertions(+)
create mode 100644 mlir/lib/Dialect/Linalg/Transforms/WinogradConv2D.cpp
create mode 100644 mlir/test/Dialect/Linalg/winograd-conv2d.mlir
diff --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgOps.td b/mlir/include/mlir/Dialect/Linalg/IR/LinalgOps.td
index 64c538367267d..de1097b6ac27b 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgOps.td
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgOps.td
@@ -154,4 +154,118 @@ def Linalg_SoftmaxOp : Linalg_Op<"softmax",
let hasVerifier = 1;
}
+def Linalg_WinogradFilterTransformOp : Linalg_Op<"winograd_filter_transform"> {
+ let summary = "Winograd filter transform operator";
+ let description = [{
+ Winograd Conv2D algorithm will convert linalg Conv2D operator into batched
+ matrix multiply. Before the matrix multiply, it will convert filter and
+ input into a format suitable for batched matrix multiply. After the matrix
+ multiply, it will convert output to the final result tensor.
+
+ The algorithm F(m x m, r x r) is
+
+ Y = A^T x [(G x g x G^T) @ (B^T x d x B)] x A
+
+ The size of output Y is m x m. The size of filter g is r x r. The size of
+ input d is (m + r - 1) x (m + r - 1). A^T, A, G^T, G, B^T, and B are
+ transformation matrices.
+
+ This operator is defined to represent the high level concept of filter
+ transformation (G x g x G^T) in the Winograd Conv2D algorithm.
+ }];
+
+ let arguments = (ins AnyRankedTensor:$filter,
+ AnyRankedTensor:$output,
+ I64Attr:$m,
+ I64Attr:$r
+ );
+
+ let results = (outs AnyRankedTensor:$result);
+ let assemblyFormat = [{
+ attr-dict
+ `m` `(` $m `)`
+ `r` `(` $r `)`
+ `ins` `(` $filter `:` type($filter) `)`
+ `outs` `(` $output `:` type($output) `)`
+ `->` type($result)
+ }];
+ let hasVerifier = 1;
+}
+
+def Linalg_WinogradInputTransformOp : Linalg_Op<"winograd_input_transform"> {
+ let summary = "Winograd input transform operator";
+ let description = [{
+ Winograd Conv2D algorithm will convert linalg Conv2D operator into batched
+ matrix multiply. Before the matrix multiply, it will convert filter and
+ input into a format suitable for batched matrix multiply. After the matrix
+ multiply, it will convert output to the final result tensor.
+
+ The algorithm F(m x m, r x r) is
+
+ Y = A^T x [(G x g x G^T) @ (B^T x d x B)] x A
+
+ The size of output Y is m x m. The size of filter g is r x r. The size of
+ input d is (m + r - 1) x (m + r - 1). A^T, A, G^T, G, B^T, and B are
+ transformation matrices.
+
+ This operator is defined to represent the high level concept of input
+ transformation (B^T x d x B) in the Winograd Conv2D algorithm.
+ }];
+
+ let arguments = (ins AnyRankedTensor:$input,
+ AnyRankedTensor:$output,
+ I64Attr:$m,
+ I64Attr:$r
+ );
+
+ let results = (outs AnyRankedTensor:$result);
+ let assemblyFormat = [{
+ attr-dict
+ `m` `(` $m `)`
+ `r` `(` $r `)`
+ `ins` `(` $input `:` type($input) `)`
+ `outs` `(` $output `:` type($output) `)`
+ `->` type($result)
+ }];
+ let hasVerifier = 1;
+}
+
+def Linalg_WinogradOutputTransformOp : Linalg_Op<"winograd_output_transform"> {
+ let summary = "Winograd output transform operator";
+ let description = [{
+ Winograd Conv2D algorithm will convert linalg Conv2D operator into batched
+ matrix multiply. Before the matrix multiply, it will convert filter and
+ input into a format suitable for batched matrix multiply. After the matrix
+ multiply, it will convert output to the final result tensor.
+
+ The algorithm F(m x m, r x r) is
+
+ Y = A^T x [(G x g x G^T) @ (B^T x d x B)] x A
+
+ The size of output Y is m x m. The size of filter g is r x r. The size of
+ input d is (m + r - 1) x (m + r - 1). A^T, A, G^T, G, B^T, and B are
+ transformation matrices.
+
+ This operator is defined to represent the high level concept of output
+ transformation (A^T x y x A) in the Winograd Conv2D algorithm.
+ }];
+
+ let arguments = (ins AnyRankedTensor:$value,
+ AnyRankedTensor:$output,
+ I64Attr:$m,
+ I64Attr:$r
+ );
+
+ let results = (outs AnyRankedTensor:$result);
+ let assemblyFormat = [{
+ attr-dict
+ `m` `(` $m `)`
+ `r` `(` $r `)`
+ `ins` `(` $value `:` type($value) `)`
+ `outs` `(` $output `:` type($output) `)`
+ `->` type($result)
+ }];
+ let hasVerifier = 1;
+}
+
#endif // LINALG_OPS
diff --git a/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h b/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h
index 05e97befdec1f..835aeaf2ffed3 100644
--- a/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h
+++ b/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h
@@ -1692,6 +1692,10 @@ void populateTransposeMatmulPatterns(RewritePatternSet &patterns,
void populateBlockPackMatmulPatterns(RewritePatternSet &patterns,
const ControlBlockPackMatmulFn &controlFn);
+/// Patterns to apply Winograd Conv2D algorithm F(m x m, r x r).
+void populateWinogradConv2DPatterns(RewritePatternSet &patterns, int64_t m,
+ int64_t r);
+
} // namespace linalg
} // namespace mlir
diff --git a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
index 57d126603ebd7..7bf2a5bca037f 100644
--- a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
+++ b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
@@ -2734,6 +2734,84 @@ FailureOr<SmallVector<Value>> SoftmaxOp::decomposeOperation(OpBuilder &b) {
return SmallVector<Value>{result};
}
+//===----------------------------------------------------------------------===//
+// WinogradFilterTransformOp
+//===----------------------------------------------------------------------===//
+
+LogicalResult WinogradFilterTransformOp::verify() {
+ auto filterType = cast<ShapedType>(getFilter().getType());
+ auto outputType = cast<ShapedType>(getOutput().getType());
+ auto filterElemType = filterType.getElementType();
+ auto outputElemType = outputType.getElementType();
+ if (filterElemType != outputElemType) {
+ return emitOpError() << "expected element type of input " << filterElemType
+ << " to match element type of output "
+ << outputElemType;
+ }
+
+ unsigned filterRank = filterType.getRank();
+ if (filterRank != 4)
+ return emitOpError() << "expected rank of input is 4";
+
+ unsigned outputRank = outputType.getRank();
+ if (outputRank != 6)
+ return emitOpError() << "expected rank of output is 6";
+
+ return success();
+}
+
+//===----------------------------------------------------------------------===//
+// WinogradInputTransformOp
+//===----------------------------------------------------------------------===//
+
+LogicalResult WinogradInputTransformOp::verify() {
+ auto inputType = cast<ShapedType>(getInput().getType());
+ auto outputType = cast<ShapedType>(getOutput().getType());
+ auto inputElemType = inputType.getElementType();
+ auto outputElemType = outputType.getElementType();
+ if (inputElemType != outputElemType) {
+ return emitOpError() << "expected element type of input " << inputElemType
+ << " to match element type of output "
+ << outputElemType;
+ }
+
+ unsigned inputRank = inputType.getRank();
+ if (inputRank != 4)
+ return emitOpError() << "expected rank of input is 4";
+
+ unsigned outputRank = outputType.getRank();
+ if (outputRank != 6)
+ return emitOpError() << "expected rank of output is 6";
+
+ return success();
+}
+
+//===----------------------------------------------------------------------===//
+// WinogradOutputTransformOp
+//===----------------------------------------------------------------------===//
+
+LogicalResult WinogradOutputTransformOp::verify() {
+ auto valueType = cast<ShapedType>(getValue().getType());
+ auto outputType = cast<ShapedType>(getOutput().getType());
+ auto valueElemType = valueType.getElementType();
+ auto outputElemType = outputType.getElementType();
+ if (valueElemType != outputElemType) {
+ return emitOpError() << "expected element type of value " << valueElemType
+ << " to match element type of output "
+ << outputElemType;
+ }
+
+ unsigned valueRank = valueType.getRank();
+ if (valueRank != 6)
+ return emitOpError() << "expected rank of input is 6";
+
+ unsigned outputRank = outputType.getRank();
+ if (outputRank != 4)
+ return emitOpError() << "expected rank of output is 4";
+
+ return success();
+}
+
//===----------------------------------------------------------------------===//
// LinalgDialect
//===----------------------------------------------------------------------===//
diff --git a/mlir/lib/Dialect/Linalg/Transforms/CMakeLists.txt b/mlir/lib/Dialect/Linalg/Transforms/CMakeLists.txt
index 7e3dc56e0acdc..a7dcc29b5b9be 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/CMakeLists.txt
+++ b/mlir/lib/Dialect/Linalg/Transforms/CMakeLists.txt
@@ -38,6 +38,7 @@ add_mlir_dialect_library(MLIRLinalgTransforms
Transforms.cpp
TransposeConv2D.cpp
Vectorization.cpp
+ WinogradConv2D.cpp
ADDITIONAL_HEADER_DIRS
${MLIR_MAIN_INCLUDE_DIR}/mlir/Dialect/Linalg
diff --git a/mlir/lib/Dialect/Linalg/Transforms/WinogradConv2D.cpp b/mlir/lib/Dialect/Linalg/Transforms/WinogradConv2D.cpp
new file mode 100644
index 0000000000000..86e834d51f2fc
--- /dev/null
+++ b/mlir/lib/Dialect/Linalg/Transforms/WinogradConv2D.cpp
@@ -0,0 +1,321 @@
+//===- WinogradConv2D.cpp - Winograd Conv2D implementation ----------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Implement Winograd Conv2D algorithm. The implementation is based on the
+// paper: Fast Algorithms for Convolutional Neural Networks
+// (https://arxiv.org/abs/1509.09308)
+//
+//===----------------------------------------------------------------------===//
+
+#include "mlir/Dialect/Linalg/IR/Linalg.h"
+#include "mlir/Dialect/Tensor/IR/Tensor.h"
+#include "mlir/Dialect/Tosa/Utils/ConversionUtils.h"
+#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
+#include "llvm/Support/MathExtras.h"
+
+namespace mlir {
+namespace linalg {
+
+namespace {
+
+using TransformMapKeyTy = std::pair<int, int>;
+
+// We use F(m, r) to define the size of minimal filtering algorithms.
+// m is the output dimension and r is the filter dimension. We can get
+// the input dimension, alpha, from the formula, alpha = m + r - 1.
+//
+// For example, when m = 2 and r = 3, we know its input size is 4.
+// The Conv2D will operate on 4x4 input data with 3x3 filter and get
+// 2x2 output result.
+constexpr TransformMapKeyTy F_2_3{2, 3};
+constexpr TransformMapKeyTy F_4_3{4, 3};
+constexpr TransformMapKeyTy F_2_5{2, 5};
+
+Value collapse2DData(RewriterBase &rewriter, Location loc, Value data) {
+ auto type = cast<ShapedType>(data.getType());
+ auto elementType = type.getElementType();
+ auto shape = type.getShape();
+ auto collapseType = RankedTensorType::get(
+ {shape[0] * shape[1] * shape[2] * shape[3], shape[4], shape[5]},
+ elementType);
+ SmallVector<ReassociationIndices> reassociation = {{0, 1, 2, 3}, {4}, {5}};
+ return rewriter.create<tensor::CollapseShapeOp>(loc, collapseType, data,
+ reassociation);
+}
+
+// This function generates linalg.batch_matmul to multiply input with filter.
+// linalg.batch_matmul only supports 3-dimension data sets. We can treat
+// tileH x tileW x H x W data as the 1-dimension data array. That is to convert
+// [tileH, tileW, H, W, N, C] to [tileH x tileW x H x W, N, C]. In this way, we
+// can convert 6-dimension input data to 3-dimension representation that is
+// suitable for linalg.batch_matmul.
+//
+// Batched matmul will do the matrix multiply with the reduction on channel.
+//
+// We get
+//
+// %collapsed_input = tensor.collapse_shape %input
+// %collapsed_filter = tensor.collapse_shape %filter
+// %ret = linalg.batch_matmul %collapsed_input, %collapsed_filter
+// %expanded_ret = tensor.expand_shape %ret
+//
+// After this function, we get return value with data layout
+// (tileH, tileW, H, W, N, F).
+Value matrixMultiply(RewriterBase &rewriter, Location loc,
+ Value transformedFilter, Value transformedInput) {
+ auto collapseFilter = collapse2DData(rewriter, loc, transformedFilter);
+ auto collapseInput = collapse2DData(rewriter, loc, transformedInput);
+
+ // Batched matrix multiply
+ auto filterType = cast<ShapedType>(transformedFilter.getType());
+ auto filterShape = filterType.getShape();
+ auto inputType = cast<ShapedType>(transformedInput.getType());
+ auto inputElemType = inputType.getElementType();
+ auto inputShape = inputType.getShape();
+
+ auto matmulType = RankedTensorType::get(
+ {inputShape[0] * inputShape[1] * inputShape[2] * inputShape[3],
+ inputShape[4], filterShape[5]},
+ inputElemType);
+ Value init = rewriter.create<tensor::EmptyOp>(loc, matmulType.getShape(),
+ inputElemType);
+
+ auto matmulOp = rewriter.create<linalg::BatchMatmulOp>(
+ loc, matmulType, ValueRange({collapseInput, collapseFilter}),
+ ValueRange{init});
+
+ // Expand matmul result
+ SmallVector<ReassociationIndices> reassociation = {{0, 1, 2, 3}, {4}, {5}};
+ auto expandType =
+ RankedTensorType::get({inputShape[0], inputShape[1], inputShape[2],
+ inputShape[3], inputShape[4], filterShape[5]},
+ inputElemType);
+ auto expandOutput = rewriter.create<tensor::ExpandShapeOp>(
+ loc, expandType, matmulOp.getResult(0), reassociation);
+ return expandOutput;
+}
+
+Value insertToAlignedTensor(RewriterBase &rewriter, Location loc, Value value,
+ RankedTensorType alignedType) {
+ Value alignedInput = rewriter.create<tensor::EmptyOp>(
+ loc, alignedType.getShape(), alignedType.getElementType());
+
+ auto zeroIndex = rewriter.getIndexAttr(0);
+ auto oneIndex = rewriter.getIndexAttr(1);
+ SmallVector<OpFoldResult, 4> offsets(4, zeroIndex);
+ SmallVector<OpFoldResult, 4> strides(4, oneIndex);
+
+ auto valueType = cast<ShapedType>(value.getType());
+ auto valueShape = valueType.getShape();
+ SmallVector<OpFoldResult, 4> sizes;
+ sizes.emplace_back(rewriter.getIndexAttr(valueShape[0]));
+ sizes.emplace_back(rewriter.getIndexAttr(valueShape[1]));
+ sizes.emplace_back(rewriter.getIndexAttr(valueShape[2]));
+ sizes.emplace_back(rewriter.getIndexAttr(valueShape[3]));
+
+ return rewriter.create<tensor::InsertSliceOp>(loc, value, alignedInput,
+ offsets, sizes, strides);
+}
+
+Value extractFromAlignedTensor(RewriterBase &rewriter, Location loc,
+ Value value, RankedTensorType extractedType) {
+ auto zeroIndex = rewriter.getIndexAttr(0);
+ auto oneIndex = rewriter.getIndexAttr(1);
+ SmallVector<OpFoldResult, 4> offsets(4, zeroIndex);
+ SmallVector<OpFoldResult, 4> strides(4, oneIndex);
+
+ auto extractedShape = extractedType.getShape();
+ SmallVector<OpFoldResult, 4> sizes;
+ sizes.emplace_back(rewriter.getIndexAttr(extractedShape[0]));
+ sizes.emplace_back(rewriter.getIndexAttr(extractedShape[1]));
+ sizes.emplace_back(rewriter.getIndexAttr(extractedShape[2]));
+ sizes.emplace_back(rewriter.getIndexAttr(extractedShape[3]));
+
+ return rewriter.create<tensor::ExtractSliceOp>(loc, extractedType, value,
+ offsets, sizes, strides);
+}
+
+bool hasAllOneValues(DenseIntElementsAttr attr) {
+ return llvm::all_of(
+ attr, [](const APInt &element) { return element.getSExtValue() == 1; });
+}
+
+FailureOr<Operation *> winogradConv2DHelper(RewriterBase &rewriter,
+ linalg::Conv2DNhwcFhwcOp convOp,
+ int64_t m, int64_t r) {
+ Value input = convOp.getInputs()[0];
+ Value filter = convOp.getInputs()[1];
+ Value output = convOp.getOutputs()[0];
+ auto inputType = cast<ShapedType>(input.getType());
+ auto filterType = cast<ShapedType>(filter.getType());
+ auto outputType = cast<ShapedType>(output.getType());
+
+ if (!inputType.hasStaticShape())
+ return rewriter.notifyMatchFailure(convOp,
+ "expected a static shape for the input");
+
+ if (!filterType.hasStaticShape())
+ return rewriter.notifyMatchFailure(
+ convOp, "expected a static shape for the filter");
+
+ if (!hasAllOneValues(convOp.getDilations()))
+ return rewriter.notifyMatchFailure(convOp,
+ "expected all ones for dilations");
+
+ if (!hasAllOneValues(convOp.getStrides()))
+ return rewriter.notifyMatchFailure(convOp, "expected all ones for strides");
+
+ auto filterShape = filterType.getShape();
+ int64_t filterF = filterShape[0];
+ int64_t filterH = filterShape[1];
+ int64_t filterW = filterShape[2];
+ int64_t filterC = filterShape[3];
+ auto inputShape = inputType.getShape();
+ int64_t inputN = inputShape[0];
+ int64_t inputH = inputShape[1];
+ int64_t inputW = inputShape[2];
+ int64_t inputC = inputShape[3];
+ auto outputShape = outputType.getShape();
+ int64_t outputN = outputShape[0];
+ int64_t outputH = outputShape[1];
+ int64_t outputW = outputShape[2];
+ int64_t outputF = outputShape[3];
+
+ // Only support F(m x m, r x r), F(m x 1, r x 1) or F(1 x m, 1 x r)
+ bool isSupportedFilter = false;
+ if (filterH == filterW && filterH == r)
+ isSupportedFilter = true;
+ if (filterH == r && filterW == 1)
+ isSupportedFilter = true;
+ if (filterH == 1 && filterW == r)
+ isSupportedFilter = true;
+
+ if (!isSupportedFilter)
+ return rewriter.notifyMatchFailure(
+ convOp, "only support filter (r x r), (r x 1) or (1 x r)");
+
+ // Currently, we support (m, r) = (2, 3) or (4, 3) or (2, 5)
+ static const llvm::SmallVector<TransformMapKeyTy, 3> validConfigs = {
+ F_2_3, F_4_3, F_2_5};
+
+ TransformMapKeyTy key = {m, r};
+ auto it = std::find(validConfigs.begin(), validConfigs.end(), key);
+ // If we cannot find the constant transformation matrix, it means we do
+ // not support this configuration yet.
+ if (it == validConfigs.end())
+ return failure();
+
+ // All the criterias are satisfied. We can do Winograd Conv2D.
+ Location loc = convOp.getLoc();
+
+ // For F(m x 1, r x 1), we only need to do left side transform.
+ bool leftTransform = filterH != 1;
+ // For F(1 x m, 1 x r), we only need to do right side transform.
+ bool rightTransform = filterW != 1;
+ int64_t heightM = leftTransform ? m : 1;
+ int64_t widthM = rightTransform ? m : 1;
+ int64_t heightR = leftTransform ? r : 1;
+ int64_t widthR = rightTransform ? r : 1;
+
+ // --- Create operator for filter transform ---
+ Type elementType = filterType.getElementType();
+ int64_t alphaH = heightM + heightR - 1;
+ int64_t alphaW = widthM + widthR - 1;
+ int64_t tileH = llvm::divideCeilSigned(outputH, heightM);
+ int64_t tileW = llvm::divideCeilSigned(outputW, widthM);
+ auto retType = RankedTensorType::get(
+ {tileH, tileW, alphaH, alphaW, filterC, filterF}, elementType);
+ Value retValue =
+ rewriter.create<tensor::EmptyOp>(loc, retType.getShape(), elementType);
+ auto transformedFilter = rewriter.create<linalg::WinogradFilterTransformOp>(
+ loc, retType, filter, retValue, m, r);
+
+ // --- Create operator for input transform ---
+
+ // When input size - (r - 1) is not aligned with output tile size, we need to
+ // pad the input data to create the full tiles as tiling.
+ int64_t alignedInputH = tileH * heightM + (heightR - 1);
+ int64_t alignedInputW = tileW * widthM + (widthR - 1);
+ if (alignedInputH != inputH || alignedInputW != inputW) {
+ auto alignedInputType = RankedTensorType::get(
+ {inputN, alignedInputH, alignedInputW, inputC}, elementType);
+ input = insertToAlignedTensor(rewriter, loc, input, alignedInputType);
+ }
+
+ retType = RankedTensorType::get(
+ {tileH, tileW, alphaH, alphaW, inputN, inputC}, elementType);
+ retValue =
+ rewriter.create<tensor::EmptyOp>(loc, retType.getShape(), elementType);
+ auto transformedInput = rewriter.create<linalg::WinogradInputTransformOp>(
+ loc, retType, input, retValue, m, r);
+
+ Value matmulRet =
+ matrixMultiply(rewriter, loc, transformedFilter, transformedInput);
+
+ // --- Create operator for output transform ---
+
+ // When output size is not aligned with output tile size, we need to pad the
+ // output buffer to insert the full tiles after tiling.
+ int64_t alignedOutputH = tileH * heightM;
+ int64_t alignedOutputW = tileW * widthM;
+ bool isOutputUnaligned =
+ ((alignedOutputH != outputH) || (alignedOutputW != outputW));
+ if (isOutputUnaligned) {
+ auto alignedOutputType = RankedTensorType::get(
+ {outputN, alignedOutputH, alignedOutputW, outputF}, elementType);
+ output = insertToAlignedTensor(rewriter, loc, output, alignedOutputType);
+ outputType = alignedOutputType;
+ }
+
+ Value transformedOutput = rewriter.create<linalg::WinogradOutputTransformOp>(
+ loc, outputType, matmulRet, output, m, r);
+
+ // When output size is not aligned with output tile size, extract the
+ // value from the padded buffer.
+ if (isOutputUnaligned) {
+ transformedOutput = extractFromAlignedTensor(
+ rewriter, loc, transformedOutput,
+ RankedTensorType::get({outputN, outputH, outputW, outputF},
+ elementType));
+ }
+
+ rewriter.replaceOp(convOp, transformedOutput);
+
+ return transformedOutput.getDefiningOp();
+}
+
+class WinogradConv2DNhwcFhwc final
+ : public OpRewritePattern<linalg::Conv2DNhwcFhwcOp> {
+public:
+ using OpRewritePattern::OpRewritePattern;
+ WinogradConv2DNhwcFhwc(mlir::MLIRContext *context, int64_t m, int64_t r)
+ : OpRewritePattern(context), m(m), r(r) {}
+
+ LogicalResult matchAndRewrite(linalg::Conv2DNhwcFhwcOp convOp,
+ PatternRewriter &rewriter) const override {
+ if (failed(winogradConv2DHelper(rewriter, convOp, m, r)))
+ return failure();
+
+ return success();
+ }
+
+private:
+ int64_t m;
+ int64_t r;
+};
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+void populateWinogradConv2DPatterns(RewritePatternSet &patterns, int64_t m,
+ int64_t r) {
+ MLIRContext *context = patterns.getContext();
+ patterns.insert<WinogradConv2DNhwcFhwc>(context, m, r);
+}
+
+} // end namespace linalg
+} // end namespace mlir
diff --git a/mlir/test/Dialect/Linalg/winograd-conv2d.mlir b/mlir/test/Dialect/Linalg/winograd-conv2d.mlir
new file mode 100644
index 0000000000000..6cca3c602d4c0
--- /dev/null
+++ b/mlir/test/Dialect/Linalg/winograd-conv2d.mlir
@@ -0,0 +1,248 @@
+// RUN: mlir-opt %s -split-input-file -test-linalg-transform-patterns=test-winograd-conv2d | FileCheck %s
+
+func.func @conv2d_4x4_3x3(%arg0: tensor<2x6x6x5xf32>, %arg1: tensor<2x3x3x5xf32>, %arg2: tensor<1xf32>) -> tensor<2x4x4x2xf32> {
+ %0 = tensor.empty() : tensor<2x4x4x2xf32>
+ %1 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2, d3) -> (0)>, affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2 : tensor<1xf32>) outs(%0 : tensor<2x4x4x2xf32>) {
+ ^bb0(%in: f32, %out: f32):
+ linalg.yield %in : f32
+ } -> tensor<2x4x4x2xf32>
+ %2 = linalg.conv_2d_nhwc_fhwc {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<2x6x6x5xf32>, tensor<2x3x3x5xf32>) outs(%1 : tensor<2x4x4x2xf32>) -> tensor<2x4x4x2xf32>
+ return %2 : tensor<2x4x4x2xf32>
+}
+
+// CHECK: #[[$MAP0:.+]] = affine_map<(d0, d1, d2, d3) -> (0)>
+// CHECK: #[[$MAP1:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
+// CHECK-LABEL: func.func @conv2d_4x4_3x3
+// CHECK-SAME: (%[[ARG0:.*]]: tensor<2x6x6x5xf32>, %[[ARG1:.*]]: tensor<2x3x3x5xf32>, %[[ARG2:.*]]: tensor<1xf32>) -> tensor<2x4x4x2xf32> {
+// CHECK: %[[S0:.*]] = tensor.empty() : tensor<2x4x4x2xf32>
+// CHECK-NEXT: %[[S1:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%[[ARG2]] : tensor<1xf32>) outs(%[[S0]] : tensor<2x4x4x2xf32>) {
+// CHECK-NEXT: ^bb0(%[[IN:.*]]: f32, %[[OUT:.*]]: f32):
+// CHECK-NEXT: linalg.yield %[[IN]] : f32
+// CHECK-NEXT: } -> tensor<2x4x4x2xf32>
+// CHECK-NEXT: %[[S2:.*]] = tensor.empty() : tensor<1x1x6x6x5x2xf32>
+// CHECK-NEXT: %[[S3:.*]] = linalg.winograd_filter_transform m(4) r(3) ins(%[[ARG1]] : tensor<2x3x3x5xf32>) outs(%[[S2]] : tensor<1x1x6x6x5x2xf32>) -> tensor<1x1x6x6x5x2xf32>
+// CHECK-NEXT: %[[S4:.*]] = tensor.empty() : tensor<1x1x6x6x2x5xf32>
+// CHECK-NEXT: %[[S5:.*]] = linalg.winograd_input_transform m(4) r(3) ins(%[[ARG0]] : tensor<2x6x6x5xf32>) outs(%[[S4]] : tensor<1x1x6x6x2x5xf32>) -> tensor<1x1x6x6x2x5xf32>
+// CHECK-NEXT: %[[COLLAPSED:.*]] = tensor.collapse_shape %[[S3]] {{\[}}[0, 1, 2, 3], [4], [5]] : tensor<1x1x6x6x5x2xf32> into tensor<36x5x2xf32>
+// CHECK-NEXT: %[[COLLAPSED_0:.*]] = tensor.collapse_shape %[[S5]] {{\[}}[0, 1, 2, 3], [4], [5]] : tensor<1x1x6x6x2x5xf32> into tensor<36x2x5xf32>
+// CHECK-NEXT: %[[S6:.*]] = tensor.empty() : tensor<36x2x2xf32>
+// CHECK-NEXT: %[[S7:.*]] = linalg.batch_matmul ins(%[[COLLAPSED_0]], %[[COLLAPSED]] : tensor<36x2x5xf32>, tensor<36x5x2xf32>) outs(%[[S6]] : tensor<36x2x2xf32>) -> tensor<36x2x2xf32>
+// CHECK-NEXT: %[[EXPANDED:.*]] = tensor.expand_shape %[[S7]] {{\[}}[0, 1, 2, 3], [4], [5]] output_shape [1, 1, 6, 6, 2, 2] : tensor<36x2x2xf32> into tensor<1x1x6x6x2x2xf32>
+// CHECK-NEXT: %[[S8:.*]] = linalg.winograd_output_transform m(4) r(3) ins(%[[EXPANDED]] : tensor<1x1x6x6x2x2xf32>) outs(%[[S1]] : tensor<2x4x4x2xf32>) -> tensor<2x4x4x2xf32>
+// CHECK-NEXT: return %[[S8]] : tensor<2x4x4x2xf32>
+// CHECK-NEXT: }
+
+// -----
+
+func.func @conv2d_2x2_5x5(%arg0: tensor<2x6x6x5xf32>, %arg1: tensor<2x5x5x5xf32>, %arg2: tensor<1xf32>) -> tensor<2x2x2x2xf32> {
+ %0 = tensor.empty() : tensor<2x2x2x2xf32>
+ %1 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2, d3) -> (0)>, affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2 : tensor<1xf32>) outs(%0 : tensor<2x2x2x2xf32>) {
+ ^bb0(%in: f32, %out: f32):
+ linalg.yield %in : f32
+ } -> tensor<2x2x2x2xf32>
+ %2 = linalg.conv_2d_nhwc_fhwc {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<2x6x6x5xf32>, tensor<2x5x5x5xf32>) outs(%1 : tensor<2x2x2x2xf32>) -> tensor<2x2x2x2xf32>
+ return %2 : tensor<2x2x2x2xf32>
+}
+
+// CHECK: #[[$MAP0:.+]] = affine_map<(d0, d1, d2, d3) -> (0)>
+// CHECK: #[[$MAP1:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
+// CHECK-LABEL: func.func @conv2d_2x2_5x5
+// CHECK-SAME: (%[[ARG0:.*]]: tensor<2x6x6x5xf32>, %[[ARG1:.*]]: tensor<2x5x5x5xf32>, %[[ARG2:.*]]: tensor<1xf32>) -> tensor<2x2x2x2xf32> {
+// CHECK: %[[S0:.*]] = tensor.empty() : tensor<2x2x2x2xf32>
+// CHECK-NEXT: %[[S1:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%[[ARG2]] : tensor<1xf32>) outs(%[[S0]] : tensor<2x2x2x2xf32>) {
+// CHECK-NEXT: ^bb0(%[[IN:.*]]: f32, %[[OUT:.*]]: f32):
+// CHECK-NEXT: linalg.yield %[[IN]] : f32
+// CHECK-NEXT: } -> tensor<2x2x2x2xf32>
+// CHECK-NEXT: %[[S2:.*]] = tensor.empty() : tensor<1x1x6x6x5x2xf32>
+// CHECK-NEXT: %[[S3:.*]] = linalg.winograd_filter_transform m(2) r(5) ins(%[[ARG1]] : tensor<2x5x5x5xf32>) outs(%[[S2]] : tensor<1x1x6x6x5x2xf32>) -> tensor<1x1x6x6x5x2xf32>
+// CHECK-NEXT: %[[S4:.*]] = tensor.empty() : tensor<1x1x6x6x2x5xf32>
+// CHECK-NEXT: %[[S5:.*]] = linalg.winograd_input_transform m(2) r(5) ins(%[[ARG0]] : tensor<2x6x6x5xf32>) outs(%[[S4]] : tensor<1x1x6x6x2x5xf32>) -> tensor<1x1x6x6x2x5xf32>
+// CHECK-NEXT: %[[COLLAPSED:.*]] = tensor.collapse_shape %[[S3]] {{\[}}[0, 1, 2, 3], [4], [5]] : tensor<1x1x6x6x5x2xf32> into tensor<36x5x2xf32>
+// CHECK-NEXT: %[[COLLAPSED_0:.*]] = tensor.collapse_shape %[[S5]] {{\[}}[0, 1, 2, 3], [4], [5]] : tensor<1x1x6x6x2x5xf32> into tensor<36x2x5xf32>
+// CHECK-NEXT: %[[S6:.*]] = tensor.empty() : tensor<36x2x2xf32>
+// CHECK-NEXT: %[[S7:.*]] = linalg.batch_matmul ins(%[[COLLAPSED_0]], %[[COLLAPSED]] : tensor<36x2x5xf32>, tensor<36x5x2xf32>) outs(%[[S6]] : tensor<36x2x2xf32>) -> tensor<36x2x2xf32>
+// CHECK-NEXT: %[[EXPANDED:.*]] = tensor.expand_shape %[[S7]] {{\[}}[0, 1, 2, 3], [4], [5]] output_shape [1, 1, 6, 6, 2, 2] : tensor<36x2x2xf32> into tensor<1x1x6x6x2x2xf32>
+// CHECK-NEXT: %[[S8:.*]] = linalg.winograd_output_transform m(2) r(5) ins(%[[EXPANDED]] : tensor<1x1x6x6x2x2xf32>) outs(%[[S1]] : tensor<2x2x2x2xf32>) -> tensor<2x2x2x2xf32>
+// CHECK-NEXT: return %[[S8]] : tensor<2x2x2x2xf32>
+// CHECK-NEXT: }
+
+// -----
+
+func.func @conv2d_1x4_1x3(%arg0: tensor<2x1x6x5xf32>, %arg1: tensor<2x1x3x5xf32>, %arg2: tensor<1xf32>) -> tensor<2x1x4x2xf32> {
+ %0 = tensor.empty() : tensor<2x1x4x2xf32>
+ %1 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2, d3) -> (0)>, affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2 : tensor<1xf32>) outs(%0 : tensor<2x1x4x2xf32>) {
+ ^bb0(%in: f32, %out: f32):
+ linalg.yield %in : f32
+ } -> tensor<2x1x4x2xf32>
+ %2 = linalg.conv_2d_nhwc_fhwc {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<2x1x6x5xf32>, tensor<2x1x3x5xf32>) outs(%1 : tensor<2x1x4x2xf32>) -> tensor<2x1x4x2xf32>
+ return %2 : tensor<2x1x4x2xf32>
+}
+
+// CHECK: #[[$MAP0:.+]] = affine_map<(d0, d1, d2, d3) -> (0)>
+// CHECK: #[[$MAP1:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
+// CHECK-LABEL: func.func @conv2d_1x4_1x3
+// CHECK-SAME: (%[[ARG0:.*]]: tensor<2x1x6x5xf32>, %[[ARG1:.*]]: tensor<2x1x3x5xf32>, %[[ARG2:.*]]: tensor<1xf32>) -> tensor<2x1x4x2xf32> {
+// CHECK: %[[S0:.*]] = tensor.empty() : tensor<2x1x4x2xf32>
+// CHECK-NEXT: %[[S1:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%[[ARG2]] : tensor<1xf32>) outs(%[[S0]] : tensor<2x1x4x2xf32>) {
+// CHECK-NEXT: ^bb0(%[[IN:.*]]: f32, %[[OUT:.*]]: f32):
+// CHECK-NEXT: linalg.yield %[[IN]] : f32
+// CHECK-NEXT: } -> tensor<2x1x4x2xf32>
+// CHECK-NEXT: %[[S2:.*]] = tensor.empty() : tensor<1x1x1x6x5x2xf32>
+// CHECK-NEXT: %[[S3:.*]] = linalg.winograd_filter_transform m(4) r(3) ins(%[[ARG1]] : tensor<2x1x3x5xf32>) outs(%[[S2]] : tensor<1x1x1x6x5x2xf32>) -> tensor<1x1x1x6x5x2xf32>
+// CHECK-NEXT: %[[S4:.*]] = tensor.empty() : tensor<1x1x1x6x2x5xf32>
+// CHECK-NEXT: %[[S5:.*]] = linalg.winograd_input_transform m(4) r(3) ins(%[[ARG0]] : tensor<2x1x6x5xf32>) outs(%[[S4]] : tensor<1x1x1x6x2x5xf32>) -> tensor<1x1x1x6x2x5xf32>
+// CHECK-NEXT: %[[COLLAPSED:.*]] = tensor.collapse_shape %[[S3]] {{\[}}[0, 1, 2, 3], [4], [5]] : tensor<1x1x1x6x5x2xf32> into tensor<6x5x2xf32>
+// CHECK-NEXT: %[[COLLAPSED_0:.*]] = tensor.collapse_shape %[[S5]] {{\[}}[0, 1, 2, 3], [4], [5]] : tensor<1x1x1x6x2x5xf32> into tensor<6x2x5xf32>
+// CHECK-NEXT: %[[S6:.*]] = tensor.empty() : tensor<6x2x2xf32>
+// CHECK-NEXT: %[[S7:.*]] = linalg.batch_matmul ins(%[[COLLAPSED_0]], %[[COLLAPSED]] : tensor<6x2x5xf32>, tensor<6x5x2xf32>) outs(%[[S6]] : tensor<6x2x2xf32>) -> tensor<6x2x2xf32>
+// CHECK-NEXT: %[[EXPANDED:.*]] = tensor.expand_shape %[[S7]] {{\[}}[0, 1, 2, 3], [4], [5]] output_shape [1, 1, 1, 6, 2, 2] : tensor<6x2x2xf32> into tensor<1x1x1x6x2x2xf32>
+// CHECK-NEXT: %[[S8:.*]] = linalg.winograd_output_transform m(4) r(3) ins(%[[EXPANDED]] : tensor<1x1x1x6x2x2xf32>) outs(%[[S1]] : tensor<2x1x4x2xf32>) -> tensor<2x1x4x2xf32>
+// CHECK-NEXT: return %[[S8]] : tensor<2x1x4x2xf32>
+// CHECK-NEXT: }
+
+// -----
+
+func.func @conv2d_4x1_3x1(%arg0: tensor<2x6x1x5xf32>, %arg1: tensor<2x3x1x5xf32>, %arg2: tensor<1xf32>) -> tensor<2x4x1x2xf32> {
+ %0 = tensor.empty() : tensor<2x4x1x2xf32>
+ %1 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2, d3) -> (0)>, affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2 : tensor<1xf32>) outs(%0 : tensor<2x4x1x2xf32>) {
+ ^bb0(%in: f32, %out: f32):
+ linalg.yield %in : f32
+ } -> tensor<2x4x1x2xf32>
+ %2 = linalg.conv_2d_nhwc_fhwc {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<2x6x1x5xf32>, tensor<2x3x1x5xf32>) outs(%1 : tensor<2x4x1x2xf32>) -> tensor<2x4x1x2xf32>
+ return %2 : tensor<2x4x1x2xf32>
+}
+
+// CHECK: #[[$MAP0:.+]] = affine_map<(d0, d1, d2, d3) -> (0)>
+// CHECK: #[[$MAP1:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
+// CHECK-LABEL: func.func @conv2d_4x1_3x1
+// CHECK-SAME: (%[[ARG0:.*]]: tensor<2x6x1x5xf32>, %[[ARG1:.*]]: tensor<2x3x1x5xf32>, %[[ARG2:.*]]: tensor<1xf32>) -> tensor<2x4x1x2xf32> {
+// CHECK: %[[S0:.*]] = tensor.empty() : tensor<2x4x1x2xf32>
+// CHECK-NEXT: %[[S1:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%[[ARG2]] : tensor<1xf32>) outs(%[[S0]] : tensor<2x4x1x2xf32>) {
+// CHECK-NEXT: ^bb0(%[[IN:.*]]: f32, %[[OUT:.*]]: f32):
+// CHECK-NEXT: linalg.yield %[[IN]] : f32
+// CHECK-NEXT: } -> tensor<2x4x1x2xf32>
+// CHECK-NEXT: %[[S2:.*]] = tensor.empty() : tensor<1x1x6x1x5x2xf32>
+// CHECK-NEXT: %[[S3:.*]] = linalg.winograd_filter_transform m(4) r(3) ins(%[[ARG1]] : tensor<2x3x1x5xf32>) outs(%[[S2]] : tensor<1x1x6x1x5x2xf32>) -> tensor<1x1x6x1x5x2xf32>
+// CHECK-NEXT: %[[S4:.*]] = tensor.empty() : tensor<1x1x6x1x2x5xf32>
+// CHECK-NEXT: %[[S5:.*]] = linalg.winograd_input_transform m(4) r(3) ins(%[[ARG0]] : tensor<2x6x1x5xf32>) outs(%[[S4]] : tensor<1x1x6x1x2x5xf32>) -> tensor<1x1x6x1x2x5xf32>
+// CHECK-NEXT: %[[COLLAPSED:.*]] = tensor.collapse_shape %[[S3]] {{\[}}[0, 1, 2, 3], [4], [5]] : tensor<1x1x6x1x5x2xf32> into tensor<6x5x2xf32>
+// CHECK-NEXT: %[[COLLAPSED_0:.*]] = tensor.collapse_shape %[[S5]] {{\[}}[0, 1, 2, 3], [4], [5]] : tensor<1x1x6x1x2x5xf32> into tensor<6x2x5xf32>
+// CHECK-NEXT: %[[S6:.*]] = tensor.empty() : tensor<6x2x2xf32>
+// CHECK-NEXT: %[[S7:.*]] = linalg.batch_matmul ins(%[[COLLAPSED_0]], %[[COLLAPSED]] : tensor<6x2x5xf32>, tensor<6x5x2xf32>) outs(%[[S6]] : tensor<6x2x2xf32>) -> tensor<6x2x2xf32>
+// CHECK-NEXT: %[[EXPANDED:.*]] = tensor.expand_shape %[[S7]] {{\[}}[0, 1, 2, 3], [4], [5]] output_shape [1, 1, 6, 1, 2, 2] : tensor<6x2x2xf32> into tensor<1x1x6x1x2x2xf32>
+// CHECK-NEXT: %[[S8:.*]] = linalg.winograd_output_transform m(4) r(3) ins(%[[EXPANDED]] : tensor<1x1x6x1x2x2xf32>) outs(%[[S1]] : tensor<2x4x1x2xf32>) -> tensor<2x4x1x2xf32>
+// CHECK-NEXT: return %[[S8]] : tensor<2x4x1x2xf32>
+// CHECK-NEXT: }
+
+// -----
+
+func.func @conv2d_aligned(%arg0: tensor<2x10x10x5xf32>, %arg1: tensor<2x3x3x5xf32>, %arg2: tensor<1xf32>) -> tensor<2x8x8x2xf32> {
+ %0 = tensor.empty() : tensor<2x8x8x2xf32>
+ %1 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2, d3) -> (0)>, affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2 : tensor<1xf32>) outs(%0 : tensor<2x8x8x2xf32>) {
+ ^bb0(%in: f32, %out: f32):
+ linalg.yield %in : f32
+ } -> tensor<2x8x8x2xf32>
+ %2 = linalg.conv_2d_nhwc_fhwc {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<2x10x10x5xf32>, tensor<2x3x3x5xf32>) outs(%1 : tensor<2x8x8x2xf32>) -> tensor<2x8x8x2xf32>
+ return %2 : tensor<2x8x8x2xf32>
+}
+
+// CHECK: #[[$MAP0:.+]] = affine_map<(d0, d1, d2, d3) -> (0)>
+// CHECK: #[[$MAP1:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
+// CHECK-LABEL: func.func @conv2d_aligned
+// CHECK-SAME: (%[[ARG0:.*]]: tensor<2x10x10x5xf32>, %[[ARG1:.*]]: tensor<2x3x3x5xf32>, %[[ARG2:.*]]: tensor<1xf32>) -> tensor<2x8x8x2xf32> {
+// CHECK: %[[S0:.*]] = tensor.empty() : tensor<2x8x8x2xf32>
+// CHECK-NEXT: %[[S1:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%[[ARG2]] : tensor<1xf32>) outs(%[[S0]] : tensor<2x8x8x2xf32>) {
+// CHECK-NEXT: ^bb0(%[[IN:.*]]: f32, %[[OUT:.*]]: f32):
+// CHECK-NEXT: linalg.yield %[[IN]] : f32
+// CHECK-NEXT: } -> tensor<2x8x8x2xf32>
+// CHECK-NEXT: %[[S2:.*]] = tensor.empty() : tensor<2x2x6x6x5x2xf32>
+// CHECK-NEXT: %[[S3:.*]] = linalg.winograd_filter_transform m(4) r(3) ins(%[[ARG1]] : tensor<2x3x3x5xf32>) outs(%[[S2]] : tensor<2x2x6x6x5x2xf32>) -> tensor<2x2x6x6x5x2xf32>
+// CHECK-NEXT: %[[S4:.*]] = tensor.empty() : tensor<2x2x6x6x2x5xf32>
+// CHECK-NEXT: %[[S5:.*]] = linalg.winograd_input_transform m(4) r(3) ins(%[[ARG0]] : tensor<2x10x10x5xf32>) outs(%[[S4]] : tensor<2x2x6x6x2x5xf32>) -> tensor<2x2x6x6x2x5xf32>
+// CHECK-NEXT: %[[COLLAPSED:.*]] = tensor.collapse_shape %[[S3]] {{\[}}[0, 1, 2, 3], [4], [5]] : tensor<2x2x6x6x5x2xf32> into tensor<144x5x2xf32>
+// CHECK-NEXT: %[[COLLAPSED_0:.*]] = tensor.collapse_shape %[[S5]] {{\[}}[0, 1, 2, 3], [4], [5]] : tensor<2x2x6x6x2x5xf32> into tensor<144x2x5xf32>
+// CHECK-NEXT: %[[S6:.*]] = tensor.empty() : tensor<144x2x2xf32>
+// CHECK-NEXT: %[[S7:.*]] = linalg.batch_matmul ins(%[[COLLAPSED_0]], %[[COLLAPSED]] : tensor<144x2x5xf32>, tensor<144x5x2xf32>) outs(%[[S6]] : tensor<144x2x2xf32>) -> tensor<144x2x2xf32>
+// CHECK-NEXT: %[[EXPANDED:.*]] = tensor.expand_shape %[[S7]] {{\[}}[0, 1, 2, 3], [4], [5]] output_shape [2, 2, 6, 6, 2, 2] : tensor<144x2x2xf32> into tensor<2x2x6x6x2x2xf32>
+// CHECK-NEXT: %[[S8:.*]] = linalg.winograd_output_transform m(4) r(3) ins(%[[EXPANDED]] : tensor<2x2x6x6x2x2xf32>) outs(%[[S1]] : tensor<2x8x8x2xf32>) -> tensor<2x8x8x2xf32>
+// CHECK-NEXT: return %[[S8]] : tensor<2x8x8x2xf32>
+// CHECK-NEXT: }
+
+// -----
+
+func.func @conv2d_unaligned(%arg0: tensor<2x11x11x5xf32>, %arg1: tensor<2x3x3x5xf32>, %arg2: tensor<1xf32>) -> tensor<2x9x9x2xf32> {
+ %0 = tensor.empty() : tensor<2x9x9x2xf32>
+ %1 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2, d3) -> (0)>, affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2 : tensor<1xf32>) outs(%0 : tensor<2x9x9x2xf32>) {
+ ^bb0(%in: f32, %out: f32):
+ linalg.yield %in : f32
+ } -> tensor<2x9x9x2xf32>
+ %2 = linalg.conv_2d_nhwc_fhwc {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<2x11x11x5xf32>, tensor<2x3x3x5xf32>) outs(%1 : tensor<2x9x9x2xf32>) -> tensor<2x9x9x2xf32>
+ return %2 : tensor<2x9x9x2xf32>
+}
+
+// CHECK: #[[$MAP0:.+]] = affine_map<(d0, d1, d2, d3) -> (0)>
+// CHECK: #[[$MAP1:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
+// CHECK-LABEL: func.func @conv2d_unaligned
+// CHECK-SAME: (%[[ARG0:.*]]: tensor<2x11x11x5xf32>, %[[ARG1:.*]]: tensor<2x3x3x5xf32>, %[[ARG2:.*]]: tensor<1xf32>) -> tensor<2x9x9x2xf32> {
+// CHECK: %[[S0:.*]] = tensor.empty() : tensor<2x9x9x2xf32>
+// CHECK-NEXT: %[[S1:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%[[ARG2]] : tensor<1xf32>) outs(%[[S0]] : tensor<2x9x9x2xf32>) {
+// CHECK-NEXT: ^bb0(%[[IN:.*]]: f32, %[[OUT:.*]]: f32):
+// CHECK-NEXT: linalg.yield %[[IN]] : f32
+// CHECK-NEXT: } -> tensor<2x9x9x2xf32>
+// CHECK-NEXT: %[[S2:.*]] = tensor.empty() : tensor<3x3x6x6x5x2xf32>
+// CHECK-NEXT: %[[S3:.*]] = linalg.winograd_filter_transform m(4) r(3) ins(%[[ARG1]] : tensor<2x3x3x5xf32>) outs(%[[S2]] : tensor<3x3x6x6x5x2xf32>) -> tensor<3x3x6x6x5x2xf32>
+// CHECK-NEXT: %[[INPUT_BUF:.*]] = tensor.empty() : tensor<2x14x14x5xf32>
+// CHECK-NEXT: %[[INSERTED_SLICE:.*]] = tensor.insert_slice %[[ARG0]] into %[[INPUT_BUF]][0, 0, 0, 0] [2, 11, 11, 5] [1, 1, 1, 1] : tensor<2x11x11x5xf32> into tensor<2x14x14x5xf32>
+// CHECK-NEXT: %[[S4:.*]] = tensor.empty() : tensor<3x3x6x6x2x5xf32>
+// CHECK-NEXT: %[[S5:.*]] = linalg.winograd_input_transform m(4) r(3) ins(%[[INSERTED_SLICE]] : tensor<2x14x14x5xf32>) outs(%[[S4]] : tensor<3x3x6x6x2x5xf32>) -> tensor<3x3x6x6x2x5xf32>
+// CHECK-NEXT: %[[COLLAPSED:.*]] = tensor.collapse_shape %[[S3]] {{\[}}[0, 1, 2, 3], [4], [5]] : tensor<3x3x6x6x5x2xf32> into tensor<324x5x2xf32>
+// CHECK-NEXT: %[[COLLAPSED_0:.*]] = tensor.collapse_shape %[[S5]] {{\[}}[0, 1, 2, 3], [4], [5]] : tensor<3x3x6x6x2x5xf32> into tensor<324x2x5xf32>
+// CHECK-NEXT: %[[S6:.*]] = tensor.empty() : tensor<324x2x2xf32>
+// CHECK-NEXT: %[[S7:.*]] = linalg.batch_matmul ins(%[[COLLAPSED_0]], %[[COLLAPSED]] : tensor<324x2x5xf32>, tensor<324x5x2xf32>) outs(%[[S6]] : tensor<324x2x2xf32>) -> tensor<324x2x2xf32>
+// CHECK-NEXT: %[[EXPANDED:.*]] = tensor.expand_shape %[[S7]] {{\[}}[0, 1, 2, 3], [4], [5]] output_shape [3, 3, 6, 6, 2, 2] : tensor<324x2x2xf32> into tensor<3x3x6x6x2x2xf32>
+// CHECK-NEXT: %[[OUTPUT_BUF:.*]] = tensor.empty() : tensor<2x12x12x2xf32>
+// CHECK-NEXT: %[[INSERTED_SLICE_2:.*]] = tensor.insert_slice %[[S1]] into %[[OUTPUT_BUF]][0, 0, 0, 0] [2, 9, 9, 2] [1, 1, 1, 1] : tensor<2x9x9x2xf32> into tensor<2x12x12x2xf32>
+// CHECK-NEXT: %[[S8:.*]] = linalg.winograd_output_transform m(4) r(3) ins(%[[EXPANDED]] : tensor<3x3x6x6x2x2xf32>) outs(%[[INSERTED_SLICE_2]] : tensor<2x12x12x2xf32>) -> tensor<2x12x12x2xf32>
+// CHECK-NEXT: %[[EXTRACTED_SLICE:.*]] = tensor.extract_slice %[[S8]][0, 0, 0, 0] [2, 9, 9, 2] [1, 1, 1, 1] : tensor<2x12x12x2xf32> to tensor<2x9x9x2xf32>
+// CHECK-NEXT: return %[[EXTRACTED_SLICE]] : tensor<2x9x9x2xf32>
+// CHECK-NEXT: }
+
+// -----
+
+func.func @conv2d_unsupported_1(%arg0: tensor<2x6x5x5xf32>, %arg1: tensor<2x3x2x5xf32>, %arg2: tensor<1xf32>) -> tensor<2x4x4x2xf32> {
+ %0 = tensor.empty() : tensor<2x4x4x2xf32>
+ %1 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2, d3) -> (0)>, affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2 : tensor<1xf32>) outs(%0 : tensor<2x4x4x2xf32>) {
+ ^bb0(%in: f32, %out: f32):
+ linalg.yield %in : f32
+ } -> tensor<2x4x4x2xf32>
+ %2 = linalg.conv_2d_nhwc_fhwc {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<2x6x5x5xf32>, tensor<2x3x2x5xf32>) outs(%1 : tensor<2x4x4x2xf32>) -> tensor<2x4x4x2xf32>
+ return %2 : tensor<2x4x4x2xf32>
+}
+
+// CHECK-LABEL: conv2d_unsupported_1
+// CHECK: linalg.conv_2d_nhwc_fhwc
+
+// -----
+
+func.func @conv2d_unsupported_2(%arg0: tensor<2x7x7x5xf32>, %arg1: tensor<2x4x4x5xf32>, %arg2: tensor<1xf32>) -> tensor<2x4x4x2xf32> {
+ %0 = tensor.empty() : tensor<2x4x4x2xf32>
+ %1 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2, d3) -> (0)>, affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2 : tensor<1xf32>) outs(%0 : tensor<2x4x4x2xf32>) {
+ ^bb0(%in: f32, %out: f32):
+ linalg.yield %in : f32
+ } -> tensor<2x4x4x2xf32>
+ %2 = linalg.conv_2d_nhwc_fhwc {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<2x7x7x5xf32>, tensor<2x4x4x5xf32>) outs(%1 : tensor<2x4x4x2xf32>) -> tensor<2x4x4x2xf32>
+ return %2 : tensor<2x4x4x2xf32>
+}
+
+// CHECK-LABEL: conv2d_unsupported_2
+// CHECK: linalg.conv_2d_nhwc_fhwc
+
+// -----
+
+func.func @conv2d_unsupported_3(%arg0: tensor<?x?x?x?xf32>, %arg1: tensor<2x3x3x5xf32>, %arg2: tensor<?x?x?x?xf32>) -> tensor<?x?x?x?xf32> {
+ %0 = linalg.conv_2d_nhwc_fhwc {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<?x?x?x?xf32>, tensor<2x3x3x5xf32>) outs(%arg2 : tensor<?x?x?x?xf32>) -> tensor<?x?x?x?xf32>
+ return %0 : tensor<?x?x?x?xf32>
+}
+
+// CHECK-LABEL: conv2d_unsupported_3
+// CHECK: linalg.conv_2d_nhwc_fhwc
diff --git a/mlir/test/lib/Dialect/Linalg/TestLinalgTransforms.cpp b/mlir/test/lib/Dialect/Linalg/TestLinalgTransforms.cpp
index 4892fa2f99a7c..12cb46a5968f1 100644
--- a/mlir/test/lib/Dialect/Linalg/TestLinalgTransforms.cpp
+++ b/mlir/test/lib/Dialect/Linalg/TestLinalgTransforms.cpp
@@ -123,6 +123,10 @@ struct TestLinalgTransforms
*this, "test-erase-unnecessary-inputs",
llvm::cl::desc("Test patterns to erase unnecessary inputs"),
llvm::cl::init(false)};
+ Option<bool> testWinogradConv2D{
+ *this, "test-winograd-conv2d",
+ llvm::cl::desc("Test transform conv2d by Winograd conv2d algorithm"),
+ llvm::cl::init(false)};
};
} // namespace
@@ -207,6 +211,13 @@ static void applyEraseUnnecessaryInputs(func::FuncOp funcOp) {
(void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns));
}
+static void applyWinogradConv2D(func::FuncOp funcOp) {
+ RewritePatternSet patterns(funcOp.getContext());
+ populateWinogradConv2DPatterns(patterns, /*m=*/4, /*r=*/3);
+ populateWinogradConv2DPatterns(patterns, /*m=*/2, /*r=*/5);
+ (void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns));
+}
+
/// Apply transformations specified as patterns.
void TestLinalgTransforms::runOnOperation() {
if (testPatterns)
@@ -231,6 +242,8 @@ void TestLinalgTransforms::runOnOperation() {
return applyEraseUnusedOperandsAndResultsPatterns(getOperation());
if (testEraseUnnecessaryInputs)
return applyEraseUnnecessaryInputs(getOperation());
+ if (testWinogradConv2D)
+ return applyWinogradConv2D(getOperation());
}
namespace mlir {
More information about the Mlir-commits
mailing list