[Mlir-commits] [mlir] [mlir][linalg] Implement patterns for reducing rank of named linalg contraction ops (PR #95710)
llvmlistbot at llvm.org
llvmlistbot at llvm.org
Wed Jun 19 15:08:08 PDT 2024
https://github.com/srcarroll updated https://github.com/llvm/llvm-project/pull/95710
>From 0418e51cf33bc59cc6f19ed00edc8c2d62e4d9df Mon Sep 17 00:00:00 2001
From: Sam <srcarroll314 at gmail.com>
Date: Sat, 15 Jun 2024 10:46:44 -0500
Subject: [PATCH 1/6] implement canonicalizer for batched linalg operations
---
.../Linalg/IR/LinalgNamedStructuredOps.yaml | 49 ++-----
mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp | 121 ++++++++++++++++++
.../linalg/opdsl/ops/core_named_ops.py | 5 +
3 files changed, 138 insertions(+), 37 deletions(-)
diff --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
index fad234a9dcae9..3cbfb58ed8506 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
@@ -304,41 +304,6 @@ structured_op: !LinalgStructuredOpConfig
- !ScalarExpression
scalar_arg: I
--- !LinalgOpConfig
-metadata: !LinalgOpMetadata
- name: reciprocal
- cpp_class_name: ReciprocalOp
- doc: |-
- Applies reciprocal(x) elementwise.
-
- No numeric casting is performed on the input operand.
-structured_op: !LinalgStructuredOpConfig
- args:
- - !LinalgOperandDefConfig
- name: I
- kind: input_tensor
- type_var: T1
- shape_map: affine_map<() -> ()>
- - !LinalgOperandDefConfig
- name: O
- kind: output_tensor
- type_var: T1
- shape_map: affine_map<() -> ()>
- indexing_maps: !LinalgIndexingMapsConfig
- static_indexing_maps:
- - affine_map<() -> ()>
- - affine_map<() -> ()>
- iterator_types: []
- assignments:
- - !ScalarAssign
- arg: O
- value: !ScalarExpression
- scalar_fn:
- kind: unary
- fn_name: reciprocal
- operands:
- - !ScalarExpression
- scalar_arg: I
---- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: round
cpp_class_name: RoundOp
@@ -516,7 +481,7 @@ structured_op: !LinalgStructuredOpConfig
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: erf
- cpp_class_name: erfOp
+ cpp_class_name: ErfOp
doc: |-
Applies erf(x) elementwise.
@@ -959,7 +924,7 @@ structured_op: !LinalgStructuredOpConfig
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: powf
- cpp_class_name: PowFOp
+ cpp_class_name: PowfOp
doc: |-
Takes the powf(lhs, rhs) between two inputs, elementwise. For powf(arg, 2) use `linalg.square`.
@@ -1622,6 +1587,8 @@ metadata: !LinalgOpMetadata
them to the same data type as the accumulator/output.
implements:
- LinalgContractionOpInterface
+ defines:
+ - hasCanonicalizer
structured_op: !LinalgStructuredOpConfig
args:
- !LinalgOperandDefConfig
@@ -1692,6 +1659,8 @@ metadata: !LinalgOpMetadata
them to the same data type as the accumulator/output.
implements:
- LinalgContractionOpInterface
+ defines:
+ - hasCanonicalizer
structured_op: !LinalgStructuredOpConfig
args:
- !LinalgOperandDefConfig
@@ -1762,6 +1731,8 @@ metadata: !LinalgOpMetadata
them to the same data type as the accumulator/output.
implements:
- LinalgContractionOpInterface
+ defines:
+ - hasCanonicalizer
structured_op: !LinalgStructuredOpConfig
args:
- !LinalgOperandDefConfig
@@ -2140,6 +2111,8 @@ metadata: !LinalgOpMetadata
them to the same data type as the accumulator/output.
implements:
- LinalgContractionOpInterface
+ defines:
+ - hasCanonicalizer
structured_op: !LinalgStructuredOpConfig
args:
- !LinalgOperandDefConfig
@@ -2208,6 +2181,8 @@ metadata: !LinalgOpMetadata
them to the same data type as the accumulator/output.
implements:
- LinalgContractionOpInterface
+ defines:
+ - hasCanonicalizer
structured_op: !LinalgStructuredOpConfig
args:
- !LinalgOperandDefConfig
diff --git a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
index b79afebfa8158..ecd669165efc7 100644
--- a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
+++ b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
@@ -17,6 +17,7 @@
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Complex/IR/Complex.h"
+#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
@@ -42,6 +43,7 @@
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
+#include <numeric>
#include <optional>
using namespace mlir;
@@ -578,6 +580,125 @@ class RegionBuilderHelper {
} // namespace
+//===----------------------------------------------------------------------===//
+// BatchMatmulOp
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+template <typename BatchOpTy, typename OpTy>
+struct BatchMatmulToMatmul : OpRewritePattern<BatchOpTy> {
+ using OpRewritePattern<BatchOpTy>::OpRewritePattern;
+ LogicalResult matchAndRewrite(BatchOpTy batchMatmulOp,
+ PatternRewriter &rewriter) const override {
+
+ auto loc = batchMatmulOp.getLoc();
+ auto inputs = batchMatmulOp.getDpsInputs();
+ auto inits = batchMatmulOp.getDpsInits();
+ if (inputs.size() != 2 || inits.size() != 1)
+ return rewriter.notifyMatchFailure(batchMatmulOp,
+ "expected 2 inputs and 1 init");
+ auto lhs = inputs[0];
+ auto rhs = inputs[1];
+ auto init = inits[0];
+
+ auto lhsType = cast<ShapedType>(lhs.getType());
+ auto rhsType = cast<ShapedType>(rhs.getType());
+ auto initType = cast<ShapedType>(init.getType());
+ if (ShapedType::isDynamic(lhsType.getShape()[0]) ||
+ lhsType.getShape()[0] != rhsType.getShape()[0] ||
+ rhsType.getShape()[0] != initType.getShape()[0])
+ return rewriter.notifyMatchFailure(
+ batchMatmulOp, "expected batch sizes of all operands to be same");
+
+ auto results = batchMatmulOp.getResults();
+ if (results.size() > 1)
+ return rewriter.notifyMatchFailure(batchMatmulOp,
+ "expected at most one result");
+
+ SmallVector<Type, 1> resultType;
+ if (results.size() == 1) {
+ auto oldResultType = cast<RankedTensorType>(results[0].getType());
+ resultType.push_back(
+ RankedTensorType::get(oldResultType.getShape().drop_front(1),
+ oldResultType.getElementType()));
+ }
+
+ auto collapseSingletonDim = [&](Value val) -> Value {
+ SmallVector<ReassociationIndices> reassociation({{0, 1}});
+ auto valType = cast<ShapedType>(val.getType());
+ for (auto i = 2; i < valType.getRank(); i++)
+ reassociation.push_back({i});
+ if (isa<RankedTensorType>(valType)) {
+ RankedTensorType collapsedType = RankedTensorType::get(
+ valType.getShape().drop_front(1), valType.getElementType());
+ return rewriter.create<tensor::CollapseShapeOp>(loc, collapsedType, val,
+ reassociation);
+ }
+ MemRefType collapsedType = MemRefType::get(
+ valType.getShape().drop_front(1), valType.getElementType());
+ return rewriter.create<memref::CollapseShapeOp>(loc, collapsedType, val,
+ reassociation);
+ };
+
+ auto collapsedLhs = collapseSingletonDim(lhs);
+ auto collapsedRhs = collapseSingletonDim(rhs);
+ auto collapsedInit = collapseSingletonDim(init);
+
+ auto collapsedOp = rewriter.create<OpTy>(
+ loc, resultType, ValueRange{collapsedLhs, collapsedRhs},
+ ValueRange{collapsedInit});
+ for (auto attr : batchMatmulOp->getAttrs()) {
+ if (attr.getName() == LinalgDialect::kMemoizedIndexingMapsAttrName)
+ continue;
+ collapsedOp->setAttr(attr.getName(), attr.getValue());
+ }
+
+ if (results.size() < 1) {
+ rewriter.replaceOp(batchMatmulOp, collapsedOp);
+ } else {
+ SmallVector<ReassociationIndices> reassociation({{0, 1}});
+ auto resultType = cast<ShapedType>(results[0].getType());
+ for (auto i = 2; i < resultType.getRank(); i++)
+ reassociation.push_back({i});
+ Value expandedResult = rewriter.create<tensor::ExpandShapeOp>(
+ loc, resultType, collapsedOp.getResultTensors()[0], reassociation);
+ rewriter.replaceOp(batchMatmulOp, expandedResult);
+ }
+
+ return success();
+ }
+};
+
+} // namespace
+
+void BatchMatmulOp::getCanonicalizationPatterns(RewritePatternSet &results,
+ MLIRContext *context) {
+ results.add<BatchMatmulToMatmul<BatchMatmulOp, MatmulOp>>(context);
+}
+
+void BatchMatmulTransposeAOp::getCanonicalizationPatterns(
+ RewritePatternSet &results, MLIRContext *context) {
+ results.add<BatchMatmulToMatmul<BatchMatmulTransposeAOp, MatmulTransposeAOp>>(
+ context);
+}
+
+void BatchMatmulTransposeBOp::getCanonicalizationPatterns(
+ RewritePatternSet &results, MLIRContext *context) {
+ results.add<BatchMatmulToMatmul<BatchMatmulTransposeBOp, MatmulTransposeBOp>>(
+ context);
+}
+
+void BatchMatvecOp::getCanonicalizationPatterns(RewritePatternSet &results,
+ MLIRContext *context) {
+ results.add<BatchMatmulToMatmul<BatchMatvecOp, MatvecOp>>(context);
+}
+
+void BatchVecmatOp::getCanonicalizationPatterns(RewritePatternSet &results,
+ MLIRContext *context) {
+ results.add<BatchMatmulToMatmul<BatchVecmatOp, VecmatOp>>(context);
+}
+
//===----------------------------------------------------------------------===//
// CopyOp
//===----------------------------------------------------------------------===//
diff --git a/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py b/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
index 43410aaa6af1b..b4b36ba0bfe51 100644
--- a/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
+++ b/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
@@ -518,6 +518,7 @@ def batch_matmul(
Numeric casting is performed on the operands to the inner multiply, promoting
them to the same data type as the accumulator/output.
"""
+ defines(Canonicalizer)
domain(D.b, D.m, D.n, D.k)
implements(ContractionOpInterface)
C[D.b, D.m, D.n] += TypeFn.cast_signed(U, A[D.b, D.m, D.k]) * TypeFn.cast_signed(
@@ -537,6 +538,7 @@ def batch_matmul_transpose_a(
Numeric casting is performed on the operands to the inner multiply, promoting
them to the same data type as the accumulator/output.
"""
+ defines(Canonicalizer)
domain(D.b, D.m, D.n, D.k)
implements(ContractionOpInterface)
C[D.b, D.m, D.n] += TypeFn.cast_signed(U, A[D.b, D.k, D.m]) * TypeFn.cast_signed(
@@ -556,6 +558,7 @@ def batch_matmul_transpose_b(
Numeric casting is performed on the operands to the inner multiply, promoting
them to the same data type as the accumulator/output.
"""
+ defines(Canonicalizer)
domain(D.b, D.m, D.n, D.k)
implements(ContractionOpInterface)
C[D.b, D.m, D.n] += TypeFn.cast_signed(U, A[D.b, D.m, D.k]) * TypeFn.cast_signed(
@@ -642,6 +645,7 @@ def batch_matvec(
Numeric casting is performed on the operands to the inner multiply, promoting
them to the same data type as the accumulator/output.
"""
+ defines(Canonicalizer)
domain(D.b, D.m, D.k)
implements(ContractionOpInterface)
C[D.b, D.m] += TypeFn.cast_signed(U, A[D.b, D.m, D.k]) * TypeFn.cast_signed(
@@ -660,6 +664,7 @@ def batch_vecmat(
Numeric casting is performed on the operands to the inner multiply, promoting
them to the same data type as the accumulator/output.
"""
+ defines(Canonicalizer)
domain(D.b, D.n, D.k)
implements(ContractionOpInterface)
C[D.b, D.n] += TypeFn.cast_signed(U, A[D.b, D.k]) * TypeFn.cast_signed(
>From 02b2ca083d145fc88a9498480e4a831affdebf10 Mon Sep 17 00:00:00 2001
From: Sam <srcarroll314 at gmail.com>
Date: Sun, 16 Jun 2024 12:01:33 -0500
Subject: [PATCH 2/6] add tests
---
.../Linalg/IR/LinalgNamedStructuredOps.yaml | 34 +++++
mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp | 12 +-
mlir/test/Dialect/Linalg/canonicalize.mlir | 137 +++++++++++++++++-
3 files changed, 174 insertions(+), 9 deletions(-)
diff --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
index 3cbfb58ed8506..41f90483c93b3 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
@@ -304,6 +304,40 @@ structured_op: !LinalgStructuredOpConfig
- !ScalarExpression
scalar_arg: I
--- !LinalgOpConfig
+metadata: !LinalgOpMetadata
+ name: reciprocal
+ cpp_class_name: ReciprocalOp
+ doc: |-
+ Applies reciprocal(x) elementwise.
+ No numeric casting is performed on the input operand.
+structured_op: !LinalgStructuredOpConfig
+ args:
+ - !LinalgOperandDefConfig
+ name: I
+ kind: input_tensor
+ type_var: T1
+ shape_map: affine_map<() -> ()>
+ - !LinalgOperandDefConfig
+ name: O
+ kind: output_tensor
+ type_var: T1
+ shape_map: affine_map<() -> ()>
+ indexing_maps: !LinalgIndexingMapsConfig
+ static_indexing_maps:
+ - affine_map<() -> ()>
+ - affine_map<() -> ()>
+ iterator_types: []
+ assignments:
+ - !ScalarAssign
+ arg: O
+ value: !ScalarExpression
+ scalar_fn:
+ kind: unary
+ fn_name: reciprocal
+ operands:
+ - !ScalarExpression
+ scalar_arg: I
+--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: round
cpp_class_name: RoundOp
diff --git a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
index ecd669165efc7..4e47b6018c445 100644
--- a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
+++ b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
@@ -605,16 +605,12 @@ struct BatchMatmulToMatmul : OpRewritePattern<BatchOpTy> {
auto lhsType = cast<ShapedType>(lhs.getType());
auto rhsType = cast<ShapedType>(rhs.getType());
auto initType = cast<ShapedType>(init.getType());
- if (ShapedType::isDynamic(lhsType.getShape()[0]) ||
- lhsType.getShape()[0] != rhsType.getShape()[0] ||
- rhsType.getShape()[0] != initType.getShape()[0])
- return rewriter.notifyMatchFailure(
- batchMatmulOp, "expected batch sizes of all operands to be same");
+ if (lhsType.getShape()[0] != 1 || rhsType.getShape()[0] != 1 ||
+ initType.getShape()[0] != 1)
+ return rewriter.notifyMatchFailure(batchMatmulOp, "batch size is not 1");
auto results = batchMatmulOp.getResults();
- if (results.size() > 1)
- return rewriter.notifyMatchFailure(batchMatmulOp,
- "expected at most one result");
+ assert(results.size() < 2 && "expected at most one result");
SmallVector<Type, 1> resultType;
if (results.size() == 1) {
diff --git a/mlir/test/Dialect/Linalg/canonicalize.mlir b/mlir/test/Dialect/Linalg/canonicalize.mlir
index 928030a81dc02..8514bcb089891 100644
--- a/mlir/test/Dialect/Linalg/canonicalize.mlir
+++ b/mlir/test/Dialect/Linalg/canonicalize.mlir
@@ -1017,7 +1017,7 @@ func.func @broadcast_same_shape(%input: tensor<2x3xf32>, %init: tensor<2x3xf32>)
return %0 : tensor<2x3xf32>
}
-// ----
+// -----
func.func @transpose_1d(%input: tensor<16xf32>,
%init: tensor<16xf32>) -> tensor<16xf32> {
@@ -1096,3 +1096,138 @@ func.func @transpose_transpose_fold(%input: tensor<5x4x3xf32>,
func.return %transpose2 : tensor<3x4x5xf32>
}
+// -----
+
+func.func @singleton_batch_matmul_tensor(%arg0 : tensor<1x?x?xf32>, %arg1 : tensor<1x?x?xf32>, %arg2: tensor<1x?x?xf32>) -> tensor<1x?x?xf32> {
+ // CHECK-LABEL: @singleton_batch_matmul_tensor
+ // CHECK-SAME: %[[LHS:[a-zA-Z0-9]+]]: tensor<1x?x?xf32>
+ // CHECK-SAME: %[[RHS:[a-zA-Z0-9]+]]: tensor<1x?x?xf32>
+ // CHECK-SAME: %[[INIT:[a-zA-Z0-9]+]]: tensor<1x?x?xf32>
+ // CHECK-DAG: %[[C1:.*]] = arith.constant 1
+ // CHECK-DAG: %[[C2:.*]] = arith.constant 2
+ // CHECK-NEXT: %[[COLLAPSED_LHS:.*]] = tensor.collapse_shape %[[LHS]] {{\[}}[0, 1], [2]]
+ // CHECK-NEXT: %[[COLLAPSED_RHS:.*]] = tensor.collapse_shape %[[RHS]] {{\[}}[0, 1], [2]]
+ // CHECK-NEXT: %[[COLLAPSED_INIT:.*]] = tensor.collapse_shape %[[INIT]] {{\[}}[0, 1], [2]]
+ // CHECK-NEXT: %[[MATMUL:.+]] = linalg.matmul ins(%[[COLLAPSED_LHS]], %[[COLLAPSED_RHS]] : tensor<?x?xf32>, tensor<?x?xf32>) outs(%[[COLLAPSED_INIT]] : tensor<?x?xf32>)
+ // CHECK-NEXT: %[[DIM1:.*]] = tensor.dim %[[INIT]], %[[C1]]
+ // CHECK-NEXT: %[[DIM2:.*]] = tensor.dim %[[INIT]], %[[C2]]
+ // CHECK-NEXT: %[[RES:.*]] = tensor.expand_shape %[[MATMUL]] {{\[}}[0, 1], [2]] output_shape [1, %[[DIM1]], %[[DIM2]]]
+ // CHECK-NEXT: return %[[RES]]
+ %1 = linalg.batch_matmul ins(%arg0, %arg1 : tensor<1x?x?xf32>, tensor<1x?x?xf32>)
+ outs(%arg2 : tensor<1x?x?xf32>) -> tensor<1x?x?xf32>
+ return %1 : tensor<1x?x?xf32>
+}
+
+// -----
+
+func.func @singletone_batch_matmul_memref(%arg0 : memref<1x?x?xf32>, %arg1 : memref<1x?x?xf32>, %arg2: memref<1x?x?xf32>) {
+ // CHECK-LABEL: @singletone_batch_matmul_memref
+ // CHECK-SAME: %[[LHS:[a-zA-Z0-9]+]]: memref<1x?x?xf32>
+ // CHECK-SAME: %[[RHS:[a-zA-Z0-9]+]]: memref<1x?x?xf32>
+ // CHECK-SAME: %[[INIT:[a-zA-Z0-9]+]]: memref<1x?x?xf32>
+ // CHECK-NEXT: %[[COLLAPSED_LHS:.*]] = memref.collapse_shape %[[LHS]] {{\[}}[0, 1], [2]]
+ // CHECK-NEXT: %[[COLLAPSED_RHS:.*]] = memref.collapse_shape %[[RHS]] {{\[}}[0, 1], [2]]
+ // CHECK-NEXT: %[[COLLAPSED_INIT:.*]] = memref.collapse_shape %[[INIT]] {{\[}}[0, 1], [2]]
+ // CHECK-NEXT: linalg.matmul ins(%[[COLLAPSED_LHS]], %[[COLLAPSED_RHS]] : memref<?x?xf32>, memref<?x?xf32>) outs(%[[COLLAPSED_INIT]] : memref<?x?xf32>)
+ // CHECK-NEXT: return
+ linalg.batch_matmul ins(%arg0, %arg1 : memref<1x?x?xf32>, memref<1x?x?xf32>)
+ outs(%arg2 : memref<1x?x?xf32>)
+ return
+}
+
+// -----
+
+func.func @singletone_batch_matvec(%arg0 : tensor<1x?x?xf32>, %arg1 : tensor<1x?xf32>, %arg2: tensor<1x?xf32>) -> tensor<1x?xf32> {
+ // CHECK-LABEL: @singletone_batch_matvec
+ // CHECK-SAME: %[[LHS:[a-zA-Z0-9]+]]: tensor<1x?x?xf32>
+ // CHECK-SAME: %[[RHS:[a-zA-Z0-9]+]]: tensor<1x?xf32>
+ // CHECK-SAME: %[[INIT:[a-zA-Z0-9]+]]: tensor<1x?xf32>
+ // CHECK-DAG: %[[C1:.*]] = arith.constant 1
+ // CHECK-NEXT: %[[COLLAPSED_LHS:.*]] = tensor.collapse_shape %[[LHS]] {{\[}}[0, 1], [2]]
+ // CHECK-NEXT: %[[COLLAPSED_RHS:.*]] = tensor.collapse_shape %[[RHS]] {{\[}}[0, 1]]
+ // CHECK-NEXT: %[[COLLAPSED_INIT:.*]] = tensor.collapse_shape %[[INIT]] {{\[}}[0, 1]]
+ // CHECK-NEXT: %[[MATMUL:.+]] = linalg.matvec ins(%[[COLLAPSED_LHS]], %[[COLLAPSED_RHS]] : tensor<?x?xf32>, tensor<?xf32>) outs(%[[COLLAPSED_INIT]] : tensor<?xf32>)
+ // CHECK-NEXT: %[[DIM1:.*]] = tensor.dim %[[INIT]], %[[C1]]
+ // CHECK-NEXT: %[[RES:.*]] = tensor.expand_shape %[[MATMUL]] {{\[}}[0, 1]] output_shape [1, %[[DIM1]]]
+ // CHECK-NEXT: return %[[RES]]
+ %1 = linalg.batch_matvec ins(%arg0, %arg1 : tensor<1x?x?xf32>, tensor<1x?xf32>)
+ outs(%arg2 : tensor<1x?xf32>) -> tensor<1x?xf32>
+ return %1 : tensor<1x?xf32>
+}
+
+// -----
+
+func.func @singletone_batch_vecmat(%arg0 : tensor<1x?xf32>, %arg1 : tensor<1x?x?xf32>, %arg2: tensor<1x?xf32>) -> tensor<1x?xf32> {
+ // CHECK-LABEL: @singletone_batch_vecmat
+ // CHECK-SAME: %[[LHS:[a-zA-Z0-9]+]]: tensor<1x?xf32>
+ // CHECK-SAME: %[[RHS:[a-zA-Z0-9]+]]: tensor<1x?x?xf32>
+ // CHECK-SAME: %[[INIT:[a-zA-Z0-9]+]]: tensor<1x?xf32>
+ // CHECK-DAG: %[[C1:.*]] = arith.constant 1
+ // CHECK-NEXT: %[[COLLAPSED_LHS:.*]] = tensor.collapse_shape %[[LHS]] {{\[}}[0, 1]]
+ // CHECK-NEXT: %[[COLLAPSED_RHS:.*]] = tensor.collapse_shape %[[RHS]] {{\[}}[0, 1], [2]]
+ // CHECK-NEXT: %[[COLLAPSED_INIT:.*]] = tensor.collapse_shape %[[INIT]] {{\[}}[0, 1]]
+ // CHECK-NEXT: %[[MATMUL:.+]] = linalg.vecmat ins(%[[COLLAPSED_LHS]], %[[COLLAPSED_RHS]] : tensor<?xf32>, tensor<?x?xf32>) outs(%[[COLLAPSED_INIT]] : tensor<?xf32>)
+ // CHECK-NEXT: %[[DIM1:.*]] = tensor.dim %[[INIT]], %[[C1]]
+ // CHECK-NEXT: %[[RES:.*]] = tensor.expand_shape %[[MATMUL]] {{\[}}[0, 1]] output_shape [1, %[[DIM1]]]
+ // CHECK-NEXT: return %[[RES]]
+ %1 = linalg.batch_vecmat ins(%arg0, %arg1 : tensor<1x?xf32>, tensor<1x?x?xf32>)
+ outs(%arg2 : tensor<1x?xf32>) -> tensor<1x?xf32>
+ return %1 : tensor<1x?xf32>
+}
+
+// -----
+
+func.func @singletone_batchmatmul_transpose_a(%arg0: memref<1x5x3xf32>, %arg1: memref<1x5x7xf32>, %arg2: memref<1x3x7xf32>) {
+ // CHECK-LABEL: @singletone_batchmatmul_transpose_a
+ // CHECK-SAME: %[[LHS:[a-zA-Z0-9]+]]: memref<1x5x3xf32>
+ // CHECK-SAME: %[[RHS:[a-zA-Z0-9]+]]: memref<1x5x7xf32>
+ // CHECK-SAME: %[[INIT:[a-zA-Z0-9]+]]: memref<1x3x7xf32>
+ // CHECK-NEXT: %[[COLLAPSED_LHS:.*]] = memref.collapse_shape %[[LHS]] {{\[}}[0, 1], [2]]
+ // CHECK-NEXT: %[[COLLAPSED_RHS:.*]] = memref.collapse_shape %[[RHS]] {{\[}}[0, 1], [2]]
+ // CHECK-NEXT: %[[COLLAPSED_INIT:.*]] = memref.collapse_shape %[[INIT]] {{\[}}[0, 1], [2]]
+ // CHECK-NEXT: linalg.matmul_transpose_a ins(%[[COLLAPSED_LHS]], %[[COLLAPSED_RHS]] : memref<5x3xf32>, memref<5x7xf32>) outs(%[[COLLAPSED_INIT]] : memref<3x7xf32>)
+ // CHECK-NEXT: return
+ linalg.batch_matmul_transpose_a ins(%arg0, %arg1 : memref<1x5x3xf32>, memref<1x5x7xf32>) outs(%arg2: memref<1x3x7xf32>)
+ return
+}
+
+// -----
+
+func.func @singletone_batchmatmul_transpose_b(%arg0: memref<1x3x5xf32>, %arg1: memref<1x7x5xf32>, %arg2: memref<1x3x7xf32>) {
+ // CHECK-LABEL: @singletone_batchmatmul_transpose_b
+ // CHECK-SAME: %[[LHS:[a-zA-Z0-9]+]]: memref<1x3x5xf32>
+ // CHECK-SAME: %[[RHS:[a-zA-Z0-9]+]]: memref<1x7x5xf32>
+ // CHECK-SAME: %[[INIT:[a-zA-Z0-9]+]]: memref<1x3x7xf32>
+ // CHECK-NEXT: %[[COLLAPSED_LHS:.*]] = memref.collapse_shape %[[LHS]] {{\[}}[0, 1], [2]]
+ // CHECK-NEXT: %[[COLLAPSED_RHS:.*]] = memref.collapse_shape %[[RHS]] {{\[}}[0, 1], [2]]
+ // CHECK-NEXT: %[[COLLAPSED_INIT:.*]] = memref.collapse_shape %[[INIT]] {{\[}}[0, 1], [2]]
+ // CHECK-NEXT: linalg.matmul_transpose_b ins(%[[COLLAPSED_LHS]], %[[COLLAPSED_RHS]] : memref<3x5xf32>, memref<7x5xf32>) outs(%[[COLLAPSED_INIT]] : memref<3x7xf32>)
+ // CHECK-NEXT: return
+ linalg.batch_matmul_transpose_b ins(%arg0, %arg1 : memref<1x3x5xf32>, memref<1x7x5xf32>) outs(%arg2: memref<1x3x7xf32>)
+ return
+}
+
+// -----
+
+func.func @nonsingleton_batch_matmul(%arg0 : tensor<2x?x?xf32>, %arg1 : tensor<2x?x?xf32>, %arg2: tensor<2x?x?xf32>) -> tensor<2x?x?xf32> {
+ // CHECK-LABEL: @nonsingleton_batch_matmul
+ // CHECK-NOT: collapse_shape
+ // CHECK: linalg.batch_matmul
+ // CHECK-NOT: expand_shape
+ %1 = linalg.batch_matmul ins(%arg0, %arg1 : tensor<2x?x?xf32>, tensor<2x?x?xf32>)
+ outs(%arg2 : tensor<2x?x?xf32>) -> tensor<2x?x?xf32>
+ return %1 : tensor<2x?x?xf32>
+}
+
+// -----
+
+func.func @nonsingleton_batch_matmul_dynamic(%arg0 : tensor<?x?x?xf32>, %arg1 : tensor<?x?x?xf32>, %arg2: tensor<?x?x?xf32>) -> tensor<?x?x?xf32> {
+ // CHECK-LABEL: @nonsingleton_batch_matmul_dynamic
+ // CHECK-NOT: collapse_shape
+ // CHECK: linalg.batch_matmul
+ // CHECK-NOT: expand_shape
+ %1 = linalg.batch_matmul ins(%arg0, %arg1 : tensor<?x?x?xf32>, tensor<?x?x?xf32>)
+ outs(%arg2 : tensor<?x?x?xf32>) -> tensor<?x?x?xf32>
+ return %1 : tensor<?x?x?xf32>
+}
+
>From 543b0d643506d12c658e2984d943873ed4c8b78b Mon Sep 17 00:00:00 2001
From: Sam <srcarroll314 at gmail.com>
Date: Sun, 16 Jun 2024 12:12:35 -0500
Subject: [PATCH 3/6] remove unecessary changes
---
.../mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml | 1 +
mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp | 2 --
2 files changed, 1 insertion(+), 2 deletions(-)
diff --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
index 41f90483c93b3..3f0aa33767a75 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
@@ -309,6 +309,7 @@ metadata: !LinalgOpMetadata
cpp_class_name: ReciprocalOp
doc: |-
Applies reciprocal(x) elementwise.
+
No numeric casting is performed on the input operand.
structured_op: !LinalgStructuredOpConfig
args:
diff --git a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
index 4e47b6018c445..8df33a107c2cb 100644
--- a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
+++ b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
@@ -17,7 +17,6 @@
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Complex/IR/Complex.h"
-#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
@@ -43,7 +42,6 @@
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
-#include <numeric>
#include <optional>
using namespace mlir;
>From 5732d87375c942306ddf5c7a6661b8123f423b1c Mon Sep 17 00:00:00 2001
From: Sam <srcarroll314 at gmail.com>
Date: Tue, 18 Jun 2024 20:28:31 -0500
Subject: [PATCH 4/6] Move patterns to a populate function and implement test
pass
---
.../Linalg/IR/LinalgNamedStructuredOps.yaml | 14 +-
.../Dialect/Linalg/Transforms/Transforms.h | 7 +
mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp | 115 ---------------
.../Linalg/Transforms/DropUnitDims.cpp | 98 +++++++++++++
.../linalg/opdsl/ops/core_named_ops.py | 5 -
mlir/test/Dialect/Linalg/canonicalize.mlir | 137 +-----------------
mlir/test/lib/Dialect/Linalg/CMakeLists.txt | 1 +
.../TestLinalgRankReduceContractionOps.cpp | 68 +++++++++
mlir/tools/mlir-opt/mlir-opt.cpp | 2 +
9 files changed, 179 insertions(+), 268 deletions(-)
create mode 100644 mlir/test/lib/Dialect/Linalg/TestLinalgRankReduceContractionOps.cpp
diff --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
index 3f0aa33767a75..fad234a9dcae9 100644
--- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
+++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOps.yaml
@@ -516,7 +516,7 @@ structured_op: !LinalgStructuredOpConfig
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: erf
- cpp_class_name: ErfOp
+ cpp_class_name: erfOp
doc: |-
Applies erf(x) elementwise.
@@ -959,7 +959,7 @@ structured_op: !LinalgStructuredOpConfig
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: powf
- cpp_class_name: PowfOp
+ cpp_class_name: PowFOp
doc: |-
Takes the powf(lhs, rhs) between two inputs, elementwise. For powf(arg, 2) use `linalg.square`.
@@ -1622,8 +1622,6 @@ metadata: !LinalgOpMetadata
them to the same data type as the accumulator/output.
implements:
- LinalgContractionOpInterface
- defines:
- - hasCanonicalizer
structured_op: !LinalgStructuredOpConfig
args:
- !LinalgOperandDefConfig
@@ -1694,8 +1692,6 @@ metadata: !LinalgOpMetadata
them to the same data type as the accumulator/output.
implements:
- LinalgContractionOpInterface
- defines:
- - hasCanonicalizer
structured_op: !LinalgStructuredOpConfig
args:
- !LinalgOperandDefConfig
@@ -1766,8 +1762,6 @@ metadata: !LinalgOpMetadata
them to the same data type as the accumulator/output.
implements:
- LinalgContractionOpInterface
- defines:
- - hasCanonicalizer
structured_op: !LinalgStructuredOpConfig
args:
- !LinalgOperandDefConfig
@@ -2146,8 +2140,6 @@ metadata: !LinalgOpMetadata
them to the same data type as the accumulator/output.
implements:
- LinalgContractionOpInterface
- defines:
- - hasCanonicalizer
structured_op: !LinalgStructuredOpConfig
args:
- !LinalgOperandDefConfig
@@ -2216,8 +2208,6 @@ metadata: !LinalgOpMetadata
them to the same data type as the accumulator/output.
implements:
- LinalgContractionOpInterface
- defines:
- - hasCanonicalizer
structured_op: !LinalgStructuredOpConfig
args:
- !LinalgOperandDefConfig
diff --git a/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h b/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h
index 308ce92e35520..c49383c600a57 100644
--- a/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h
+++ b/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h
@@ -1692,6 +1692,13 @@ void populateTransposeMatmulPatterns(RewritePatternSet &patterns,
void populateBlockPackMatmulPatterns(RewritePatternSet &patterns,
const ControlBlockPackMatmulFn &controlFn);
+/// Adds patterns that that reduce the rank of named contraction ops that have
+/// unit dimensions in the operand(s) by converting to a senquence of `collapse_shape`,
+/// `<corresponding linalg named op>`, `expand_shape` (if on tensors). For example a
+/// `linalg.batch_matmul` with unit batch size will convert to `linalg.matmul`
+/// and a `linalg.matvec` with with unit spatial dim in lhs will convert to a `linalg.dot`.
+void populateContractionOpRankReducingPatterns(RewritePatternSet &patterns);
+
} // namespace linalg
} // namespace mlir
diff --git a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
index 8df33a107c2cb..b79afebfa8158 100644
--- a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
+++ b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
@@ -578,121 +578,6 @@ class RegionBuilderHelper {
} // namespace
-//===----------------------------------------------------------------------===//
-// BatchMatmulOp
-//===----------------------------------------------------------------------===//
-
-namespace {
-
-template <typename BatchOpTy, typename OpTy>
-struct BatchMatmulToMatmul : OpRewritePattern<BatchOpTy> {
- using OpRewritePattern<BatchOpTy>::OpRewritePattern;
- LogicalResult matchAndRewrite(BatchOpTy batchMatmulOp,
- PatternRewriter &rewriter) const override {
-
- auto loc = batchMatmulOp.getLoc();
- auto inputs = batchMatmulOp.getDpsInputs();
- auto inits = batchMatmulOp.getDpsInits();
- if (inputs.size() != 2 || inits.size() != 1)
- return rewriter.notifyMatchFailure(batchMatmulOp,
- "expected 2 inputs and 1 init");
- auto lhs = inputs[0];
- auto rhs = inputs[1];
- auto init = inits[0];
-
- auto lhsType = cast<ShapedType>(lhs.getType());
- auto rhsType = cast<ShapedType>(rhs.getType());
- auto initType = cast<ShapedType>(init.getType());
- if (lhsType.getShape()[0] != 1 || rhsType.getShape()[0] != 1 ||
- initType.getShape()[0] != 1)
- return rewriter.notifyMatchFailure(batchMatmulOp, "batch size is not 1");
-
- auto results = batchMatmulOp.getResults();
- assert(results.size() < 2 && "expected at most one result");
-
- SmallVector<Type, 1> resultType;
- if (results.size() == 1) {
- auto oldResultType = cast<RankedTensorType>(results[0].getType());
- resultType.push_back(
- RankedTensorType::get(oldResultType.getShape().drop_front(1),
- oldResultType.getElementType()));
- }
-
- auto collapseSingletonDim = [&](Value val) -> Value {
- SmallVector<ReassociationIndices> reassociation({{0, 1}});
- auto valType = cast<ShapedType>(val.getType());
- for (auto i = 2; i < valType.getRank(); i++)
- reassociation.push_back({i});
- if (isa<RankedTensorType>(valType)) {
- RankedTensorType collapsedType = RankedTensorType::get(
- valType.getShape().drop_front(1), valType.getElementType());
- return rewriter.create<tensor::CollapseShapeOp>(loc, collapsedType, val,
- reassociation);
- }
- MemRefType collapsedType = MemRefType::get(
- valType.getShape().drop_front(1), valType.getElementType());
- return rewriter.create<memref::CollapseShapeOp>(loc, collapsedType, val,
- reassociation);
- };
-
- auto collapsedLhs = collapseSingletonDim(lhs);
- auto collapsedRhs = collapseSingletonDim(rhs);
- auto collapsedInit = collapseSingletonDim(init);
-
- auto collapsedOp = rewriter.create<OpTy>(
- loc, resultType, ValueRange{collapsedLhs, collapsedRhs},
- ValueRange{collapsedInit});
- for (auto attr : batchMatmulOp->getAttrs()) {
- if (attr.getName() == LinalgDialect::kMemoizedIndexingMapsAttrName)
- continue;
- collapsedOp->setAttr(attr.getName(), attr.getValue());
- }
-
- if (results.size() < 1) {
- rewriter.replaceOp(batchMatmulOp, collapsedOp);
- } else {
- SmallVector<ReassociationIndices> reassociation({{0, 1}});
- auto resultType = cast<ShapedType>(results[0].getType());
- for (auto i = 2; i < resultType.getRank(); i++)
- reassociation.push_back({i});
- Value expandedResult = rewriter.create<tensor::ExpandShapeOp>(
- loc, resultType, collapsedOp.getResultTensors()[0], reassociation);
- rewriter.replaceOp(batchMatmulOp, expandedResult);
- }
-
- return success();
- }
-};
-
-} // namespace
-
-void BatchMatmulOp::getCanonicalizationPatterns(RewritePatternSet &results,
- MLIRContext *context) {
- results.add<BatchMatmulToMatmul<BatchMatmulOp, MatmulOp>>(context);
-}
-
-void BatchMatmulTransposeAOp::getCanonicalizationPatterns(
- RewritePatternSet &results, MLIRContext *context) {
- results.add<BatchMatmulToMatmul<BatchMatmulTransposeAOp, MatmulTransposeAOp>>(
- context);
-}
-
-void BatchMatmulTransposeBOp::getCanonicalizationPatterns(
- RewritePatternSet &results, MLIRContext *context) {
- results.add<BatchMatmulToMatmul<BatchMatmulTransposeBOp, MatmulTransposeBOp>>(
- context);
-}
-
-void BatchMatvecOp::getCanonicalizationPatterns(RewritePatternSet &results,
- MLIRContext *context) {
- results.add<BatchMatmulToMatmul<BatchMatvecOp, MatvecOp>>(context);
-}
-
-void BatchVecmatOp::getCanonicalizationPatterns(RewritePatternSet &results,
- MLIRContext *context) {
- results.add<BatchMatmulToMatmul<BatchVecmatOp, VecmatOp>>(context);
-}
-
//===----------------------------------------------------------------------===//
// CopyOp
//===----------------------------------------------------------------------===//
diff --git a/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp b/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp
index c0829397f1f85..9248710d5afc9 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp
@@ -812,6 +812,103 @@ void mlir::linalg::populateMoveInitOperandsToInputPattern(
patterns.add<MoveInitOperandsToInput>(patterns.getContext());
}
+namespace {
+
+template <typename BatchOpTy, typename OpTy>
+struct BatchMatmulToMatmul : OpRewritePattern<BatchOpTy> {
+ using OpRewritePattern<BatchOpTy>::OpRewritePattern;
+ LogicalResult matchAndRewrite(BatchOpTy batchMatmulOp,
+ PatternRewriter &rewriter) const override {
+
+ auto loc = batchMatmulOp.getLoc();
+ auto inputs = batchMatmulOp.getDpsInputs();
+ auto inits = batchMatmulOp.getDpsInits();
+ if (inputs.size() != 2 || inits.size() != 1)
+ return rewriter.notifyMatchFailure(batchMatmulOp,
+ "expected 2 inputs and 1 init");
+ auto lhs = inputs[0];
+ auto rhs = inputs[1];
+ auto init = inits[0];
+
+ auto lhsType = cast<ShapedType>(lhs.getType());
+ auto rhsType = cast<ShapedType>(rhs.getType());
+ auto initType = cast<ShapedType>(init.getType());
+ if (lhsType.getShape()[0] != 1 || rhsType.getShape()[0] != 1 ||
+ initType.getShape()[0] != 1)
+ return rewriter.notifyMatchFailure(batchMatmulOp, "batch size is not 1");
+
+ auto results = batchMatmulOp.getResults();
+ assert(results.size() < 2 && "expected at most one result");
+
+ SmallVector<Type, 1> resultType;
+ if (results.size() == 1) {
+ auto oldResultType = cast<RankedTensorType>(results[0].getType());
+ resultType.push_back(
+ RankedTensorType::get(oldResultType.getShape().drop_front(1),
+ oldResultType.getElementType()));
+ }
+
+ auto collapseSingletonDim = [&](Value val) -> Value {
+ SmallVector<ReassociationIndices> reassociation({{0, 1}});
+ auto valType = cast<ShapedType>(val.getType());
+ for (auto i = 2; i < valType.getRank(); i++)
+ reassociation.push_back({i});
+ if (isa<RankedTensorType>(valType)) {
+ RankedTensorType collapsedType = RankedTensorType::get(
+ valType.getShape().drop_front(1), valType.getElementType());
+ return rewriter.create<tensor::CollapseShapeOp>(loc, collapsedType, val,
+ reassociation);
+ }
+ MemRefType collapsedType = MemRefType::get(
+ valType.getShape().drop_front(1), valType.getElementType());
+ return rewriter.create<memref::CollapseShapeOp>(loc, collapsedType, val,
+ reassociation);
+ };
+
+ auto collapsedLhs = collapseSingletonDim(lhs);
+ auto collapsedRhs = collapseSingletonDim(rhs);
+ auto collapsedInit = collapseSingletonDim(init);
+
+ auto collapsedOp = rewriter.create<OpTy>(
+ loc, resultType, ValueRange{collapsedLhs, collapsedRhs},
+ ValueRange{collapsedInit});
+ for (auto attr : batchMatmulOp->getAttrs()) {
+ if (attr.getName() == LinalgDialect::kMemoizedIndexingMapsAttrName)
+ continue;
+ collapsedOp->setAttr(attr.getName(), attr.getValue());
+ }
+
+ if (results.size() < 1) {
+ rewriter.replaceOp(batchMatmulOp, collapsedOp);
+ } else {
+ SmallVector<ReassociationIndices> reassociation({{0, 1}});
+ auto resultType = cast<ShapedType>(results[0].getType());
+ for (auto i = 2; i < resultType.getRank(); i++)
+ reassociation.push_back({i});
+ Value expandedResult = rewriter.create<tensor::ExpandShapeOp>(
+ loc, resultType, collapsedOp.getResultTensors()[0], reassociation);
+ rewriter.replaceOp(batchMatmulOp, expandedResult);
+ }
+
+ return success();
+ }
+};
+} // namespace
+
+void mlir::linalg::populateContractionOpRankReducingPatterns(
+ RewritePatternSet &patterns) {
+ MLIRContext *context = patterns.getContext();
+ patterns.add<BatchMatmulToMatmul<BatchMatmulOp, MatmulOp>>(context);
+ patterns
+ .add<BatchMatmulToMatmul<BatchMatmulTransposeAOp, MatmulTransposeAOp>>(
+ context);
+ patterns
+ .add<BatchMatmulToMatmul<BatchMatmulTransposeBOp, MatmulTransposeBOp>>(
+ context);
+ patterns.add<BatchMatmulToMatmul<BatchMatvecOp, MatvecOp>>(context);
+ patterns.add<BatchMatmulToMatmul<BatchVecmatOp, VecmatOp>>(context);
+}
+
namespace {
/// Pass that removes unit-extent dims within generic ops.
struct LinalgFoldUnitExtentDimsPass
@@ -833,4 +930,5 @@ struct LinalgFoldUnitExtentDimsPass
(void)applyPatternsAndFoldGreedily(op, std::move(patterns));
}
};
+
} // namespace
diff --git a/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py b/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
index b4b36ba0bfe51..43410aaa6af1b 100644
--- a/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
+++ b/mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
@@ -518,7 +518,6 @@ def batch_matmul(
Numeric casting is performed on the operands to the inner multiply, promoting
them to the same data type as the accumulator/output.
"""
- defines(Canonicalizer)
domain(D.b, D.m, D.n, D.k)
implements(ContractionOpInterface)
C[D.b, D.m, D.n] += TypeFn.cast_signed(U, A[D.b, D.m, D.k]) * TypeFn.cast_signed(
@@ -538,7 +537,6 @@ def batch_matmul_transpose_a(
Numeric casting is performed on the operands to the inner multiply, promoting
them to the same data type as the accumulator/output.
"""
- defines(Canonicalizer)
domain(D.b, D.m, D.n, D.k)
implements(ContractionOpInterface)
C[D.b, D.m, D.n] += TypeFn.cast_signed(U, A[D.b, D.k, D.m]) * TypeFn.cast_signed(
@@ -558,7 +556,6 @@ def batch_matmul_transpose_b(
Numeric casting is performed on the operands to the inner multiply, promoting
them to the same data type as the accumulator/output.
"""
- defines(Canonicalizer)
domain(D.b, D.m, D.n, D.k)
implements(ContractionOpInterface)
C[D.b, D.m, D.n] += TypeFn.cast_signed(U, A[D.b, D.m, D.k]) * TypeFn.cast_signed(
@@ -645,7 +642,6 @@ def batch_matvec(
Numeric casting is performed on the operands to the inner multiply, promoting
them to the same data type as the accumulator/output.
"""
- defines(Canonicalizer)
domain(D.b, D.m, D.k)
implements(ContractionOpInterface)
C[D.b, D.m] += TypeFn.cast_signed(U, A[D.b, D.m, D.k]) * TypeFn.cast_signed(
@@ -664,7 +660,6 @@ def batch_vecmat(
Numeric casting is performed on the operands to the inner multiply, promoting
them to the same data type as the accumulator/output.
"""
- defines(Canonicalizer)
domain(D.b, D.n, D.k)
implements(ContractionOpInterface)
C[D.b, D.n] += TypeFn.cast_signed(U, A[D.b, D.k]) * TypeFn.cast_signed(
diff --git a/mlir/test/Dialect/Linalg/canonicalize.mlir b/mlir/test/Dialect/Linalg/canonicalize.mlir
index 8514bcb089891..928030a81dc02 100644
--- a/mlir/test/Dialect/Linalg/canonicalize.mlir
+++ b/mlir/test/Dialect/Linalg/canonicalize.mlir
@@ -1017,7 +1017,7 @@ func.func @broadcast_same_shape(%input: tensor<2x3xf32>, %init: tensor<2x3xf32>)
return %0 : tensor<2x3xf32>
}
-// -----
+// ----
func.func @transpose_1d(%input: tensor<16xf32>,
%init: tensor<16xf32>) -> tensor<16xf32> {
@@ -1096,138 +1096,3 @@ func.func @transpose_transpose_fold(%input: tensor<5x4x3xf32>,
func.return %transpose2 : tensor<3x4x5xf32>
}
-// -----
-
-func.func @singleton_batch_matmul_tensor(%arg0 : tensor<1x?x?xf32>, %arg1 : tensor<1x?x?xf32>, %arg2: tensor<1x?x?xf32>) -> tensor<1x?x?xf32> {
- // CHECK-LABEL: @singleton_batch_matmul_tensor
- // CHECK-SAME: %[[LHS:[a-zA-Z0-9]+]]: tensor<1x?x?xf32>
- // CHECK-SAME: %[[RHS:[a-zA-Z0-9]+]]: tensor<1x?x?xf32>
- // CHECK-SAME: %[[INIT:[a-zA-Z0-9]+]]: tensor<1x?x?xf32>
- // CHECK-DAG: %[[C1:.*]] = arith.constant 1
- // CHECK-DAG: %[[C2:.*]] = arith.constant 2
- // CHECK-NEXT: %[[COLLAPSED_LHS:.*]] = tensor.collapse_shape %[[LHS]] {{\[}}[0, 1], [2]]
- // CHECK-NEXT: %[[COLLAPSED_RHS:.*]] = tensor.collapse_shape %[[RHS]] {{\[}}[0, 1], [2]]
- // CHECK-NEXT: %[[COLLAPSED_INIT:.*]] = tensor.collapse_shape %[[INIT]] {{\[}}[0, 1], [2]]
- // CHECK-NEXT: %[[MATMUL:.+]] = linalg.matmul ins(%[[COLLAPSED_LHS]], %[[COLLAPSED_RHS]] : tensor<?x?xf32>, tensor<?x?xf32>) outs(%[[COLLAPSED_INIT]] : tensor<?x?xf32>)
- // CHECK-NEXT: %[[DIM1:.*]] = tensor.dim %[[INIT]], %[[C1]]
- // CHECK-NEXT: %[[DIM2:.*]] = tensor.dim %[[INIT]], %[[C2]]
- // CHECK-NEXT: %[[RES:.*]] = tensor.expand_shape %[[MATMUL]] {{\[}}[0, 1], [2]] output_shape [1, %[[DIM1]], %[[DIM2]]]
- // CHECK-NEXT: return %[[RES]]
- %1 = linalg.batch_matmul ins(%arg0, %arg1 : tensor<1x?x?xf32>, tensor<1x?x?xf32>)
- outs(%arg2 : tensor<1x?x?xf32>) -> tensor<1x?x?xf32>
- return %1 : tensor<1x?x?xf32>
-}
-
-// -----
-
-func.func @singletone_batch_matmul_memref(%arg0 : memref<1x?x?xf32>, %arg1 : memref<1x?x?xf32>, %arg2: memref<1x?x?xf32>) {
- // CHECK-LABEL: @singletone_batch_matmul_memref
- // CHECK-SAME: %[[LHS:[a-zA-Z0-9]+]]: memref<1x?x?xf32>
- // CHECK-SAME: %[[RHS:[a-zA-Z0-9]+]]: memref<1x?x?xf32>
- // CHECK-SAME: %[[INIT:[a-zA-Z0-9]+]]: memref<1x?x?xf32>
- // CHECK-NEXT: %[[COLLAPSED_LHS:.*]] = memref.collapse_shape %[[LHS]] {{\[}}[0, 1], [2]]
- // CHECK-NEXT: %[[COLLAPSED_RHS:.*]] = memref.collapse_shape %[[RHS]] {{\[}}[0, 1], [2]]
- // CHECK-NEXT: %[[COLLAPSED_INIT:.*]] = memref.collapse_shape %[[INIT]] {{\[}}[0, 1], [2]]
- // CHECK-NEXT: linalg.matmul ins(%[[COLLAPSED_LHS]], %[[COLLAPSED_RHS]] : memref<?x?xf32>, memref<?x?xf32>) outs(%[[COLLAPSED_INIT]] : memref<?x?xf32>)
- // CHECK-NEXT: return
- linalg.batch_matmul ins(%arg0, %arg1 : memref<1x?x?xf32>, memref<1x?x?xf32>)
- outs(%arg2 : memref<1x?x?xf32>)
- return
-}
-
-// -----
-
-func.func @singletone_batch_matvec(%arg0 : tensor<1x?x?xf32>, %arg1 : tensor<1x?xf32>, %arg2: tensor<1x?xf32>) -> tensor<1x?xf32> {
- // CHECK-LABEL: @singletone_batch_matvec
- // CHECK-SAME: %[[LHS:[a-zA-Z0-9]+]]: tensor<1x?x?xf32>
- // CHECK-SAME: %[[RHS:[a-zA-Z0-9]+]]: tensor<1x?xf32>
- // CHECK-SAME: %[[INIT:[a-zA-Z0-9]+]]: tensor<1x?xf32>
- // CHECK-DAG: %[[C1:.*]] = arith.constant 1
- // CHECK-NEXT: %[[COLLAPSED_LHS:.*]] = tensor.collapse_shape %[[LHS]] {{\[}}[0, 1], [2]]
- // CHECK-NEXT: %[[COLLAPSED_RHS:.*]] = tensor.collapse_shape %[[RHS]] {{\[}}[0, 1]]
- // CHECK-NEXT: %[[COLLAPSED_INIT:.*]] = tensor.collapse_shape %[[INIT]] {{\[}}[0, 1]]
- // CHECK-NEXT: %[[MATMUL:.+]] = linalg.matvec ins(%[[COLLAPSED_LHS]], %[[COLLAPSED_RHS]] : tensor<?x?xf32>, tensor<?xf32>) outs(%[[COLLAPSED_INIT]] : tensor<?xf32>)
- // CHECK-NEXT: %[[DIM1:.*]] = tensor.dim %[[INIT]], %[[C1]]
- // CHECK-NEXT: %[[RES:.*]] = tensor.expand_shape %[[MATMUL]] {{\[}}[0, 1]] output_shape [1, %[[DIM1]]]
- // CHECK-NEXT: return %[[RES]]
- %1 = linalg.batch_matvec ins(%arg0, %arg1 : tensor<1x?x?xf32>, tensor<1x?xf32>)
- outs(%arg2 : tensor<1x?xf32>) -> tensor<1x?xf32>
- return %1 : tensor<1x?xf32>
-}
-
-// -----
-
-func.func @singletone_batch_vecmat(%arg0 : tensor<1x?xf32>, %arg1 : tensor<1x?x?xf32>, %arg2: tensor<1x?xf32>) -> tensor<1x?xf32> {
- // CHECK-LABEL: @singletone_batch_vecmat
- // CHECK-SAME: %[[LHS:[a-zA-Z0-9]+]]: tensor<1x?xf32>
- // CHECK-SAME: %[[RHS:[a-zA-Z0-9]+]]: tensor<1x?x?xf32>
- // CHECK-SAME: %[[INIT:[a-zA-Z0-9]+]]: tensor<1x?xf32>
- // CHECK-DAG: %[[C1:.*]] = arith.constant 1
- // CHECK-NEXT: %[[COLLAPSED_LHS:.*]] = tensor.collapse_shape %[[LHS]] {{\[}}[0, 1]]
- // CHECK-NEXT: %[[COLLAPSED_RHS:.*]] = tensor.collapse_shape %[[RHS]] {{\[}}[0, 1], [2]]
- // CHECK-NEXT: %[[COLLAPSED_INIT:.*]] = tensor.collapse_shape %[[INIT]] {{\[}}[0, 1]]
- // CHECK-NEXT: %[[MATMUL:.+]] = linalg.vecmat ins(%[[COLLAPSED_LHS]], %[[COLLAPSED_RHS]] : tensor<?xf32>, tensor<?x?xf32>) outs(%[[COLLAPSED_INIT]] : tensor<?xf32>)
- // CHECK-NEXT: %[[DIM1:.*]] = tensor.dim %[[INIT]], %[[C1]]
- // CHECK-NEXT: %[[RES:.*]] = tensor.expand_shape %[[MATMUL]] {{\[}}[0, 1]] output_shape [1, %[[DIM1]]]
- // CHECK-NEXT: return %[[RES]]
- %1 = linalg.batch_vecmat ins(%arg0, %arg1 : tensor<1x?xf32>, tensor<1x?x?xf32>)
- outs(%arg2 : tensor<1x?xf32>) -> tensor<1x?xf32>
- return %1 : tensor<1x?xf32>
-}
-
-// -----
-
-func.func @singletone_batchmatmul_transpose_a(%arg0: memref<1x5x3xf32>, %arg1: memref<1x5x7xf32>, %arg2: memref<1x3x7xf32>) {
- // CHECK-LABEL: @singletone_batchmatmul_transpose_a
- // CHECK-SAME: %[[LHS:[a-zA-Z0-9]+]]: memref<1x5x3xf32>
- // CHECK-SAME: %[[RHS:[a-zA-Z0-9]+]]: memref<1x5x7xf32>
- // CHECK-SAME: %[[INIT:[a-zA-Z0-9]+]]: memref<1x3x7xf32>
- // CHECK-NEXT: %[[COLLAPSED_LHS:.*]] = memref.collapse_shape %[[LHS]] {{\[}}[0, 1], [2]]
- // CHECK-NEXT: %[[COLLAPSED_RHS:.*]] = memref.collapse_shape %[[RHS]] {{\[}}[0, 1], [2]]
- // CHECK-NEXT: %[[COLLAPSED_INIT:.*]] = memref.collapse_shape %[[INIT]] {{\[}}[0, 1], [2]]
- // CHECK-NEXT: linalg.matmul_transpose_a ins(%[[COLLAPSED_LHS]], %[[COLLAPSED_RHS]] : memref<5x3xf32>, memref<5x7xf32>) outs(%[[COLLAPSED_INIT]] : memref<3x7xf32>)
- // CHECK-NEXT: return
- linalg.batch_matmul_transpose_a ins(%arg0, %arg1 : memref<1x5x3xf32>, memref<1x5x7xf32>) outs(%arg2: memref<1x3x7xf32>)
- return
-}
-
-// -----
-
-func.func @singletone_batchmatmul_transpose_b(%arg0: memref<1x3x5xf32>, %arg1: memref<1x7x5xf32>, %arg2: memref<1x3x7xf32>) {
- // CHECK-LABEL: @singletone_batchmatmul_transpose_b
- // CHECK-SAME: %[[LHS:[a-zA-Z0-9]+]]: memref<1x3x5xf32>
- // CHECK-SAME: %[[RHS:[a-zA-Z0-9]+]]: memref<1x7x5xf32>
- // CHECK-SAME: %[[INIT:[a-zA-Z0-9]+]]: memref<1x3x7xf32>
- // CHECK-NEXT: %[[COLLAPSED_LHS:.*]] = memref.collapse_shape %[[LHS]] {{\[}}[0, 1], [2]]
- // CHECK-NEXT: %[[COLLAPSED_RHS:.*]] = memref.collapse_shape %[[RHS]] {{\[}}[0, 1], [2]]
- // CHECK-NEXT: %[[COLLAPSED_INIT:.*]] = memref.collapse_shape %[[INIT]] {{\[}}[0, 1], [2]]
- // CHECK-NEXT: linalg.matmul_transpose_b ins(%[[COLLAPSED_LHS]], %[[COLLAPSED_RHS]] : memref<3x5xf32>, memref<7x5xf32>) outs(%[[COLLAPSED_INIT]] : memref<3x7xf32>)
- // CHECK-NEXT: return
- linalg.batch_matmul_transpose_b ins(%arg0, %arg1 : memref<1x3x5xf32>, memref<1x7x5xf32>) outs(%arg2: memref<1x3x7xf32>)
- return
-}
-
-// -----
-
-func.func @nonsingleton_batch_matmul(%arg0 : tensor<2x?x?xf32>, %arg1 : tensor<2x?x?xf32>, %arg2: tensor<2x?x?xf32>) -> tensor<2x?x?xf32> {
- // CHECK-LABEL: @nonsingleton_batch_matmul
- // CHECK-NOT: collapse_shape
- // CHECK: linalg.batch_matmul
- // CHECK-NOT: expand_shape
- %1 = linalg.batch_matmul ins(%arg0, %arg1 : tensor<2x?x?xf32>, tensor<2x?x?xf32>)
- outs(%arg2 : tensor<2x?x?xf32>) -> tensor<2x?x?xf32>
- return %1 : tensor<2x?x?xf32>
-}
-
-// -----
-
-func.func @nonsingleton_batch_matmul_dynamic(%arg0 : tensor<?x?x?xf32>, %arg1 : tensor<?x?x?xf32>, %arg2: tensor<?x?x?xf32>) -> tensor<?x?x?xf32> {
- // CHECK-LABEL: @nonsingleton_batch_matmul_dynamic
- // CHECK-NOT: collapse_shape
- // CHECK: linalg.batch_matmul
- // CHECK-NOT: expand_shape
- %1 = linalg.batch_matmul ins(%arg0, %arg1 : tensor<?x?x?xf32>, tensor<?x?x?xf32>)
- outs(%arg2 : tensor<?x?x?xf32>) -> tensor<?x?x?xf32>
- return %1 : tensor<?x?x?xf32>
-}
-
diff --git a/mlir/test/lib/Dialect/Linalg/CMakeLists.txt b/mlir/test/lib/Dialect/Linalg/CMakeLists.txt
index b28f2b3564662..283e426b4e594 100644
--- a/mlir/test/lib/Dialect/Linalg/CMakeLists.txt
+++ b/mlir/test/lib/Dialect/Linalg/CMakeLists.txt
@@ -5,6 +5,7 @@ add_mlir_library(MLIRLinalgTestPasses
TestLinalgDropUnitDims.cpp
TestLinalgElementwiseFusion.cpp
TestLinalgFusionTransforms.cpp
+ TestLinalgRankReduceContractionOps.cpp
TestLinalgTransforms.cpp
TestPadFusion.cpp
diff --git a/mlir/test/lib/Dialect/Linalg/TestLinalgRankReduceContractionOps.cpp b/mlir/test/lib/Dialect/Linalg/TestLinalgRankReduceContractionOps.cpp
new file mode 100644
index 0000000000000..5ca27be30a687
--- /dev/null
+++ b/mlir/test/lib/Dialect/Linalg/TestLinalgRankReduceContractionOps.cpp
@@ -0,0 +1,68 @@
+//===- TestLinalgRankReduceContractionOps.cpp - Test Linalg rank reduce
+//contractions ---===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a pass for testing rank reduing patterns for named
+// contraction ops with unit dims.
+//
+//===----------------------------------------------------------------------===//
+
+#include "mlir/Dialect/Affine/IR/AffineOps.h"
+#include "mlir/Dialect/Func/IR/FuncOps.h"
+#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
+#include "mlir/Pass/Pass.h"
+#include "mlir/Pass/PassManager.h"
+#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
+
+using namespace mlir;
+
+namespace {
+
+struct TestLinalgRankReduceContractionOps
+ : public PassWrapper<TestLinalgRankReduceContractionOps,
+ OperationPass<func::FuncOp>> {
+ MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(
+ TestLinalgRankReduceContractionOps)
+
+ TestLinalgRankReduceContractionOps() = default;
+ TestLinalgRankReduceContractionOps(
+ const TestLinalgRankReduceContractionOps &pass)
+ : PassWrapper(pass) {}
+ void getDependentDialects(DialectRegistry ®istry) const override {
+ registry.insert<affine::AffineDialect, linalg::LinalgDialect,
+ memref::MemRefDialect, tensor::TensorDialect>();
+ }
+ StringRef getArgument() const final {
+ return "test-linalg-rank-reduce-contraction-ops";
+ }
+ StringRef getDescription() const final {
+ return "Test Linalg rank reduce contraction ops with unit dims";
+ }
+
+ void runOnOperation() override {
+ MLIRContext *context = &this->getContext();
+ func::FuncOp funcOp = this->getOperation();
+
+ RewritePatternSet patterns(context);
+ linalg::populateContractionOpRankReducingPatterns(patterns);
+ if (failed(applyPatternsAndFoldGreedily(funcOp.getBody(),
+ std::move(patterns))))
+ return signalPassFailure();
+ return;
+ }
+};
+
+} // namespace
+
+namespace mlir {
+namespace test {
+void registerTestLinalgRankReduceContractionOps() {
+ PassRegistration<TestLinalgRankReduceContractionOps>();
+}
+} // namespace test
+} // namespace mlir
diff --git a/mlir/tools/mlir-opt/mlir-opt.cpp b/mlir/tools/mlir-opt/mlir-opt.cpp
index 0e8b161d51345..d4ea7a9cae0d2 100644
--- a/mlir/tools/mlir-opt/mlir-opt.cpp
+++ b/mlir/tools/mlir-opt/mlir-opt.cpp
@@ -106,6 +106,7 @@ void registerTestLinalgDecomposeOps();
void registerTestLinalgDropUnitDims();
void registerTestLinalgElementwiseFusion();
void registerTestLinalgGreedyFusion();
+void registerTestLinalgRankReduceContractionOps();
void registerTestLinalgTransforms();
void registerTestLivenessAnalysisPass();
void registerTestLivenessPass();
@@ -235,6 +236,7 @@ void registerTestPasses() {
mlir::test::registerTestLinalgDropUnitDims();
mlir::test::registerTestLinalgElementwiseFusion();
mlir::test::registerTestLinalgGreedyFusion();
+ mlir::test::registerTestLinalgRankReduceContractionOps();
mlir::test::registerTestLinalgTransforms();
mlir::test::registerTestLivenessAnalysisPass();
mlir::test::registerTestLivenessPass();
>From 28078405788b799cf64bcf5a7a4059c0eb739875 Mon Sep 17 00:00:00 2001
From: Sam <srcarroll314 at gmail.com>
Date: Wed, 19 Jun 2024 10:24:39 -0500
Subject: [PATCH 5/6] refactor common logic into abstract base class
---
.../Linalg/Transforms/DropUnitDims.cpp | 230 +++++++++++++-----
1 file changed, 166 insertions(+), 64 deletions(-)
diff --git a/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp b/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp
index 9248710d5afc9..07b0cdea40c92 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp
@@ -814,10 +814,66 @@ void mlir::linalg::populateMoveInitOperandsToInputPattern(
namespace {
-template <typename BatchOpTy, typename OpTy>
-struct BatchMatmulToMatmul : OpRewritePattern<BatchOpTy> {
- using OpRewritePattern<BatchOpTy>::OpRewritePattern;
- LogicalResult matchAndRewrite(BatchOpTy batchMatmulOp,
+static SmallVector<ReassociationIndices>
+getReassociationsForTrailingDims(int64_t rank) {
+ SmallVector<ReassociationIndices> reassociation(rank - 1, {});
+ if (rank > 1) {
+ reassociation[rank - 2] =
+ (rank == 1) ? ReassociationIndices{0} : ReassociationIndices{0, 1};
+ for (int64_t i = 0; i < rank - 2; i++)
+ reassociation[i] = {i};
+ }
+ return reassociation;
+}
+
+static SmallVector<ReassociationIndices>
+getReassociationsForLeadingDims(int64_t rank) {
+ SmallVector<ReassociationIndices> reassociation(rank - 1, {});
+ if (rank > 1) {
+ reassociation[0] =
+ (rank == 1) ? ReassociationIndices{0} : ReassociationIndices{0, 1};
+ for (int64_t i = 1; i < rank - 1; i++)
+ reassociation[i] = {i + rank - 2};
+ }
+ return reassociation;
+}
+
+static Value collapseLeadingSingletonDim(PatternRewriter &rewriter, Value val) {
+ auto valType = cast<ShapedType>(val.getType());
+ return collapseValue(
+ rewriter, val.getLoc(), val, valType.getShape().drop_front(1),
+ getReassociationsForLeadingDims(valType.getRank()),
+ ControlDropUnitDims::RankReductionStrategy::ReassociativeReshape);
+}
+
+static Value collapseTrailingSingletonDim(PatternRewriter &rewriter,
+ Value val) {
+ auto valType = cast<ShapedType>(val.getType());
+ return collapseValue(
+ rewriter, val.getLoc(), val, valType.getShape().drop_back(1),
+ getReassociationsForTrailingDims(valType.getRank()),
+ ControlDropUnitDims::RankReductionStrategy::ReassociativeReshape);
+}
+
+static Value expandLeadingSingletonDim(PatternRewriter &rewriter, Value val,
+ RankedTensorType expandedType) {
+ return rewriter.create<tensor::ExpandShapeOp>(
+ val.getLoc(), expandedType, val,
+ getReassociationsForLeadingDims(expandedType.getRank()));
+}
+
+static Value expandTrailingSingletonDim(PatternRewriter &rewriter, Value val,
+ RankedTensorType expandedType) {
+ return rewriter.create<tensor::ExpandShapeOp>(
+ val.getLoc(), expandedType, val,
+ getReassociationsForTrailingDims(expandedType.getRank()));
+}
+
+template <typename FromOpTy, typename ToOpTy>
+struct RankReduceContractionOps : OpRewritePattern<FromOpTy> {
+ using OpRewritePattern<FromOpTy>::OpRewritePattern;
+
+ LogicalResult matchAndRewrite(FromOpTy batchMatmulOp,
PatternRewriter &rewriter) const override {
auto loc = batchMatmulOp.getLoc();
@@ -830,47 +886,19 @@ struct BatchMatmulToMatmul : OpRewritePattern<BatchOpTy> {
auto rhs = inputs[1];
auto init = inits[0];
- auto lhsType = cast<ShapedType>(lhs.getType());
- auto rhsType = cast<ShapedType>(rhs.getType());
- auto initType = cast<ShapedType>(init.getType());
- if (lhsType.getShape()[0] != 1 || rhsType.getShape()[0] != 1 ||
- initType.getShape()[0] != 1)
- return rewriter.notifyMatchFailure(batchMatmulOp, "batch size is not 1");
-
- auto results = batchMatmulOp.getResults();
- assert(results.size() < 2 && "expected at most one result");
-
- SmallVector<Type, 1> resultType;
- if (results.size() == 1) {
- auto oldResultType = cast<RankedTensorType>(results[0].getType());
- resultType.push_back(
- RankedTensorType::get(oldResultType.getShape().drop_front(1),
- oldResultType.getElementType()));
- }
-
- auto collapseSingletonDim = [&](Value val) -> Value {
- SmallVector<ReassociationIndices> reassociation({{0, 1}});
- auto valType = cast<ShapedType>(val.getType());
- for (auto i = 2; i < valType.getRank(); i++)
- reassociation.push_back({i});
- if (isa<RankedTensorType>(valType)) {
- RankedTensorType collapsedType = RankedTensorType::get(
- valType.getShape().drop_front(1), valType.getElementType());
- return rewriter.create<tensor::CollapseShapeOp>(loc, collapsedType, val,
- reassociation);
- }
- MemRefType collapsedType = MemRefType::get(
- valType.getShape().drop_front(1), valType.getElementType());
- return rewriter.create<memref::CollapseShapeOp>(loc, collapsedType, val,
- reassociation);
- };
-
- auto collapsedLhs = collapseSingletonDim(lhs);
- auto collapsedRhs = collapseSingletonDim(rhs);
- auto collapsedInit = collapseSingletonDim(init);
-
- auto collapsedOp = rewriter.create<OpTy>(
- loc, resultType, ValueRange{collapsedLhs, collapsedRhs},
+ if (!checkTypes(lhs, rhs, init))
+ return rewriter.notifyMatchFailure(batchMatmulOp,
+ "no reducable dims found");
+
+ auto collapsedOperands = collapseOperands(rewriter, lhs, rhs, init);
+ auto collapsedLhs = collapsedOperands[0];
+ auto collapsedRhs = collapsedOperands[1];
+ auto collapsedInit = collapsedOperands[2];
+ SmallVector<Type, 1> collapsedResultTy;
+ if (isa<RankedTensorType>(collapsedInit.getType()))
+ collapsedResultTy.push_back(collapsedInit.getType());
+ auto collapsedOp = rewriter.create<ToOpTy>(
+ loc, collapsedResultTy, ValueRange{collapsedLhs, collapsedRhs},
ValueRange{collapsedInit});
for (auto attr : batchMatmulOp->getAttrs()) {
if (attr.getName() == LinalgDialect::kMemoizedIndexingMapsAttrName)
@@ -878,35 +906,109 @@ struct BatchMatmulToMatmul : OpRewritePattern<BatchOpTy> {
collapsedOp->setAttr(attr.getName(), attr.getValue());
}
- if (results.size() < 1) {
+ auto results = batchMatmulOp.getResults();
+ assert(results.size() < 2 && "expected at most one result");
+ if (results.size() < 1)
rewriter.replaceOp(batchMatmulOp, collapsedOp);
- } else {
- SmallVector<ReassociationIndices> reassociation({{0, 1}});
- auto resultType = cast<ShapedType>(results[0].getType());
- for (auto i = 2; i < resultType.getRank(); i++)
- reassociation.push_back({i});
- Value expandedResult = rewriter.create<tensor::ExpandShapeOp>(
- loc, resultType, collapsedOp.getResultTensors()[0], reassociation);
- rewriter.replaceOp(batchMatmulOp, expandedResult);
- }
+ else
+ rewriter.replaceOp(
+ batchMatmulOp,
+ expandResult(rewriter, collapsedOp.getResultTensors()[0],
+ cast<RankedTensorType>(results[0].getType())));
return success();
}
+
+ virtual bool checkTypes(Value lhs, Value rhs, Value init) const = 0;
+ virtual SmallVector<Value, 3> collapseOperands(PatternRewriter &rewriter,
+ Value lhs, Value rhs,
+ Value init) const = 0;
+ virtual Value expandResult(PatternRewriter &rewriter, Value result,
+ RankedTensorType expandedType) const = 0;
+};
+
+template <typename FromOpTy, typename ToOpTy>
+struct RankReduceBatched : RankReduceContractionOps<FromOpTy, ToOpTy> {
+ using RankReduceContractionOps<FromOpTy, ToOpTy>::RankReduceContractionOps;
+
+ bool checkTypes(Value lhs, Value rhs, Value init) const override {
+ auto lhsType = cast<ShapedType>(lhs.getType());
+ auto rhsType = cast<ShapedType>(rhs.getType());
+ auto initType = cast<ShapedType>(init.getType());
+ return lhsType.getShape()[0] == 1 && rhsType.getShape()[0] == 1 &&
+ initType.getShape()[0] == 1;
+ }
+
+ SmallVector<Value, 3> collapseOperands(PatternRewriter &rewriter, Value lhs,
+ Value rhs, Value init) const override {
+ auto collapsedLhs = collapseLeadingSingletonDim(rewriter, lhs);
+ auto collapsedRhs = collapseLeadingSingletonDim(rewriter, rhs);
+ auto collapsedInit = collapseLeadingSingletonDim(rewriter, init);
+ return SmallVector<Value, 3>{collapsedLhs, collapsedRhs, collapsedInit};
+ }
+ Value expandResult(PatternRewriter &rewriter, Value result,
+ RankedTensorType expandedType) const override {
+ return expandLeadingSingletonDim(rewriter, result, expandedType);
+ }
+};
+
+template <typename FromOpTy, typename ToOpTy>
+struct RankReduceMatmul : RankReduceContractionOps<FromOpTy, ToOpTy> {
+ using RankReduceContractionOps<FromOpTy, ToOpTy>::RankReduceContractionOps;
+
+ static bool constexpr reduceLeading =
+ (std::is_same<FromOpTy, MatmulOp>::value &&
+ std::is_same<ToOpTy, VecmatOp>::value) ||
+ (std::is_same<FromOpTy, MatvecOp>::value &&
+ std::is_same<ToOpTy, DotOp>::value);
+
+ bool checkTypes(Value lhs, Value rhs, Value init) const override {
+ auto lhsType = cast<ShapedType>(lhs.getType());
+ auto rhsType = cast<ShapedType>(rhs.getType());
+ auto initType = cast<ShapedType>(init.getType());
+ if (reduceLeading)
+ return lhsType.getShape()[0] == 1 && initType.getShape()[0] == 1;
+ else
+ return rhsType.getShape().back() == 1 && initType.getShape().back() == 1;
+ }
+
+ SmallVector<Value, 3> collapseOperands(PatternRewriter &rewriter, Value lhs,
+ Value rhs, Value init) const override {
+ if (reduceLeading) {
+ auto collapsedLhs = collapseLeadingSingletonDim(rewriter, lhs);
+ auto collapsedInit = collapseLeadingSingletonDim(rewriter, init);
+ return SmallVector<Value, 3>{collapsedLhs, rhs, collapsedInit};
+ } else {
+ auto collapsedRhs = collapseTrailingSingletonDim(rewriter, rhs);
+ auto collapsedInit = collapseTrailingSingletonDim(rewriter, init);
+ return SmallVector<Value, 3>{lhs, collapsedRhs, collapsedInit};
+ }
+ }
+ Value expandResult(PatternRewriter &rewriter, Value result,
+ RankedTensorType expandedType) const override {
+ if (reduceLeading)
+ return expandLeadingSingletonDim(rewriter, result, expandedType);
+ else
+ return expandTrailingSingletonDim(rewriter, result, expandedType);
+ }
};
+
} // namespace
void mlir::linalg::populateContractionOpRankReducingPatterns(
RewritePatternSet &patterns) {
MLIRContext *context = patterns.getContext();
- patterns.add<BatchMatmulToMatmul<BatchMatmulOp, MatmulOp>>(context);
- patterns
- .add<BatchMatmulToMatmul<BatchMatmulTransposeAOp, MatmulTransposeAOp>>(
- context);
- patterns
- .add<BatchMatmulToMatmul<BatchMatmulTransposeBOp, MatmulTransposeBOp>>(
- context);
- patterns.add<BatchMatmulToMatmul<BatchMatvecOp, MatvecOp>>(context);
- patterns.add<BatchMatmulToMatmul<BatchVecmatOp, VecmatOp>>(context);
+ patterns.add<RankReduceBatched<BatchMatmulOp, MatmulOp>>(context);
+ patterns.add<RankReduceBatched<BatchMatmulTransposeAOp, MatmulTransposeAOp>>(
+ context);
+ patterns.add<RankReduceBatched<BatchMatmulTransposeBOp, MatmulTransposeBOp>>(
+ context);
+ patterns.add<RankReduceBatched<BatchMatvecOp, MatvecOp>>(context);
+ patterns.add<RankReduceBatched<BatchVecmatOp, VecmatOp>>(context);
+ patterns.add<RankReduceMatmul<MatmulOp, VecmatOp>>(context);
+ patterns.add<RankReduceMatmul<MatmulOp, MatvecOp>>(context);
+ patterns.add<RankReduceMatmul<MatvecOp, DotOp>>(context);
+ patterns.add<RankReduceMatmul<VecmatOp, DotOp>>(context);
}
namespace {
>From 679192b56ac231fce54824d0189a52f39ea2a63b Mon Sep 17 00:00:00 2001
From: Sam <srcarroll314 at gmail.com>
Date: Wed, 19 Jun 2024 17:07:46 -0500
Subject: [PATCH 6/6] add regression test
---
.../Linalg/rank-reduce-contraction-ops.mlir | 197 ++++++++++++++++++
1 file changed, 197 insertions(+)
create mode 100644 mlir/test/Dialect/Linalg/rank-reduce-contraction-ops.mlir
diff --git a/mlir/test/Dialect/Linalg/rank-reduce-contraction-ops.mlir b/mlir/test/Dialect/Linalg/rank-reduce-contraction-ops.mlir
new file mode 100644
index 0000000000000..279a1d52ae72b
--- /dev/null
+++ b/mlir/test/Dialect/Linalg/rank-reduce-contraction-ops.mlir
@@ -0,0 +1,197 @@
+//RUN: mlir-opt -test-linalg-rank-reduce-contraction-ops --canonicalize -split-input-file %s | FileCheck %s
+
+func.func @singleton_batch_matmul_tensor(%arg0 : tensor<1x?x?xf32>, %arg1 : tensor<1x?x?xf32>, %arg2: tensor<1x?x?xf32>) -> tensor<1x?x?xf32> {
+ // CHECK-LABEL: @singleton_batch_matmul_tensor
+ // CHECK-SAME: %[[LHS:[a-zA-Z0-9]+]]: tensor<1x?x?xf32>
+ // CHECK-SAME: %[[RHS:[a-zA-Z0-9]+]]: tensor<1x?x?xf32>
+ // CHECK-SAME: %[[INIT:[a-zA-Z0-9]+]]: tensor<1x?x?xf32>
+ // CHECK-DAG: %[[C1:.*]] = arith.constant 1
+ // CHECK-DAG: %[[C2:.*]] = arith.constant 2
+ // CHECK-NEXT: %[[COLLAPSED_LHS:.*]] = tensor.collapse_shape %[[LHS]] {{\[}}[0, 1], [2]]
+ // CHECK-NEXT: %[[COLLAPSED_RHS:.*]] = tensor.collapse_shape %[[RHS]] {{\[}}[0, 1], [2]]
+ // CHECK-NEXT: %[[COLLAPSED_INIT:.*]] = tensor.collapse_shape %[[INIT]] {{\[}}[0, 1], [2]]
+ // CHECK-NEXT: %[[MATMUL:.+]] = linalg.matmul ins(%[[COLLAPSED_LHS]], %[[COLLAPSED_RHS]] : tensor<?x?xf32>, tensor<?x?xf32>) outs(%[[COLLAPSED_INIT]] : tensor<?x?xf32>)
+ // CHECK-NEXT: %[[DIM1:.*]] = tensor.dim %[[INIT]], %[[C1]]
+ // CHECK-NEXT: %[[DIM2:.*]] = tensor.dim %[[INIT]], %[[C2]]
+ // CHECK-NEXT: %[[RES:.*]] = tensor.expand_shape %[[MATMUL]] {{\[}}[0, 1], [2]] output_shape [1, %[[DIM1]], %[[DIM2]]]
+ // CHECK-NEXT: return %[[RES]]
+ %1 = linalg.batch_matmul ins(%arg0, %arg1 : tensor<1x?x?xf32>, tensor<1x?x?xf32>)
+ outs(%arg2 : tensor<1x?x?xf32>) -> tensor<1x?x?xf32>
+ return %1 : tensor<1x?x?xf32>
+}
+
+// -----
+
+func.func @singleton_batch_matmul_memref(%arg0 : memref<1x?x?xf32>, %arg1 : memref<1x?x?xf32>, %arg2: memref<1x?x?xf32>) {
+ // CHECK-LABEL: @singleton_batch_matmul_memref
+ // CHECK-SAME: %[[LHS:[a-zA-Z0-9]+]]: memref<1x?x?xf32>
+ // CHECK-SAME: %[[RHS:[a-zA-Z0-9]+]]: memref<1x?x?xf32>
+ // CHECK-SAME: %[[INIT:[a-zA-Z0-9]+]]: memref<1x?x?xf32>
+ // CHECK-NEXT: %[[COLLAPSED_LHS:.*]] = memref.collapse_shape %[[LHS]] {{\[}}[0, 1], [2]]
+ // CHECK-NEXT: %[[COLLAPSED_RHS:.*]] = memref.collapse_shape %[[RHS]] {{\[}}[0, 1], [2]]
+ // CHECK-NEXT: %[[COLLAPSED_INIT:.*]] = memref.collapse_shape %[[INIT]] {{\[}}[0, 1], [2]]
+ // CHECK-NEXT: linalg.matmul ins(%[[COLLAPSED_LHS]], %[[COLLAPSED_RHS]] : memref<?x?xf32>, memref<?x?xf32>) outs(%[[COLLAPSED_INIT]] : memref<?x?xf32>)
+ // CHECK-NEXT: return
+ linalg.batch_matmul ins(%arg0, %arg1 : memref<1x?x?xf32>, memref<1x?x?xf32>)
+ outs(%arg2 : memref<1x?x?xf32>)
+ return
+}
+
+// -----
+
+func.func @singleton_batch_matvec(%arg0 : tensor<1x?x?xf32>, %arg1 : tensor<1x?xf32>, %arg2: tensor<1x?xf32>) -> tensor<1x?xf32> {
+ // CHECK-LABEL: @singleton_batch_matvec
+ // CHECK-SAME: %[[LHS:[a-zA-Z0-9]+]]: tensor<1x?x?xf32>
+ // CHECK-SAME: %[[RHS:[a-zA-Z0-9]+]]: tensor<1x?xf32>
+ // CHECK-SAME: %[[INIT:[a-zA-Z0-9]+]]: tensor<1x?xf32>
+ // CHECK-DAG: %[[C1:.*]] = arith.constant 1
+ // CHECK-NEXT: %[[COLLAPSED_LHS:.*]] = tensor.collapse_shape %[[LHS]] {{\[}}[0, 1], [2]]
+ // CHECK-NEXT: %[[COLLAPSED_RHS:.*]] = tensor.collapse_shape %[[RHS]] {{\[}}[0, 1]]
+ // CHECK-NEXT: %[[COLLAPSED_INIT:.*]] = tensor.collapse_shape %[[INIT]] {{\[}}[0, 1]]
+ // CHECK-NEXT: %[[MATMUL:.+]] = linalg.matvec ins(%[[COLLAPSED_LHS]], %[[COLLAPSED_RHS]] : tensor<?x?xf32>, tensor<?xf32>) outs(%[[COLLAPSED_INIT]] : tensor<?xf32>)
+ // CHECK-NEXT: %[[DIM1:.*]] = tensor.dim %[[INIT]], %[[C1]]
+ // CHECK-NEXT: %[[RES:.*]] = tensor.expand_shape %[[MATMUL]] {{\[}}[0, 1]] output_shape [1, %[[DIM1]]]
+ // CHECK-NEXT: return %[[RES]]
+ %1 = linalg.batch_matvec ins(%arg0, %arg1 : tensor<1x?x?xf32>, tensor<1x?xf32>)
+ outs(%arg2 : tensor<1x?xf32>) -> tensor<1x?xf32>
+ return %1 : tensor<1x?xf32>
+}
+
+// -----
+
+func.func @singleton_batch_vecmat(%arg0 : tensor<1x?xf32>, %arg1 : tensor<1x?x?xf32>, %arg2: tensor<1x?xf32>) -> tensor<1x?xf32> {
+ // CHECK-LABEL: @singleton_batch_vecmat
+ // CHECK-SAME: %[[LHS:[a-zA-Z0-9]+]]: tensor<1x?xf32>
+ // CHECK-SAME: %[[RHS:[a-zA-Z0-9]+]]: tensor<1x?x?xf32>
+ // CHECK-SAME: %[[INIT:[a-zA-Z0-9]+]]: tensor<1x?xf32>
+ // CHECK-DAG: %[[C1:.*]] = arith.constant 1
+ // CHECK-NEXT: %[[COLLAPSED_LHS:.*]] = tensor.collapse_shape %[[LHS]] {{\[}}[0, 1]]
+ // CHECK-NEXT: %[[COLLAPSED_RHS:.*]] = tensor.collapse_shape %[[RHS]] {{\[}}[0, 1], [2]]
+ // CHECK-NEXT: %[[COLLAPSED_INIT:.*]] = tensor.collapse_shape %[[INIT]] {{\[}}[0, 1]]
+ // CHECK-NEXT: %[[MATMUL:.+]] = linalg.vecmat ins(%[[COLLAPSED_LHS]], %[[COLLAPSED_RHS]] : tensor<?xf32>, tensor<?x?xf32>) outs(%[[COLLAPSED_INIT]] : tensor<?xf32>)
+ // CHECK-NEXT: %[[DIM1:.*]] = tensor.dim %[[INIT]], %[[C1]]
+ // CHECK-NEXT: %[[RES:.*]] = tensor.expand_shape %[[MATMUL]] {{\[}}[0, 1]] output_shape [1, %[[DIM1]]]
+ // CHECK-NEXT: return %[[RES]]
+ %1 = linalg.batch_vecmat ins(%arg0, %arg1 : tensor<1x?xf32>, tensor<1x?x?xf32>)
+ outs(%arg2 : tensor<1x?xf32>) -> tensor<1x?xf32>
+ return %1 : tensor<1x?xf32>
+}
+
+// -----
+
+func.func @singleton_batchmatmul_transpose_a(%arg0: memref<1x5x3xf32>, %arg1: memref<1x5x7xf32>, %arg2: memref<1x3x7xf32>) {
+ // CHECK-LABEL: @singleton_batchmatmul_transpose_a
+ // CHECK-SAME: %[[LHS:[a-zA-Z0-9]+]]: memref<1x5x3xf32>
+ // CHECK-SAME: %[[RHS:[a-zA-Z0-9]+]]: memref<1x5x7xf32>
+ // CHECK-SAME: %[[INIT:[a-zA-Z0-9]+]]: memref<1x3x7xf32>
+ // CHECK-NEXT: %[[COLLAPSED_LHS:.*]] = memref.collapse_shape %[[LHS]] {{\[}}[0, 1], [2]]
+ // CHECK-NEXT: %[[COLLAPSED_RHS:.*]] = memref.collapse_shape %[[RHS]] {{\[}}[0, 1], [2]]
+ // CHECK-NEXT: %[[COLLAPSED_INIT:.*]] = memref.collapse_shape %[[INIT]] {{\[}}[0, 1], [2]]
+ // CHECK-NEXT: linalg.matmul_transpose_a ins(%[[COLLAPSED_LHS]], %[[COLLAPSED_RHS]] : memref<5x3xf32>, memref<5x7xf32>) outs(%[[COLLAPSED_INIT]] : memref<3x7xf32>)
+ // CHECK-NEXT: return
+ linalg.batch_matmul_transpose_a ins(%arg0, %arg1 : memref<1x5x3xf32>, memref<1x5x7xf32>) outs(%arg2: memref<1x3x7xf32>)
+ return
+}
+
+// -----
+
+func.func @singleton_batchmatmul_transpose_b(%arg0: memref<1x3x5xf32>, %arg1: memref<1x7x5xf32>, %arg2: memref<1x3x7xf32>) {
+ // CHECK-LABEL: @singleton_batchmatmul_transpose_b
+ // CHECK-SAME: %[[LHS:[a-zA-Z0-9]+]]: memref<1x3x5xf32>
+ // CHECK-SAME: %[[RHS:[a-zA-Z0-9]+]]: memref<1x7x5xf32>
+ // CHECK-SAME: %[[INIT:[a-zA-Z0-9]+]]: memref<1x3x7xf32>
+ // CHECK-NEXT: %[[COLLAPSED_LHS:.*]] = memref.collapse_shape %[[LHS]] {{\[}}[0, 1], [2]]
+ // CHECK-NEXT: %[[COLLAPSED_RHS:.*]] = memref.collapse_shape %[[RHS]] {{\[}}[0, 1], [2]]
+ // CHECK-NEXT: %[[COLLAPSED_INIT:.*]] = memref.collapse_shape %[[INIT]] {{\[}}[0, 1], [2]]
+ // CHECK-NEXT: linalg.matmul_transpose_b ins(%[[COLLAPSED_LHS]], %[[COLLAPSED_RHS]] : memref<3x5xf32>, memref<7x5xf32>) outs(%[[COLLAPSED_INIT]] : memref<3x7xf32>)
+ // CHECK-NEXT: return
+ linalg.batch_matmul_transpose_b ins(%arg0, %arg1 : memref<1x3x5xf32>, memref<1x7x5xf32>) outs(%arg2: memref<1x3x7xf32>)
+ return
+}
+
+// -----
+
+func.func @matmul_to_vecmat(%arg0: memref<1x?xf32>, %arg1: memref<?x?xf32>, %arg2: memref<1x?xf32>) {
+ // CHECK-LABEL: @matmul_to_vecmat
+ // CHECK: linalg.vecmat
+ linalg.matmul ins(%arg0, %arg1: memref<1x?xf32>, memref<?x?xf32>) outs(%arg2: memref<1x?xf32>)
+ return
+}
+
+// -----
+
+func.func @batch_matmul_to_vecmat(%arg0: memref<1x1x?xf32>, %arg1: memref<1x?x?xf32>, %arg2: memref<1x1x?xf32>) {
+ // CHECK-LABEL: @batch_matmul_to_vecmat
+ // CHECK: linalg.vecmat
+ linalg.batch_matmul ins(%arg0, %arg1: memref<1x1x?xf32>, memref<1x?x?xf32>) outs(%arg2: memref<1x1x?xf32>)
+ return
+}
+
+// -----
+
+func.func @matvec_to_dot(%arg0: memref<1x?xf32>, %arg1: memref<?xf32>, %arg2: memref<1xf32>) {
+ // CHECK-LABEL: @matvec_to_dot
+ // CHECK: linalg.dot
+ linalg.matvec ins(%arg0, %arg1: memref<1x?xf32>, memref<?xf32>) outs(%arg2: memref<1xf32>)
+ return
+}
+
+// -----
+
+func.func @vecmat_to_dot(%arg0: memref<?xf32>, %arg1: memref<?x1xf32>, %arg2: memref<1xf32>) {
+ // CHECK-LABEL: @vecmat_to_dot
+ // CHECK: linalg.dot
+ linalg.vecmat ins(%arg0, %arg1: memref<?xf32>, memref<?x1xf32>) outs(%arg2: memref<1xf32>)
+ return
+}
+
+// -----
+
+func.func @matvec_to_dot_tensor(%arg0: tensor<1x?xf32>, %arg1: tensor<?xf32>, %arg2: tensor<1xf32>) -> tensor<1xf32> {
+ // CHECK-LABEL: @matvec_to_dot_tensor
+ // CHECK: linalg.dot
+ %0 = linalg.matvec ins(%arg0, %arg1: tensor<1x?xf32>, tensor<?xf32>) outs(%arg2: tensor<1xf32>) -> tensor<1xf32>
+ return %0 : tensor<1xf32>
+}
+
+// -----
+
+func.func @matmul_to_matvec_tensor(%arg0: tensor<?x?xf32>, %arg1: tensor<?x1xf32>, %arg2: tensor<?x1xf32>) -> tensor<?x1xf32> {
+ // CHECK-LABEL: @matmul_to_matvec_tensor
+ // CHECK: linalg.matvec
+ %0 = linalg.matmul ins(%arg0, %arg1: tensor<?x?xf32>, tensor<?x1xf32>) outs(%arg2: tensor<?x1xf32>) -> tensor<?x1xf32>
+ return %0 : tensor<?x1xf32>
+}
+
+// -----
+
+func.func @matmul_to_matvec(%arg0: memref<?x?xf32>, %arg1: memref<?x1xf32>, %arg2: memref<?x1xf32>) {
+ // CHECK-LABEL: @matmul_to_matvec
+ // CHECK: linalg.matvec
+ linalg.matmul ins(%arg0, %arg1: memref<?x?xf32>, memref<?x1xf32>) outs(%arg2: memref<?x1xf32>)
+ return
+}
+
+// -----
+
+func.func @nonsingleton_batch_matmul(%arg0 : tensor<2x?x?xf32>, %arg1 : tensor<2x?x?xf32>, %arg2: tensor<2x?x?xf32>) -> tensor<2x?x?xf32> {
+ // CHECK-LABEL: @nonsingleton_batch_matmul
+ // CHECK-NOT: collapse_shape
+ // CHECK: linalg.batch_matmul
+ // CHECK-NOT: expand_shape
+ %1 = linalg.batch_matmul ins(%arg0, %arg1 : tensor<2x?x?xf32>, tensor<2x?x?xf32>)
+ outs(%arg2 : tensor<2x?x?xf32>) -> tensor<2x?x?xf32>
+ return %1 : tensor<2x?x?xf32>
+}
+
+// -----
+
+func.func @nonsingleton_batch_matmul_dynamic(%arg0 : tensor<?x?x?xf32>, %arg1 : tensor<?x?x?xf32>, %arg2: tensor<?x?x?xf32>) -> tensor<?x?x?xf32> {
+ // CHECK-LABEL: @nonsingleton_batch_matmul_dynamic
+ // CHECK-NOT: collapse_shape
+ // CHECK: linalg.batch_matmul
+ // CHECK-NOT: expand_shape
+ %1 = linalg.batch_matmul ins(%arg0, %arg1 : tensor<?x?x?xf32>, tensor<?x?x?xf32>)
+ outs(%arg2 : tensor<?x?x?xf32>) -> tensor<?x?x?xf32>
+ return %1 : tensor<?x?x?xf32>
+}
More information about the Mlir-commits
mailing list