[Mlir-commits] [mlir] [MLIR][Linalg] Add pass to convert linalg.generic back to named ops (PR #95656)
Adam Siemieniuk
llvmlistbot at llvm.org
Mon Jun 17 04:41:26 PDT 2024
================
@@ -58,6 +68,175 @@ static bool areBinOpsSwapped(GenericOp genericOp) {
return swapped;
}
+//===----------------------------------------------------------------------===//
+// Specialize linalg generic to matmul variants.
+//===----------------------------------------------------------------------===//
+/// Identifies linalg.generic that is essentially named op of the form:
+// ` linalg.{batch_}?matmul{_transpose_a | _transpose_b}? `
+//
+// It is possible that a linalg.generic may be implementing one of matmul
+// variants but not in a straight-forward way, or the linalg.generic's
+// affine map per operand capture more semantics than is possible with
+// named op (which has implicit map interpreted via name).
+//
+// But a named linalg matmul variant that was 'generalized' should be
+// convertible back to named op here.
+//
+namespace {
+enum class IndexMatchResult {
+ Match = 0, // identity map.
+ Transposed, // transposed map.
+ Mismatch // none of the above.
+};
+
+// Looks at the affine map of an operand and works out if generic accesses
+// the element as identity-map, transposed, or 'cant work out'.
+// This check skips the `offset` batch indices and focuses on the matmul part.
+static IndexMatchResult matchOperandMap(AffineMap m, unsigned offset,
+ unsigned i, unsigned j) {
+ auto expr_ei = dyn_cast<AffineDimExpr>(m.getResults()[offset]);
+ auto expr_ej = dyn_cast<AffineDimExpr>(m.getResults()[offset + 1]);
+ if (!expr_ei || !expr_ej)
+ return IndexMatchResult::Mismatch;
+
+ auto ei = expr_ei.getPosition();
+ auto ej = expr_ej.getPosition();
+
+ if (ei == i && ej == j)
+ return IndexMatchResult::Match;
+
+ if (ei == j && ej == i)
+ return IndexMatchResult::Transposed;
+
+ return IndexMatchResult::Mismatch;
+}
+
+// All the variants `linalg.{batch_}?matmul{_transpose_a | _transpose_b}?`
+// have same number of input/output.
+template <typename Variant>
+static LinalgOp replaceWithMatmulVariant(RewriterBase &rewriter, GenericOp op) {
+ LinalgOp namedOp = rewriter.replaceOpWithNewOp<Variant>(
+ op, ValueRange{op.getDpsInputs()[0], op.getDpsInputs()[1]},
+ ValueRange{op.getDpsInits()[0]});
+ return namedOp;
+}
+
+// Converts linalg.generic to named linalg.*matmul* where possible.
+static FailureOr<LinalgOp> specializeLinalgContractions(RewriterBase &rewriter,
+ GenericOp genericOp) {
+ if (genericOp.getNumDpsInputs() != 2 || genericOp.getNumDpsInits() != 1)
+ return failure();
+
+ // Linalg generic contraction can be across multiple axis but for matmul
+ // variants it must be one.
+ if (genericOp.getNumReductionLoops() != 1)
+ return failure();
+
+ // Must be projected permutations.
+ auto mapRange = genericOp.getIndexingMapsArray();
+ if (llvm::any_of(mapRange,
+ [](AffineMap m) { return !m.isProjectedPermutation(); }))
+ return failure();
+
+ // matmul contractions are of the form:
+ // %0 = <elemwise>(permutation-of(cu(block-argument-0),
+ // cu(block-argument-1)))
+ // %1 = <reduce>(permutation-of(cu(%0), cu(block-argument-2)))
+ //
+ // where <elemwise> and <reduce> are binary operations constituting a
+ // contraction (in the canonical case, <elemwise> is a multiplication and
+ // <reduce> is an addition). All operands of all operations may be supplied
+ // through a chain of side effect-free unary operations, such as casts,
+ // which is denoted as `cu` above.
+ if (!mlir::linalg::detail::isContractionBody(
+ *genericOp.getBlock(), [](Operation *first, Operation *second) {
+ if ((isa<arith::MulFOp>(first) && isa<arith::AddFOp>(second)) ||
+ (isa<arith::MulIOp>(first) && isa<arith::AddIOp>(second)) ||
+ (isa<complex::MulOp>(first) && isa<complex::AddOp>(second)))
+ return true;
+ return false;
+ }))
+ return failure();
+
+ // Finds 2 parallel (m and n) and 1 reduction (k) dimension candidates that
+ // form a matmul subcomputation. These dimensions are such that:
+ // 1. The m dimension is involved in an outer-product along LHS
+ // (i.e. it is a permutation on RES and LHS and does not appear in RHS).
+ // 2. The n dimension is involved in an outer-product along RHS
+ // (i.e. it is a permutation on RES and RHS and does not appear in LHS).
+ // 3. The k dimension appears as a permutation on LHS and RHS.
+ // 4. m, n and k appear only once in any given indexing.
+ // 5. Optional batch dimensions that appear in all operands are captured.
+ auto res = inferContractionDims(genericOp);
+ assert(succeeded(res) && "unexpected failure to infer contraction dims");
+ auto dims = *res;
+
+ // Other than `batch`, other dim sizes must be 1 for linalg.*_matmul_*.
+ if (dims.m.size() != 1 || dims.n.size() != 1 || dims.k.size() != 1)
+ return failure();
+
+ // Check rank of operands
+ auto indexingMaps = genericOp.getIndexingMapsArray();
+ if (llvm::any_of(indexingMaps, [&dims](AffineMap m) {
+ return m.getResults().size() !=
+ dims.batch.size() + 2 /*two from {m,n,k}*/;
+ }))
+ return failure();
+
+ auto batchSize = dims.batch.size();
+ if (indexingMaps[0].getNumDims() != batchSize + 3) {
+ }
----------------
adam-smnk wrote:
Empty body?
https://github.com/llvm/llvm-project/pull/95656
More information about the Mlir-commits
mailing list