[Mlir-commits] [mlir] [mlir][vector] Update tests for collapse 2/n (nfc) (PR #94604)
Andrzej WarzyĆski
llvmlistbot at llvm.org
Tue Jun 11 07:12:30 PDT 2024
https://github.com/banach-space updated https://github.com/llvm/llvm-project/pull/94604
>From 8e16ac38f0ed7b2c644b91da3a447503cc7f68dc Mon Sep 17 00:00:00 2001
From: Andrzej Warzynski <andrzej.warzynski at arm.com>
Date: Thu, 6 Jun 2024 11:21:45 +0100
Subject: [PATCH] [mlir][vector] Update tests for collapse 2/n (nfc)
The main goal of this PR (and subsequent PRs), is to add more tests with
scalable vectors to:
* vector-transfer-collapse-inner-most-dims.mlir
Changes in this PR:
1. Renamed `@contiguous_inner_most_dim_bounds` as
`@contiguous_inner_most_dim_with_subview`. This test was introduced
to make sure that the `in_bounds` attribute is correctly preserved,
but that's already verified by some earlier tests. The updated name
highlights the differentiating factor of this test when compared to
the other tests _currently_ present in the file, i.e. the presence of
`memref.subview` in the input IR.
2. Renamed `@contiguous_inner_most_dim_out_of_bounds_2d` as
`@negative_non_unit_inner_vec_dim`. While this test does contain an
out-of-bounds access, the actual reason for the tested pattern to
fail is the fact that the inner dim in the output vector is not "1".
A complimentary test was added to verify that the pattern also fails
when the source memref has non-unit trailing dim
(`@negative_non_unit_inner_memref_dim`).
3. Renamed `@contiguous_inner_most_dim` as
`@contiguous_inner_most_dim_non_zero_idxs` - this test verifies that
the pattern works in the presence of non-zero idxs.
4. Added more tests for scalable vectors - this should cover all cases
for `vector.transfer_read`.
NOTE: This PR is limited to tests for `vector.transfer_read`.
Follow-up for: #94490
---
...tor-transfer-collapse-inner-most-dims.mlir | 136 +++++++++++++-----
1 file changed, 104 insertions(+), 32 deletions(-)
diff --git a/mlir/test/Dialect/Vector/vector-transfer-collapse-inner-most-dims.mlir b/mlir/test/Dialect/Vector/vector-transfer-collapse-inner-most-dims.mlir
index 9b23681dba6a8..a50c01898c62e 100644
--- a/mlir/test/Dialect/Vector/vector-transfer-collapse-inner-most-dims.mlir
+++ b/mlir/test/Dialect/Vector/vector-transfer-collapse-inner-most-dims.mlir
@@ -53,7 +53,7 @@ func.func @non_unit_trailing_dim(%in: memref<1x1x8x?xf32, strided<[3072, 8, 1, 1
// CHECK-NOT: vector.shape_cast
// Same as the top example within this split, but with a scalable unit dim in
-// the output vector - not supported
+// the output vector - not supported (scalable 1 is _not_ a unit dimension).
func.func @negative_scalable_unit_dim(%in: memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>>) -> vector<1x8x[1]xf32>{
%c0 = arith.constant 0 : index
@@ -67,13 +67,13 @@ func.func @negative_scalable_unit_dim(%in: memref<1x1x8x1xf32, strided<[3072, 8,
// -----
-func.func @contiguous_outer_dyn_inner_most(%a: index, %b: index, %memref: memref<?x?x8x1xf32>) -> vector<8x1xf32> {
+func.func @contiguous_inner_most_dynamic_outer(%a: index, %b: index, %memref: memref<?x?x8x1xf32>) -> vector<8x1xf32> {
%c0 = arith.constant 0 : index
%pad = arith.constant 0.0 : f32
%v = vector.transfer_read %memref[%a, %b, %c0, %c0], %pad {in_bounds = [true, true]} : memref<?x?x8x1xf32>, vector<8x1xf32>
return %v : vector<8x1xf32>
}
-// CHECK: func.func @contiguous_outer_dyn_inner_most(
+// CHECK: func.func @contiguous_inner_most_dynamic_outer
// CHECK-SAME: %[[IDX0:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[IDX1:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[SRC:[a-zA-Z0-9]+]]
@@ -89,68 +89,154 @@ func.func @contiguous_outer_dyn_inner_most(%a: index, %b: index, %memref: memref
// CHECK: %[[RESULT:.+]] = vector.shape_cast %[[VEC]]
// CHECK: return %[[RESULT]]
+// Same as the top example within this split, but with the outer vector
+// dim scalable. Note that this example only makes sense when "8 = [8]" (i.e.
+// vscale = 1). This is assumed (implicitly) via the `in_bounds` attribute.
+
+func.func @contiguous_inner_most_outer_dim_dyn_scalable_inner_dim(%a: index, %b: index, %memref: memref<?x?x8x1xf32>) -> vector<[8]x1xf32> {
+ %c0 = arith.constant 0 : index
+ %pad = arith.constant 0.0 : f32
+ %v = vector.transfer_read %memref[%a, %b, %c0, %c0], %pad {in_bounds = [true, true]} : memref<?x?x8x1xf32>, vector<[8]x1xf32>
+ return %v : vector<[8]x1xf32>
+}
+// CHECK-LABEL: func @contiguous_inner_most_outer_dim_dyn_scalable_inner_dim
+// CHECK-SAME: %[[IDX0:[a-zA-Z0-9]+]]
+// CHECK-SAME: %[[IDX1:[a-zA-Z0-9]+]]
+// CHECK-SAME: %[[SRC:[a-zA-Z0-9]+]]
+// CHECK: %[[VIEW:.+]] = memref.subview %[[SRC]]{{.*}} memref<?x?x8x1xf32> to memref<?x?x8xf32, strided<[?, 8, 1], offset: ?>>
+// CHECK: %[[VEC_READ:.+]] = vector.transfer_read %[[VIEW]]
+// CHECK-SAME: {in_bounds = [true]}
+// CHECK-SAME: memref<?x?x8xf32, strided<[?, 8, 1], offset: ?>>, vector<[8]xf32>
+// CHECK: vector.shape_cast %[[VEC_READ]]
+
// -----
-func.func @contiguous_inner_most_dim(%A: memref<16x1xf32>, %i:index, %j:index) -> (vector<8x1xf32>) {
+func.func @contiguous_inner_most_dim_non_zero_idxs(%A: memref<16x1xf32>, %i:index, %j:index) -> (vector<8x1xf32>) {
%c0 = arith.constant 0 : index
%f0 = arith.constant 0.0 : f32
%1 = vector.transfer_read %A[%i, %j], %f0 : memref<16x1xf32>, vector<8x1xf32>
return %1 : vector<8x1xf32>
}
-// CHECK: func @contiguous_inner_most_dim(%[[SRC:.+]]: memref<16x1xf32>, %[[I:.+]]: index, %[[J:.+]]: index) -> vector<8x1xf32>
+// CHECK: func @contiguous_inner_most_dim_non_zero_idxs(%[[SRC:.+]]: memref<16x1xf32>, %[[I:.+]]: index, %[[J:.+]]: index) -> vector<8x1xf32>
// CHECK: %[[SRC_0:.+]] = memref.subview %[[SRC]]
// CHECK-SAME: memref<16x1xf32> to memref<16xf32, strided<[1]>>
// CHECK: %[[V:.+]] = vector.transfer_read %[[SRC_0]]
-// CHECK: %[[RESULT]] = vector.shape_cast %[[V]] : vector<8xf32> to vector<8x1xf32>
+// CHECK: %[[RESULT:.+]] = vector.shape_cast %[[V]] : vector<8xf32> to vector<8x1xf32>
// CHECK: return %[[RESULT]]
+// Same as the top example within this split, but with the outer vector
+// dim scalable. Note that this example only makes sense when "8 = [8]" (i.e.
+// vscale = 1). This is assumed (implicitly) via the `in_bounds` attribute.
+
+func.func @contiguous_inner_most_dim_non_zero_idxs_scalable_inner_dim(%A: memref<16x1xf32>, %i:index, %j:index) -> (vector<[8]x1xf32>) {
+ %c0 = arith.constant 0 : index
+ %f0 = arith.constant 0.0 : f32
+ %1 = vector.transfer_read %A[%i, %j], %f0 : memref<16x1xf32>, vector<[8]x1xf32>
+ return %1 : vector<[8]x1xf32>
+}
+// CHECK-LABEL: func @contiguous_inner_most_dim_non_zero_idxs_scalable_inner_dim(
+// CHECK-SAME: %[[SRC:.+]]: memref<16x1xf32>, %[[I:.+]]: index, %[[J:.+]]: index) -> vector<[8]x1xf32>
+// CHECK: %[[SRC_0:.+]] = memref.subview %[[SRC]]
+// CHECK-SAME: memref<16x1xf32> to memref<16xf32, strided<[1]>>
+// CHECK: %[[V:.+]] = vector.transfer_read %[[SRC_0]]
+// CHECK: %[[RESULT:.+]] = vector.shape_cast %[[V]] : vector<[8]xf32> to vector<[8]x1xf32>
+// CHECK: return %[[RESULT]]
+
// -----
-func.func @contiguous_inner_most_dim_bounds(%A: memref<1000x1xf32>, %i:index, %ii:index) -> (vector<4x1xf32>) {
+func.func @contiguous_inner_most_dim_with_subview(%A: memref<1000x1xf32>, %i:index, %ii:index) -> (vector<4x1xf32>) {
%c0 = arith.constant 0 : index
%cst = arith.constant 0.0 : f32
%0 = memref.subview %A[%i, 0] [40, 1] [1, 1] : memref<1000x1xf32> to memref<40x1xf32, strided<[1, 1], offset: ?>>
%1 = vector.transfer_read %0[%ii, %c0], %cst {in_bounds = [true, true]} : memref<40x1xf32, strided<[1, 1], offset: ?>>, vector<4x1xf32>
return %1 : vector<4x1xf32>
}
-// CHECK: func @contiguous_inner_most_dim_bounds(%[[SRC:.+]]: memref<1000x1xf32>, %[[II:.+]]: index, %[[J:.+]]: index) -> vector<4x1xf32>
+// CHECK: func @contiguous_inner_most_dim_with_subview(%[[SRC:.+]]: memref<1000x1xf32>, %[[II:.+]]: index, %[[J:.+]]: index) -> vector<4x1xf32>
// CHECK: %[[SRC_0:.+]] = memref.subview %[[SRC]]
// CHECK: %[[SRC_1:.+]] = memref.subview %[[SRC_0]]
// CHECK: %[[V:.+]] = vector.transfer_read %[[SRC_1]]
// CHECK-SAME: {in_bounds = [true]}
// CHECK-SAME: vector<4xf32>
+// Same as the top example within this split, but with the outer vector
+// dim scalable. Note that this example only makes sense when "4 = [4]" (i.e.
+// vscale = 1). This is assumed (implicitly) via the `in_bounds` attribute.
+
+func.func @contiguous_inner_most_dim_with_subview_scalable_inner_dim(%A: memref<1000x1xf32>, %i:index, %ii:index) -> (vector<[4]x1xf32>) {
+ %c0 = arith.constant 0 : index
+ %cst = arith.constant 0.0 : f32
+ %0 = memref.subview %A[%i, 0] [40, 1] [1, 1] : memref<1000x1xf32> to memref<40x1xf32, strided<[1, 1], offset: ?>>
+ %1 = vector.transfer_read %0[%ii, %c0], %cst {in_bounds = [true, true]} : memref<40x1xf32, strided<[1, 1], offset: ?>>, vector<[4]x1xf32>
+ return %1 : vector<[4]x1xf32>
+}
+// CHECK-LABEL: func @contiguous_inner_most_dim_with_subview_scalable_inner_dim
+// CHECK-SAME: %[[SRC:.+]]: memref<1000x1xf32>
+// CHECK: %[[SRC_0:.+]] = memref.subview %[[SRC]]
+// CHECK: %[[V:.+]] = vector.transfer_read %[[SRC_0]]
+// CHECK-SAME: {in_bounds = [true]}
+// CHECK-SAME: vector<[4]xf32>
+
// -----
-func.func @contiguous_inner_most_dim_bounds_2d(%A: memref<1000x1x1xf32>, %i:index, %ii:index) -> (vector<4x1x1xf32>) {
+func.func @contiguous_inner_most_dim_with_subview_2d(%A: memref<1000x1x1xf32>, %i:index, %ii:index) -> (vector<4x1x1xf32>) {
%c0 = arith.constant 0 : index
%cst = arith.constant 0.0 : f32
%0 = memref.subview %A[%i, 0, 0] [40, 1, 1] [1, 1, 1] : memref<1000x1x1xf32> to memref<40x1x1xf32, strided<[1, 1, 1], offset: ?>>
%1 = vector.transfer_read %0[%ii, %c0, %c0], %cst {in_bounds = [true, true, true]} : memref<40x1x1xf32, strided<[1, 1, 1], offset: ?>>, vector<4x1x1xf32>
return %1 : vector<4x1x1xf32>
}
-// CHECK: func @contiguous_inner_most_dim_bounds_2d(%[[SRC:.+]]: memref<1000x1x1xf32>, %[[II:.+]]: index, %[[J:.+]]: index) -> vector<4x1x1xf32>
+// CHECK: func @contiguous_inner_most_dim_with_subview_2d(%[[SRC:.+]]: memref<1000x1x1xf32>, %[[II:.+]]: index, %[[J:.+]]: index) -> vector<4x1x1xf32>
// CHECK: %[[SRC_0:.+]] = memref.subview %[[SRC]]
// CHECK: %[[SRC_1:.+]] = memref.subview %[[SRC_0]]
// CHECK: %[[V:.+]] = vector.transfer_read %[[SRC_1]]
// CHECK-SAME: {in_bounds = [true]}
// CHECK-SAME: vector<4xf32>
+// Same as the top example within this split, but with the outer vector
+// dim scalable. Note that this example only makes sense when "4 = [4]" (i.e.
+// vscale = 1). This is assumed (implicitly) via the `in_bounds` attribute.
+
+func.func @contiguous_inner_most_dim_with_subview_2d_scalable_inner_dim(%A: memref<1000x1x1xf32>, %i:index, %ii:index) -> (vector<[4]x1x1xf32>) {
+ %c0 = arith.constant 0 : index
+ %cst = arith.constant 0.0 : f32
+ %0 = memref.subview %A[%i, 0, 0] [40, 1, 1] [1, 1, 1] : memref<1000x1x1xf32> to memref<40x1x1xf32, strided<[1, 1, 1], offset: ?>>
+ %1 = vector.transfer_read %0[%ii, %c0, %c0], %cst {in_bounds = [true, true, true]} : memref<40x1x1xf32, strided<[1, 1, 1], offset: ?>>, vector<[4]x1x1xf32>
+ return %1 : vector<[4]x1x1xf32>
+}
+// CHECK-LABEL: func @contiguous_inner_most_dim_with_subview_2d_scalable_inner_dim(
+// CHECK-SAME: %[[SRC:.+]]: memref<1000x1x1xf32>, %[[II:.+]]: index, %[[J:.+]]: index) -> vector<[4]x1x1xf32>
+// CHECK: %[[SRC_0:.+]] = memref.subview %[[SRC]]
+// CHECK: %[[SRC_1:.+]] = memref.subview %[[SRC_0]]
+// CHECK: %[[V:.+]] = vector.transfer_read %[[SRC_1]]
+// CHECK-SAME: {in_bounds = [true]}
+// CHECK-SAME: vector<[4]xf32>
+// CHECK: vector.shape_cast %[[V]]
+
// -----
-func.func @contiguous_inner_most_dim_out_of_bounds_2d(%arg0: memref<1x1xf32>) -> vector<4x8xf32> {
+// NOTE: This is an out-of-bounds access.
+
+func.func @negative_non_unit_inner_vec_dim(%arg0: memref<4x1xf32>) -> vector<4x8xf32> {
%c0 = arith.constant 0 : index
%cst = arith.constant 0.000000e+00 : f32
- %0 = vector.transfer_read %arg0[%c0, %c0], %cst : memref<1x1xf32>, vector<4x8xf32>
+ %0 = vector.transfer_read %arg0[%c0, %c0], %cst : memref<4x1xf32>, vector<4x8xf32>
return %0 : vector<4x8xf32>
}
-// The inner most unit dim can not be dropped. In this context, we do not
-// generate rank-reduced memref.subview ops.
-// CHECK: func.func @contiguous_inner_most_dim_out_of_bounds_2d
-// CHECK-SAME: %[[SRC:[a-zA-Z0-9]+]]
+// CHECK: func.func @negative_non_unit_inner_vec_dim
+// CHECK-NOT: memref.subview
+// CHECK: vector.transfer_read
+
+// -----
+
+func.func @negative_non_unit_inner_memref_dim(%arg0: memref<4x8xf32>) -> vector<4x1xf32> {
+ %c0 = arith.constant 0 : index
+ %cst = arith.constant 0.000000e+00 : f32
+ %0 = vector.transfer_read %arg0[%c0, %c0], %cst : memref<4x8xf32>, vector<4x1xf32>
+ return %0 : vector<4x1xf32>
+}
+// CHECK: func.func @negative_non_unit_inner_memref_dim
// CHECK-NOT: memref.subview
-// CHECK: %[[READ:.+]] = vector.transfer_read %[[SRC]]
-// CHECK: return %[[READ]] : vector<4x8xf32>
+// CHECK: vector.transfer_read
// -----
@@ -232,20 +318,6 @@ func.func @non_unit_strides(%arg0: memref<512x16x1xf32, strided<[8192, 16, 4], o
// -----
-// Negative test: [1] (scalable 1) is _not_ a unit dimension.
-func.func @trailing_scalable_one_dim_transfer_read(%dest : memref<24x1xf32>) -> vector<4x[1]xf32> {
- %c0 = arith.constant 0 : index
- %pad = arith.constant 0.0 : f32
- %0 = vector.transfer_read %dest[%c0, %c0], %pad {in_bounds = [true, true]} : memref<24x1xf32>, vector<4x[1]xf32>
- return %0 : vector<4x[1]xf32>
-}
-// CHECK: func.func @trailing_scalable_one_dim_transfer_read
-// CHECK-NOT: vector.shape_cast
-// CHECK: vector.transfer_read {{.*}} : memref<24x1xf32>, vector<4x[1]xf32>
-// CHECK-NOT: vector.shape_cast
-
-// -----
-
func.func @leading_scalable_dimension_transfer_write(%dest : memref<24x1xf32>, %vec: vector<[4]x1xf32>) {
%c0 = arith.constant 0 : index
vector.transfer_write %vec, %dest[%c0, %c0] {in_bounds = [true, true]} : vector<[4]x1xf32>, memref<24x1xf32>
More information about the Mlir-commits
mailing list