[Mlir-commits] [mlir] [mlir][vector] Restrict DropInnerMostUnitDimsTransferRead (PR #94904)

Andrzej WarzyƄski llvmlistbot at llvm.org
Tue Jun 11 07:16:35 PDT 2024


https://github.com/banach-space updated https://github.com/llvm/llvm-project/pull/94904

>From 8e16ac38f0ed7b2c644b91da3a447503cc7f68dc Mon Sep 17 00:00:00 2001
From: Andrzej Warzynski <andrzej.warzynski at arm.com>
Date: Thu, 6 Jun 2024 11:21:45 +0100
Subject: [PATCH 1/2] [mlir][vector] Update tests for collapse 2/n (nfc)

The main goal of this PR (and subsequent PRs), is to add more tests with
scalable vectors to:
  * vector-transfer-collapse-inner-most-dims.mlir

Changes in this PR:

1. Renamed `@contiguous_inner_most_dim_bounds` as
   `@contiguous_inner_most_dim_with_subview`. This test was introduced
   to make sure that the `in_bounds` attribute is correctly preserved,
   but that's already verified by some earlier tests. The updated name
   highlights the differentiating factor of this test when compared to
   the other tests _currently_ present in the file, i.e. the presence of
   `memref.subview` in the input IR.

2. Renamed `@contiguous_inner_most_dim_out_of_bounds_2d` as
   `@negative_non_unit_inner_vec_dim`. While this test does contain an
   out-of-bounds access, the actual reason for the tested pattern to
   fail is the fact that the inner dim in the output vector is not "1".
   A complimentary test was added to verify that the pattern also fails
   when the source memref has non-unit trailing dim
   (`@negative_non_unit_inner_memref_dim`).

3. Renamed `@contiguous_inner_most_dim` as
   `@contiguous_inner_most_dim_non_zero_idxs` - this test verifies that
   the pattern works in the presence of non-zero idxs.

4. Added more tests for scalable vectors - this should cover all cases
   for `vector.transfer_read`.

NOTE: This PR is limited to tests for `vector.transfer_read`.

Follow-up for: #94490
---
 ...tor-transfer-collapse-inner-most-dims.mlir | 136 +++++++++++++-----
 1 file changed, 104 insertions(+), 32 deletions(-)

diff --git a/mlir/test/Dialect/Vector/vector-transfer-collapse-inner-most-dims.mlir b/mlir/test/Dialect/Vector/vector-transfer-collapse-inner-most-dims.mlir
index 9b23681dba6a8..a50c01898c62e 100644
--- a/mlir/test/Dialect/Vector/vector-transfer-collapse-inner-most-dims.mlir
+++ b/mlir/test/Dialect/Vector/vector-transfer-collapse-inner-most-dims.mlir
@@ -53,7 +53,7 @@ func.func @non_unit_trailing_dim(%in: memref<1x1x8x?xf32, strided<[3072, 8, 1, 1
 //    CHECK-NOT: vector.shape_cast
 
 // Same as the top example within this split, but with a scalable unit dim in
-// the output vector - not supported
+// the output vector - not supported (scalable 1 is _not_ a unit dimension).
 
 func.func @negative_scalable_unit_dim(%in: memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>>) -> vector<1x8x[1]xf32>{
   %c0 = arith.constant 0 : index
@@ -67,13 +67,13 @@ func.func @negative_scalable_unit_dim(%in: memref<1x1x8x1xf32, strided<[3072, 8,
 
 // -----
 
-func.func @contiguous_outer_dyn_inner_most(%a: index, %b: index, %memref: memref<?x?x8x1xf32>) -> vector<8x1xf32> {
+func.func @contiguous_inner_most_dynamic_outer(%a: index, %b: index, %memref: memref<?x?x8x1xf32>) -> vector<8x1xf32> {
   %c0 = arith.constant 0 : index
   %pad = arith.constant 0.0 : f32
   %v = vector.transfer_read %memref[%a, %b, %c0, %c0], %pad {in_bounds = [true, true]} : memref<?x?x8x1xf32>, vector<8x1xf32>
   return %v : vector<8x1xf32>
 }
-// CHECK: func.func @contiguous_outer_dyn_inner_most(
+// CHECK: func.func @contiguous_inner_most_dynamic_outer
 // CHECK-SAME:   %[[IDX0:[a-zA-Z0-9]+]]
 // CHECK-SAME:   %[[IDX1:[a-zA-Z0-9]+]]
 // CHECK-SAME:   %[[SRC:[a-zA-Z0-9]+]]
@@ -89,68 +89,154 @@ func.func @contiguous_outer_dyn_inner_most(%a: index, %b: index, %memref: memref
 // CHECK:        %[[RESULT:.+]] = vector.shape_cast %[[VEC]]
 // CHECK:        return %[[RESULT]]
 
+// Same as the top example within this split, but with the outer vector
+// dim scalable. Note that this example only makes sense when "8 = [8]" (i.e.
+// vscale = 1). This is assumed (implicitly) via the `in_bounds` attribute.
+
+func.func @contiguous_inner_most_outer_dim_dyn_scalable_inner_dim(%a: index, %b: index, %memref: memref<?x?x8x1xf32>) -> vector<[8]x1xf32> {
+  %c0 = arith.constant 0 : index
+  %pad = arith.constant 0.0 : f32
+  %v = vector.transfer_read %memref[%a, %b, %c0, %c0], %pad {in_bounds = [true, true]} : memref<?x?x8x1xf32>, vector<[8]x1xf32>
+  return %v : vector<[8]x1xf32>
+}
+// CHECK-LABEL:  func @contiguous_inner_most_outer_dim_dyn_scalable_inner_dim
+// CHECK-SAME:   %[[IDX0:[a-zA-Z0-9]+]]
+// CHECK-SAME:   %[[IDX1:[a-zA-Z0-9]+]]
+// CHECK-SAME:   %[[SRC:[a-zA-Z0-9]+]]
+// CHECK:         %[[VIEW:.+]] = memref.subview %[[SRC]]{{.*}} memref<?x?x8x1xf32> to memref<?x?x8xf32, strided<[?, 8, 1], offset: ?>>
+// CHECK:         %[[VEC_READ:.+]] = vector.transfer_read %[[VIEW]]
+// CHECK-SAME:    {in_bounds = [true]}
+// CHECK-SAME:     memref<?x?x8xf32, strided<[?, 8, 1], offset: ?>>, vector<[8]xf32>
+// CHECK:         vector.shape_cast %[[VEC_READ]]
+
 // -----
 
-func.func @contiguous_inner_most_dim(%A: memref<16x1xf32>, %i:index, %j:index) -> (vector<8x1xf32>) {
+func.func @contiguous_inner_most_dim_non_zero_idxs(%A: memref<16x1xf32>, %i:index, %j:index) -> (vector<8x1xf32>) {
   %c0 = arith.constant 0 : index
   %f0 = arith.constant 0.0 : f32
   %1 = vector.transfer_read %A[%i, %j], %f0 : memref<16x1xf32>, vector<8x1xf32>
   return %1 : vector<8x1xf32>
 }
-//      CHECK: func @contiguous_inner_most_dim(%[[SRC:.+]]: memref<16x1xf32>, %[[I:.+]]: index, %[[J:.+]]: index) -> vector<8x1xf32>
+//      CHECK: func @contiguous_inner_most_dim_non_zero_idxs(%[[SRC:.+]]: memref<16x1xf32>, %[[I:.+]]: index, %[[J:.+]]: index) -> vector<8x1xf32>
 //      CHECK:   %[[SRC_0:.+]] = memref.subview %[[SRC]]
 // CHECK-SAME:     memref<16x1xf32> to memref<16xf32, strided<[1]>>
 //      CHECK:   %[[V:.+]] = vector.transfer_read %[[SRC_0]]
-//      CHECK:   %[[RESULT]] = vector.shape_cast %[[V]] : vector<8xf32> to vector<8x1xf32>
+//      CHECK:   %[[RESULT:.+]] = vector.shape_cast %[[V]] : vector<8xf32> to vector<8x1xf32>
 //      CHECK:   return %[[RESULT]]
 
+// Same as the top example within this split, but with the outer vector
+// dim scalable. Note that this example only makes sense when "8 = [8]" (i.e.
+// vscale = 1). This is assumed (implicitly) via the `in_bounds` attribute.
+
+func.func @contiguous_inner_most_dim_non_zero_idxs_scalable_inner_dim(%A: memref<16x1xf32>, %i:index, %j:index) -> (vector<[8]x1xf32>) {
+  %c0 = arith.constant 0 : index
+  %f0 = arith.constant 0.0 : f32
+  %1 = vector.transfer_read %A[%i, %j], %f0 : memref<16x1xf32>, vector<[8]x1xf32>
+  return %1 : vector<[8]x1xf32>
+}
+// CHECK-LABEL: func @contiguous_inner_most_dim_non_zero_idxs_scalable_inner_dim(
+// CHECK-SAME:    %[[SRC:.+]]: memref<16x1xf32>, %[[I:.+]]: index, %[[J:.+]]: index) -> vector<[8]x1xf32>
+//       CHECK:   %[[SRC_0:.+]] = memref.subview %[[SRC]]
+//  CHECK-SAME:     memref<16x1xf32> to memref<16xf32, strided<[1]>>
+//       CHECK:   %[[V:.+]] = vector.transfer_read %[[SRC_0]]
+//       CHECK:   %[[RESULT:.+]] = vector.shape_cast %[[V]] : vector<[8]xf32> to vector<[8]x1xf32>
+//       CHECK:   return %[[RESULT]]
+
 // -----
 
-func.func @contiguous_inner_most_dim_bounds(%A: memref<1000x1xf32>, %i:index, %ii:index) -> (vector<4x1xf32>) {
+func.func @contiguous_inner_most_dim_with_subview(%A: memref<1000x1xf32>, %i:index, %ii:index) -> (vector<4x1xf32>) {
   %c0 = arith.constant 0 : index
   %cst = arith.constant 0.0 : f32
   %0 = memref.subview %A[%i, 0] [40, 1] [1, 1] : memref<1000x1xf32> to memref<40x1xf32, strided<[1, 1], offset: ?>>
   %1 = vector.transfer_read %0[%ii, %c0], %cst {in_bounds = [true, true]} : memref<40x1xf32, strided<[1, 1], offset: ?>>, vector<4x1xf32>
   return %1 : vector<4x1xf32>
 }
-//      CHECK: func @contiguous_inner_most_dim_bounds(%[[SRC:.+]]: memref<1000x1xf32>, %[[II:.+]]: index, %[[J:.+]]: index) -> vector<4x1xf32>
+//      CHECK: func @contiguous_inner_most_dim_with_subview(%[[SRC:.+]]: memref<1000x1xf32>, %[[II:.+]]: index, %[[J:.+]]: index) -> vector<4x1xf32>
 //      CHECK:   %[[SRC_0:.+]] = memref.subview %[[SRC]]
 //      CHECK:   %[[SRC_1:.+]] = memref.subview %[[SRC_0]]
 //      CHECK:   %[[V:.+]] = vector.transfer_read %[[SRC_1]]
 // CHECK-SAME:       {in_bounds = [true]}
 // CHECK-SAME:       vector<4xf32>
 
+// Same as the top example within this split, but with the outer vector
+// dim scalable. Note that this example only makes sense when "4 = [4]" (i.e.
+// vscale = 1). This is assumed (implicitly) via the `in_bounds` attribute.
+
+func.func @contiguous_inner_most_dim_with_subview_scalable_inner_dim(%A: memref<1000x1xf32>, %i:index, %ii:index) -> (vector<[4]x1xf32>) {
+  %c0 = arith.constant 0 : index
+  %cst = arith.constant 0.0 : f32
+  %0 = memref.subview %A[%i, 0] [40, 1] [1, 1] : memref<1000x1xf32> to memref<40x1xf32, strided<[1, 1], offset: ?>>
+  %1 = vector.transfer_read %0[%ii, %c0], %cst {in_bounds = [true, true]} : memref<40x1xf32, strided<[1, 1], offset: ?>>, vector<[4]x1xf32>
+  return %1 : vector<[4]x1xf32>
+}
+// CHECK-LABEL: func @contiguous_inner_most_dim_with_subview_scalable_inner_dim
+//  CHECK-SAME:   %[[SRC:.+]]: memref<1000x1xf32>
+//       CHECK:   %[[SRC_0:.+]] = memref.subview %[[SRC]]
+//       CHECK:   %[[V:.+]] = vector.transfer_read %[[SRC_0]]
+//  CHECK-SAME:       {in_bounds = [true]}
+//  CHECK-SAME:       vector<[4]xf32>
+
 // -----
 
-func.func @contiguous_inner_most_dim_bounds_2d(%A: memref<1000x1x1xf32>, %i:index, %ii:index) -> (vector<4x1x1xf32>) {
+func.func @contiguous_inner_most_dim_with_subview_2d(%A: memref<1000x1x1xf32>, %i:index, %ii:index) -> (vector<4x1x1xf32>) {
   %c0 = arith.constant 0 : index
   %cst = arith.constant 0.0 : f32
   %0 = memref.subview %A[%i, 0, 0] [40, 1, 1] [1, 1, 1] : memref<1000x1x1xf32> to memref<40x1x1xf32, strided<[1, 1, 1], offset: ?>>
   %1 = vector.transfer_read %0[%ii, %c0, %c0], %cst {in_bounds = [true, true, true]} : memref<40x1x1xf32, strided<[1, 1, 1], offset: ?>>, vector<4x1x1xf32>
   return %1 : vector<4x1x1xf32>
 }
-//      CHECK: func @contiguous_inner_most_dim_bounds_2d(%[[SRC:.+]]: memref<1000x1x1xf32>, %[[II:.+]]: index, %[[J:.+]]: index) -> vector<4x1x1xf32>
+//      CHECK: func @contiguous_inner_most_dim_with_subview_2d(%[[SRC:.+]]: memref<1000x1x1xf32>, %[[II:.+]]: index, %[[J:.+]]: index) -> vector<4x1x1xf32>
 //      CHECK:   %[[SRC_0:.+]] = memref.subview %[[SRC]]
 //      CHECK:   %[[SRC_1:.+]] = memref.subview %[[SRC_0]]
 //      CHECK:   %[[V:.+]] = vector.transfer_read %[[SRC_1]]
 // CHECK-SAME:       {in_bounds = [true]}
 // CHECK-SAME:       vector<4xf32>
 
+// Same as the top example within this split, but with the outer vector
+// dim scalable. Note that this example only makes sense when "4 = [4]" (i.e.
+// vscale = 1). This is assumed (implicitly) via the `in_bounds` attribute.
+
+func.func @contiguous_inner_most_dim_with_subview_2d_scalable_inner_dim(%A: memref<1000x1x1xf32>, %i:index, %ii:index) -> (vector<[4]x1x1xf32>) {
+  %c0 = arith.constant 0 : index
+  %cst = arith.constant 0.0 : f32
+  %0 = memref.subview %A[%i, 0, 0] [40, 1, 1] [1, 1, 1] : memref<1000x1x1xf32> to memref<40x1x1xf32, strided<[1, 1, 1], offset: ?>>
+  %1 = vector.transfer_read %0[%ii, %c0, %c0], %cst {in_bounds = [true, true, true]} : memref<40x1x1xf32, strided<[1, 1, 1], offset: ?>>, vector<[4]x1x1xf32>
+  return %1 : vector<[4]x1x1xf32>
+}
+// CHECK-LABEL: func @contiguous_inner_most_dim_with_subview_2d_scalable_inner_dim(
+//  CHECK-SAME:   %[[SRC:.+]]: memref<1000x1x1xf32>, %[[II:.+]]: index, %[[J:.+]]: index) -> vector<[4]x1x1xf32>
+//       CHECK:   %[[SRC_0:.+]] = memref.subview %[[SRC]]
+//       CHECK:   %[[SRC_1:.+]] = memref.subview %[[SRC_0]]
+//       CHECK:   %[[V:.+]] = vector.transfer_read %[[SRC_1]]
+//  CHECK-SAME:       {in_bounds = [true]}
+//  CHECK-SAME:       vector<[4]xf32>
+//       CHECK:  vector.shape_cast %[[V]]
+
 // -----
 
-func.func @contiguous_inner_most_dim_out_of_bounds_2d(%arg0: memref<1x1xf32>) -> vector<4x8xf32> {
+// NOTE: This is an out-of-bounds access.
+
+func.func @negative_non_unit_inner_vec_dim(%arg0: memref<4x1xf32>) -> vector<4x8xf32> {
   %c0 = arith.constant 0 : index
   %cst = arith.constant 0.000000e+00 : f32
-  %0 = vector.transfer_read %arg0[%c0, %c0], %cst : memref<1x1xf32>, vector<4x8xf32>
+  %0 = vector.transfer_read %arg0[%c0, %c0], %cst : memref<4x1xf32>, vector<4x8xf32>
   return %0 : vector<4x8xf32>
 }
-// The inner most unit dim can not be dropped. In this context, we do not
-// generate rank-reduced memref.subview ops.
-//      CHECK: func.func @contiguous_inner_most_dim_out_of_bounds_2d
-// CHECK-SAME:   %[[SRC:[a-zA-Z0-9]+]]
+//      CHECK: func.func @negative_non_unit_inner_vec_dim
+//  CHECK-NOT:   memref.subview
+//      CHECK:   vector.transfer_read
+
+// -----
+
+func.func @negative_non_unit_inner_memref_dim(%arg0: memref<4x8xf32>) -> vector<4x1xf32> {
+  %c0 = arith.constant 0 : index
+  %cst = arith.constant 0.000000e+00 : f32
+  %0 = vector.transfer_read %arg0[%c0, %c0], %cst : memref<4x8xf32>, vector<4x1xf32>
+  return %0 : vector<4x1xf32>
+}
+//      CHECK: func.func @negative_non_unit_inner_memref_dim
 //  CHECK-NOT:   memref.subview
-//      CHECK:   %[[READ:.+]] = vector.transfer_read %[[SRC]]
-//      CHECK:   return %[[READ]] : vector<4x8xf32>
+//      CHECK:   vector.transfer_read
 
 // -----
 
@@ -232,20 +318,6 @@ func.func @non_unit_strides(%arg0: memref<512x16x1xf32, strided<[8192, 16, 4], o
 
 // -----
 
-// Negative test: [1] (scalable 1) is _not_ a unit dimension.
-func.func @trailing_scalable_one_dim_transfer_read(%dest : memref<24x1xf32>) -> vector<4x[1]xf32> {
-  %c0 = arith.constant 0 : index
-  %pad = arith.constant 0.0 : f32
-  %0 = vector.transfer_read %dest[%c0, %c0], %pad {in_bounds = [true, true]} : memref<24x1xf32>, vector<4x[1]xf32>
-  return %0 : vector<4x[1]xf32>
-}
-// CHECK:      func.func @trailing_scalable_one_dim_transfer_read
-// CHECK-NOT:    vector.shape_cast
-// CHECK:        vector.transfer_read {{.*}} : memref<24x1xf32>, vector<4x[1]xf32>
-// CHECK-NOT:    vector.shape_cast
-
-// -----
-
 func.func @leading_scalable_dimension_transfer_write(%dest : memref<24x1xf32>, %vec: vector<[4]x1xf32>) {
   %c0 = arith.constant 0 : index
   vector.transfer_write %vec, %dest[%c0, %c0] {in_bounds = [true, true]} : vector<[4]x1xf32>,  memref<24x1xf32>

>From 515dd7e65e954c3f6224fb9ae95c756b5dbebc7c Mon Sep 17 00:00:00 2001
From: Andrzej Warzynski <andrzej.warzynski at arm.com>
Date: Sun, 9 Jun 2024 16:38:18 +0100
Subject: [PATCH 2/2] [mlir][vector] Restrict
 `DropInnerMostUnitDimsTransferRead`

Restrict `DropInnerMostUnitDimsTransferRead` so that it fails when one
of the indices to be dropped could be != 0, e.g.

```
func.func @negative_example(%A: memref<16x1xf32>, %i:index, %j:index) -> (vector<8x1xf32>) {
  %f0 = arith.constant 0.0 : f32
  %1 = vector.transfer_read %A[%i, %j], %f0 : memref<16x1xf32>, vector<8x1xf32>
  return %1 : vector<8x1xf32>
}
```

This is an edge case that could represent an out-of-bounds access,
though that will depend on the actual value of `%j`.

NOTE: This PR is limited to tests for `vector.transfer_read`.

Depends on: #94490, #94604
---
 .../Vector/Transforms/VectorTransforms.cpp    | 15 ++++++++++++
 ...tor-transfer-collapse-inner-most-dims.mlir | 24 +++++++++++++------
 2 files changed, 32 insertions(+), 7 deletions(-)

diff --git a/mlir/lib/Dialect/Vector/Transforms/VectorTransforms.cpp b/mlir/lib/Dialect/Vector/Transforms/VectorTransforms.cpp
index f29eba90c3ceb..caf1506e0db93 100644
--- a/mlir/lib/Dialect/Vector/Transforms/VectorTransforms.cpp
+++ b/mlir/lib/Dialect/Vector/Transforms/VectorTransforms.cpp
@@ -1293,6 +1293,21 @@ class DropInnerMostUnitDimsTransferRead
     if (dimsToDrop == 0)
       return failure();
 
+    // Make sure that the indixes to be dropped are equal 0.
+    // TODO: Deal with cases when the indices are not 0.
+    auto isZeroIdx = [](Value idx) {
+      Attribute attr;
+      APInt value;
+      if (!matchPattern(idx, m_Constant(&attr)))
+        return false;
+      if (matchPattern(attr, m_ConstantInt(&value)))
+        if (!value.isZero())
+          return false;
+      return true;
+    };
+    if (!llvm::all_of(readOp.getIndices().take_back(dimsToDrop), isZeroIdx))
+      return failure();
+
     auto resultTargetVecType =
         VectorType::get(targetType.getShape().drop_back(dimsToDrop),
                         targetType.getElementType(),
diff --git a/mlir/test/Dialect/Vector/vector-transfer-collapse-inner-most-dims.mlir b/mlir/test/Dialect/Vector/vector-transfer-collapse-inner-most-dims.mlir
index a50c01898c62e..bb37d5b45520c 100644
--- a/mlir/test/Dialect/Vector/vector-transfer-collapse-inner-most-dims.mlir
+++ b/mlir/test/Dialect/Vector/vector-transfer-collapse-inner-most-dims.mlir
@@ -111,31 +111,41 @@ func.func @contiguous_inner_most_outer_dim_dyn_scalable_inner_dim(%a: index, %b:
 
 // -----
 
-func.func @contiguous_inner_most_dim_non_zero_idxs(%A: memref<16x1xf32>, %i:index, %j:index) -> (vector<8x1xf32>) {
+func.func @contiguous_inner_most_dim_non_zero_idx(%A: memref<16x1xf32>, %i:index) -> (vector<8x1xf32>) {
   %c0 = arith.constant 0 : index
   %f0 = arith.constant 0.0 : f32
-  %1 = vector.transfer_read %A[%i, %j], %f0 : memref<16x1xf32>, vector<8x1xf32>
+  %1 = vector.transfer_read %A[%i, %c0], %f0 : memref<16x1xf32>, vector<8x1xf32>
   return %1 : vector<8x1xf32>
 }
-//      CHECK: func @contiguous_inner_most_dim_non_zero_idxs(%[[SRC:.+]]: memref<16x1xf32>, %[[I:.+]]: index, %[[J:.+]]: index) -> vector<8x1xf32>
+//      CHECK: func @contiguous_inner_most_dim_non_zero_idx(%[[SRC:.+]]: memref<16x1xf32>, %[[I:.+]]: index) -> vector<8x1xf32>
 //      CHECK:   %[[SRC_0:.+]] = memref.subview %[[SRC]]
 // CHECK-SAME:     memref<16x1xf32> to memref<16xf32, strided<[1]>>
 //      CHECK:   %[[V:.+]] = vector.transfer_read %[[SRC_0]]
 //      CHECK:   %[[RESULT:.+]] = vector.shape_cast %[[V]] : vector<8xf32> to vector<8x1xf32>
 //      CHECK:   return %[[RESULT]]
 
+// The index to be dropped is != 0 - this is currently not supported.
+func.func @negative_contiguous_inner_most_dim_non_zero_idxs(%A: memref<16x1xf32>, %i:index) -> (vector<8x1xf32>) {
+  %f0 = arith.constant 0.0 : f32
+  %1 = vector.transfer_read %A[%i, %i], %f0 : memref<16x1xf32>, vector<8x1xf32>
+  return %1 : vector<8x1xf32>
+}
+// CHECK-LABEL: func @negative_contiguous_inner_most_dim_non_zero_idxs
+// CHECK-NOT:     memref.subview
+// CHECK:         vector.transfer_read
+
 // Same as the top example within this split, but with the outer vector
 // dim scalable. Note that this example only makes sense when "8 = [8]" (i.e.
 // vscale = 1). This is assumed (implicitly) via the `in_bounds` attribute.
 
-func.func @contiguous_inner_most_dim_non_zero_idxs_scalable_inner_dim(%A: memref<16x1xf32>, %i:index, %j:index) -> (vector<[8]x1xf32>) {
+func.func @contiguous_inner_most_dim_non_zero_idx_scalable_inner_dim(%A: memref<16x1xf32>, %i:index) -> (vector<[8]x1xf32>) {
   %c0 = arith.constant 0 : index
   %f0 = arith.constant 0.0 : f32
-  %1 = vector.transfer_read %A[%i, %j], %f0 : memref<16x1xf32>, vector<[8]x1xf32>
+  %1 = vector.transfer_read %A[%i, %c0], %f0 : memref<16x1xf32>, vector<[8]x1xf32>
   return %1 : vector<[8]x1xf32>
 }
-// CHECK-LABEL: func @contiguous_inner_most_dim_non_zero_idxs_scalable_inner_dim(
-// CHECK-SAME:    %[[SRC:.+]]: memref<16x1xf32>, %[[I:.+]]: index, %[[J:.+]]: index) -> vector<[8]x1xf32>
+// CHECK-LABEL: func @contiguous_inner_most_dim_non_zero_idx_scalable_inner_dim(
+// CHECK-SAME:    %[[SRC:.+]]: memref<16x1xf32>, %[[I:.+]]: index) -> vector<[8]x1xf32>
 //       CHECK:   %[[SRC_0:.+]] = memref.subview %[[SRC]]
 //  CHECK-SAME:     memref<16x1xf32> to memref<16xf32, strided<[1]>>
 //       CHECK:   %[[V:.+]] = vector.transfer_read %[[SRC_0]]



More information about the Mlir-commits mailing list