[Mlir-commits] [llvm] [mlir] mlir/Presburger/MPInt: move into LLVM/ADT (PR #94953)

llvmlistbot at llvm.org llvmlistbot at llvm.org
Mon Jun 10 03:32:37 PDT 2024


llvmbot wrote:


<!--LLVM PR SUMMARY COMMENT-->

@llvm/pr-subscribers-mlir

Author: Ramkumar Ramachandra (artagnon)

<details>
<summary>Changes</summary>

MPInt is an arbitrary-precision integer library that builds on top of APInt, and has a fast-path when the number fits within 64 bits. It was originally written for the Presburger library in MLIR, but seems useful to the LLVM project in general, independently of the Presburger library or MLIR. Hence, move it into LLVM/ADT.

This patch is part of a project to move the Presburger library into LLVM.

---

Patch is 107.45 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/94953.diff


26 Files Affected:

- (added) llvm/include/llvm/ADT/MPInt.h (+644) 
- (added) llvm/include/llvm/ADT/SlowMPInt.h (+138) 
- (modified) llvm/lib/Support/CMakeLists.txt (+2) 
- (added) llvm/lib/Support/MPInt.cpp (+25) 
- (added) llvm/lib/Support/SlowMPInt.cpp (+276) 
- (modified) llvm/unittests/ADT/CMakeLists.txt (+1) 
- (added) llvm/unittests/ADT/MPIntTest.cpp (+200) 
- (modified) mlir/include/mlir/Analysis/Presburger/Fraction.h (+2-2) 
- (modified) mlir/include/mlir/Analysis/Presburger/IntegerRelation.h (+3) 
- (removed) mlir/include/mlir/Analysis/Presburger/MPInt.h (-617) 
- (removed) mlir/include/mlir/Analysis/Presburger/SlowMPInt.h (-136) 
- (modified) mlir/include/mlir/Analysis/Presburger/Utils.h (+1-2) 
- (modified) mlir/include/mlir/Support/LLVM.h (+2) 
- (modified) mlir/lib/Analysis/Presburger/CMakeLists.txt (-2) 
- (modified) mlir/lib/Analysis/Presburger/IntegerRelation.cpp (+4-4) 
- (modified) mlir/lib/Analysis/Presburger/LinearTransform.cpp (+1-1) 
- (removed) mlir/lib/Analysis/Presburger/MPInt.cpp (-38) 
- (modified) mlir/lib/Analysis/Presburger/Matrix.cpp (+1-1) 
- (modified) mlir/lib/Analysis/Presburger/PWMAFunction.cpp (+1-1) 
- (modified) mlir/lib/Analysis/Presburger/PresburgerRelation.cpp (-1) 
- (modified) mlir/lib/Analysis/Presburger/Simplex.cpp (+2-2) 
- (removed) mlir/lib/Analysis/Presburger/SlowMPInt.cpp (-290) 
- (modified) mlir/lib/Analysis/Presburger/Utils.cpp (+6-5) 
- (modified) mlir/unittests/Analysis/Presburger/CMakeLists.txt (-1) 
- (removed) mlir/unittests/Analysis/Presburger/MPIntTest.cpp (-200) 
- (modified) mlir/unittests/Analysis/Presburger/Utils.h (+2) 


``````````diff
diff --git a/llvm/include/llvm/ADT/MPInt.h b/llvm/include/llvm/ADT/MPInt.h
new file mode 100644
index 0000000000000..dc387d7d0e5db
--- /dev/null
+++ b/llvm/include/llvm/ADT/MPInt.h
@@ -0,0 +1,644 @@
+//===- MPInt.h - MPInt Class ------------------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This is a simple class to represent arbitrary precision signed integers.
+// Unlike APInt, one does not have to specify a fixed maximum size, and the
+// integer can take on any arbitrary values. This is optimized for small-values
+// by providing fast-paths for the cases when the value stored fits in 64-bits.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_MPINT_H
+#define LLVM_ADT_MPINT_H
+
+#include "llvm/ADT/SlowMPInt.h"
+#include "llvm/Support/raw_ostream.h"
+#include <numeric>
+
+namespace llvm {
+namespace detail {
+/// ---------------------------------------------------------------------------
+/// Some helpers from MLIR/MathExtras.
+/// ---------------------------------------------------------------------------
+LLVM_ATTRIBUTE_ALWAYS_INLINE int64_t ceilDiv(int64_t Numerator,
+                                             int64_t Denominator) {
+  assert(Denominator);
+  if (!Numerator)
+    return 0;
+  // C's integer division rounds towards 0.
+  int64_t X = (Denominator > 0) ? -1 : 1;
+  bool SameSign = (Numerator > 0) == (Denominator > 0);
+  return SameSign ? ((Numerator + X) / Denominator) + 1
+                  : -(-Numerator / Denominator);
+}
+
+LLVM_ATTRIBUTE_ALWAYS_INLINE int64_t floorDiv(int64_t Numerator,
+                                              int64_t Denominator) {
+  assert(Denominator);
+  if (!Numerator)
+    return 0;
+  // C's integer division rounds towards 0.
+  int64_t X = (Denominator > 0) ? -1 : 1;
+  bool SameSign = (Numerator > 0) == (Denominator > 0);
+  return SameSign ? Numerator / Denominator
+                  : -((-Numerator + X) / Denominator) - 1;
+}
+
+/// Returns the remainder of the Euclidean division of LHS by RHS. Result is
+/// always non-negative.
+LLVM_ATTRIBUTE_ALWAYS_INLINE int64_t mod(int64_t Numerator,
+                                         int64_t Denominator) {
+  assert(Denominator >= 1);
+  return Numerator % Denominator < 0 ? Numerator % Denominator + Denominator
+                                     : Numerator % Denominator;
+}
+
+/// If builtin intrinsics for overflow-checked arithmetic are available,
+/// use them. Otherwise, call through to LLVM's overflow-checked arithmetic
+/// functionality. Those functions also have such macro-gated uses of intrinsics
+/// but they are not always_inlined, which is important for us to achieve
+/// high-performance; calling the functions directly would result in a slowdown
+/// of 1.15x.
+LLVM_ATTRIBUTE_ALWAYS_INLINE bool addOverflow(int64_t X, int64_t Y,
+                                              int64_t &Result) {
+#if __has_builtin(__builtin_add_overflow)
+  return __builtin_add_overflow(X, Y, &Result);
+#else
+  return AddOverflow(x, y, result);
+#endif
+}
+LLVM_ATTRIBUTE_ALWAYS_INLINE bool subOverflow(int64_t X, int64_t Y,
+                                              int64_t &Result) {
+#if __has_builtin(__builtin_sub_overflow)
+  return __builtin_sub_overflow(X, Y, &Result);
+#else
+  return SubOverflow(x, y, result);
+#endif
+}
+LLVM_ATTRIBUTE_ALWAYS_INLINE bool mulOverflow(int64_t X, int64_t Y,
+                                              int64_t &Result) {
+#if __has_builtin(__builtin_mul_overflow)
+  return __builtin_mul_overflow(X, Y, &Result);
+#else
+  return MulOverflow(x, y, result);
+#endif
+}
+} // namespace detail
+
+/// This class provides support for multi-precision arithmetic.
+///
+/// Unlike APInt, this extends the precision as necessary to prevent overflows
+/// and supports operations between objects with differing internal precisions.
+///
+/// This is optimized for small-values by providing fast-paths for the cases
+/// when the value stored fits in 64-bits. We annotate all fastpaths by using
+/// the LLVM_LIKELY/LLVM_UNLIKELY annotations. Removing these would result in
+/// a 1.2x performance slowdown.
+///
+/// We always_inline all operations; removing these results in a 1.5x
+/// performance slowdown.
+///
+/// When holdsLarge is true, a SlowMPInt is held in the union. If it is false,
+/// the int64_t is held. Using std::variant instead would lead to significantly
+/// worse performance.
+class MPInt {
+private:
+  union {
+    int64_t ValSmall;
+    detail::SlowMPInt ValLarge;
+  };
+  unsigned HoldsLarge;
+
+  LLVM_ATTRIBUTE_ALWAYS_INLINE void initSmall(int64_t O) {
+    if (LLVM_UNLIKELY(isLarge()))
+      ValLarge.detail::SlowMPInt::~SlowMPInt();
+    ValSmall = O;
+    HoldsLarge = false;
+  }
+  LLVM_ATTRIBUTE_ALWAYS_INLINE void initLarge(const detail::SlowMPInt &O) {
+    if (LLVM_LIKELY(isSmall())) {
+      // The data in memory could be in an arbitrary state, not necessarily
+      // corresponding to any valid state of ValLarge; we cannot call any member
+      // functions, e.g. the assignment operator on it, as they may access the
+      // invalid internal state. We instead construct a new object using
+      // placement new.
+      new (&ValLarge) detail::SlowMPInt(O);
+    } else {
+      // In this case, we need to use the assignment operator, because if we use
+      // placement-new as above we would lose track of allocated memory
+      // and leak it.
+      ValLarge = O;
+    }
+    HoldsLarge = true;
+  }
+
+  LLVM_ATTRIBUTE_ALWAYS_INLINE explicit MPInt(const detail::SlowMPInt &Val)
+      : ValLarge(Val), HoldsLarge(true) {}
+  LLVM_ATTRIBUTE_ALWAYS_INLINE bool isSmall() const { return !HoldsLarge; }
+  LLVM_ATTRIBUTE_ALWAYS_INLINE bool isLarge() const { return HoldsLarge; }
+  /// Get the stored value. For getSmall/Large,
+  /// the stored value should be small/large.
+  LLVM_ATTRIBUTE_ALWAYS_INLINE int64_t getSmall() const {
+    assert(isSmall() &&
+           "getSmall should only be called when the value stored is small!");
+    return ValSmall;
+  }
+  LLVM_ATTRIBUTE_ALWAYS_INLINE int64_t &getSmall() {
+    assert(isSmall() &&
+           "getSmall should only be called when the value stored is small!");
+    return ValSmall;
+  }
+  LLVM_ATTRIBUTE_ALWAYS_INLINE const detail::SlowMPInt &getLarge() const {
+    assert(isLarge() &&
+           "getLarge should only be called when the value stored is large!");
+    return ValLarge;
+  }
+  LLVM_ATTRIBUTE_ALWAYS_INLINE detail::SlowMPInt &getLarge() {
+    assert(isLarge() &&
+           "getLarge should only be called when the value stored is large!");
+    return ValLarge;
+  }
+  explicit operator detail::SlowMPInt() const {
+    if (isSmall())
+      return detail::SlowMPInt(getSmall());
+    return getLarge();
+  }
+
+public:
+  LLVM_ATTRIBUTE_ALWAYS_INLINE explicit MPInt(int64_t Val)
+      : ValSmall(Val), HoldsLarge(false) {}
+  LLVM_ATTRIBUTE_ALWAYS_INLINE MPInt() : MPInt(0) {}
+  LLVM_ATTRIBUTE_ALWAYS_INLINE ~MPInt() {
+    if (LLVM_UNLIKELY(isLarge()))
+      ValLarge.detail::SlowMPInt::~SlowMPInt();
+  }
+  LLVM_ATTRIBUTE_ALWAYS_INLINE MPInt(const MPInt &O)
+      : ValSmall(O.ValSmall), HoldsLarge(false) {
+    if (LLVM_UNLIKELY(O.isLarge()))
+      initLarge(O.ValLarge);
+  }
+  LLVM_ATTRIBUTE_ALWAYS_INLINE MPInt &operator=(const MPInt &O) {
+    if (LLVM_LIKELY(O.isSmall())) {
+      initSmall(O.ValSmall);
+      return *this;
+    }
+    initLarge(O.ValLarge);
+    return *this;
+  }
+  LLVM_ATTRIBUTE_ALWAYS_INLINE MPInt &operator=(int X) {
+    initSmall(X);
+    return *this;
+  }
+  LLVM_ATTRIBUTE_ALWAYS_INLINE explicit operator int64_t() const {
+    if (isSmall())
+      return getSmall();
+    return static_cast<int64_t>(getLarge());
+  }
+
+  bool operator==(const MPInt &O) const;
+  bool operator!=(const MPInt &O) const;
+  bool operator>(const MPInt &O) const;
+  bool operator<(const MPInt &O) const;
+  bool operator<=(const MPInt &O) const;
+  bool operator>=(const MPInt &O) const;
+  MPInt operator+(const MPInt &O) const;
+  MPInt operator-(const MPInt &O) const;
+  MPInt operator*(const MPInt &O) const;
+  MPInt operator/(const MPInt &O) const;
+  MPInt operator%(const MPInt &O) const;
+  MPInt &operator+=(const MPInt &O);
+  MPInt &operator-=(const MPInt &O);
+  MPInt &operator*=(const MPInt &O);
+  MPInt &operator/=(const MPInt &O);
+  MPInt &operator%=(const MPInt &O);
+  MPInt operator-() const;
+  MPInt &operator++();
+  MPInt &operator--();
+
+  // Divide by a number that is known to be positive.
+  // This is slightly more efficient because it saves an overflow check.
+  MPInt divByPositive(const MPInt &O) const;
+  MPInt &divByPositiveInPlace(const MPInt &O);
+
+  friend MPInt abs(const MPInt &X);
+  friend MPInt ceilDiv(const MPInt &LHS, const MPInt &RHS);
+  friend MPInt floorDiv(const MPInt &LHS, const MPInt &RHS);
+  // The operands must be non-negative for gcd.
+  friend MPInt gcd(const MPInt &A, const MPInt &B);
+  friend MPInt lcm(const MPInt &A, const MPInt &B);
+  friend MPInt mod(const MPInt &LHS, const MPInt &RHS);
+
+  /// ---------------------------------------------------------------------------
+  /// Convenience operator overloads for int64_t.
+  /// ---------------------------------------------------------------------------
+  friend MPInt &operator+=(MPInt &A, int64_t B);
+  friend MPInt &operator-=(MPInt &A, int64_t B);
+  friend MPInt &operator*=(MPInt &A, int64_t B);
+  friend MPInt &operator/=(MPInt &A, int64_t B);
+  friend MPInt &operator%=(MPInt &A, int64_t B);
+
+  friend bool operator==(const MPInt &A, int64_t B);
+  friend bool operator!=(const MPInt &A, int64_t B);
+  friend bool operator>(const MPInt &A, int64_t B);
+  friend bool operator<(const MPInt &A, int64_t B);
+  friend bool operator<=(const MPInt &A, int64_t B);
+  friend bool operator>=(const MPInt &A, int64_t B);
+  friend MPInt operator+(const MPInt &A, int64_t B);
+  friend MPInt operator-(const MPInt &A, int64_t B);
+  friend MPInt operator*(const MPInt &A, int64_t B);
+  friend MPInt operator/(const MPInt &A, int64_t B);
+  friend MPInt operator%(const MPInt &A, int64_t B);
+
+  friend bool operator==(int64_t A, const MPInt &B);
+  friend bool operator!=(int64_t A, const MPInt &B);
+  friend bool operator>(int64_t A, const MPInt &B);
+  friend bool operator<(int64_t A, const MPInt &B);
+  friend bool operator<=(int64_t A, const MPInt &B);
+  friend bool operator>=(int64_t A, const MPInt &B);
+  friend MPInt operator+(int64_t A, const MPInt &B);
+  friend MPInt operator-(int64_t A, const MPInt &B);
+  friend MPInt operator*(int64_t A, const MPInt &B);
+  friend MPInt operator/(int64_t A, const MPInt &B);
+  friend MPInt operator%(int64_t A, const MPInt &B);
+
+  friend hash_code hash_value(const MPInt &x); // NOLINT
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+  raw_ostream &print(raw_ostream &OS) const;
+  LLVM_DUMP_METHOD void dump() const;
+#endif
+};
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+inline raw_ostream &operator<<(raw_ostream &OS, const MPInt &X) {
+  X.print(OS);
+  return OS;
+}
+#endif
+
+/// Redeclarations of friend declaration above to
+/// make it discoverable by lookups.
+hash_code hash_value(const MPInt &X); // NOLINT
+
+/// This just calls through to the operator int64_t, but it's useful when a
+/// function pointer is required. (Although this is marked inline, it is still
+/// possible to obtain and use a function pointer to this.)
+static inline int64_t int64FromMPInt(const MPInt &X) { return int64_t(X); }
+LLVM_ATTRIBUTE_ALWAYS_INLINE MPInt mpintFromInt64(int64_t X) {
+  return MPInt(X);
+}
+
+// The RHS is always expected to be positive, and the result
+/// is always non-negative.
+LLVM_ATTRIBUTE_ALWAYS_INLINE MPInt mod(const MPInt &LHS, const MPInt &RHS);
+
+namespace detail {
+// Division overflows only when trying to negate the minimal signed value.
+LLVM_ATTRIBUTE_ALWAYS_INLINE bool divWouldOverflow(int64_t X, int64_t Y) {
+  return X == std::numeric_limits<int64_t>::min() && Y == -1;
+}
+} // namespace detail
+
+/// We define the operations here in the header to facilitate inlining.
+
+/// ---------------------------------------------------------------------------
+/// Comparison operators.
+/// ---------------------------------------------------------------------------
+LLVM_ATTRIBUTE_ALWAYS_INLINE bool MPInt::operator==(const MPInt &O) const {
+  if (LLVM_LIKELY(isSmall() && O.isSmall()))
+    return getSmall() == O.getSmall();
+  return detail::SlowMPInt(*this) == detail::SlowMPInt(O);
+}
+LLVM_ATTRIBUTE_ALWAYS_INLINE bool MPInt::operator!=(const MPInt &O) const {
+  if (LLVM_LIKELY(isSmall() && O.isSmall()))
+    return getSmall() != O.getSmall();
+  return detail::SlowMPInt(*this) != detail::SlowMPInt(O);
+}
+LLVM_ATTRIBUTE_ALWAYS_INLINE bool MPInt::operator>(const MPInt &O) const {
+  if (LLVM_LIKELY(isSmall() && O.isSmall()))
+    return getSmall() > O.getSmall();
+  return detail::SlowMPInt(*this) > detail::SlowMPInt(O);
+}
+LLVM_ATTRIBUTE_ALWAYS_INLINE bool MPInt::operator<(const MPInt &O) const {
+  if (LLVM_LIKELY(isSmall() && O.isSmall()))
+    return getSmall() < O.getSmall();
+  return detail::SlowMPInt(*this) < detail::SlowMPInt(O);
+}
+LLVM_ATTRIBUTE_ALWAYS_INLINE bool MPInt::operator<=(const MPInt &O) const {
+  if (LLVM_LIKELY(isSmall() && O.isSmall()))
+    return getSmall() <= O.getSmall();
+  return detail::SlowMPInt(*this) <= detail::SlowMPInt(O);
+}
+LLVM_ATTRIBUTE_ALWAYS_INLINE bool MPInt::operator>=(const MPInt &O) const {
+  if (LLVM_LIKELY(isSmall() && O.isSmall()))
+    return getSmall() >= O.getSmall();
+  return detail::SlowMPInt(*this) >= detail::SlowMPInt(O);
+}
+
+/// ---------------------------------------------------------------------------
+/// Arithmetic operators.
+/// ---------------------------------------------------------------------------
+
+LLVM_ATTRIBUTE_ALWAYS_INLINE MPInt MPInt::operator+(const MPInt &O) const {
+  if (LLVM_LIKELY(isSmall() && O.isSmall())) {
+    MPInt Result;
+    bool Overflow =
+        detail::addOverflow(getSmall(), O.getSmall(), Result.getSmall());
+    if (LLVM_LIKELY(!Overflow))
+      return Result;
+    return MPInt(detail::SlowMPInt(*this) + detail::SlowMPInt(O));
+  }
+  return MPInt(detail::SlowMPInt(*this) + detail::SlowMPInt(O));
+}
+LLVM_ATTRIBUTE_ALWAYS_INLINE MPInt MPInt::operator-(const MPInt &O) const {
+  if (LLVM_LIKELY(isSmall() && O.isSmall())) {
+    MPInt Result;
+    bool Overflow =
+        detail::subOverflow(getSmall(), O.getSmall(), Result.getSmall());
+    if (LLVM_LIKELY(!Overflow))
+      return Result;
+    return MPInt(detail::SlowMPInt(*this) - detail::SlowMPInt(O));
+  }
+  return MPInt(detail::SlowMPInt(*this) - detail::SlowMPInt(O));
+}
+LLVM_ATTRIBUTE_ALWAYS_INLINE MPInt MPInt::operator*(const MPInt &O) const {
+  if (LLVM_LIKELY(isSmall() && O.isSmall())) {
+    MPInt Result;
+    bool Overflow =
+        detail::mulOverflow(getSmall(), O.getSmall(), Result.getSmall());
+    if (LLVM_LIKELY(!Overflow))
+      return Result;
+    return MPInt(detail::SlowMPInt(*this) * detail::SlowMPInt(O));
+  }
+  return MPInt(detail::SlowMPInt(*this) * detail::SlowMPInt(O));
+}
+
+// Division overflows only occur when negating the minimal possible value.
+LLVM_ATTRIBUTE_ALWAYS_INLINE MPInt MPInt::divByPositive(const MPInt &O) const {
+  assert(O > 0);
+  if (LLVM_LIKELY(isSmall() && O.isSmall()))
+    return MPInt(getSmall() / O.getSmall());
+  return MPInt(detail::SlowMPInt(*this) / detail::SlowMPInt(O));
+}
+
+LLVM_ATTRIBUTE_ALWAYS_INLINE MPInt MPInt::operator/(const MPInt &O) const {
+  if (LLVM_LIKELY(isSmall() && O.isSmall())) {
+    // Division overflows only occur when negating the minimal possible value.
+    if (LLVM_UNLIKELY(detail::divWouldOverflow(getSmall(), O.getSmall())))
+      return -*this;
+    return MPInt(getSmall() / O.getSmall());
+  }
+  return MPInt(detail::SlowMPInt(*this) / detail::SlowMPInt(O));
+}
+
+LLVM_ATTRIBUTE_ALWAYS_INLINE MPInt abs(const MPInt &X) {
+  return MPInt(X >= 0 ? X : -X);
+}
+// Division overflows only occur when negating the minimal possible value.
+LLVM_ATTRIBUTE_ALWAYS_INLINE MPInt ceilDiv(const MPInt &LHS, const MPInt &RHS) {
+  if (LLVM_LIKELY(LHS.isSmall() && RHS.isSmall())) {
+    if (LLVM_UNLIKELY(detail::divWouldOverflow(LHS.getSmall(), RHS.getSmall())))
+      return -LHS;
+    return MPInt(detail::ceilDiv(LHS.getSmall(), RHS.getSmall()));
+  }
+  return MPInt(ceilDiv(detail::SlowMPInt(LHS), detail::SlowMPInt(RHS)));
+}
+LLVM_ATTRIBUTE_ALWAYS_INLINE MPInt floorDiv(const MPInt &LHS,
+                                            const MPInt &RHS) {
+  if (LLVM_LIKELY(LHS.isSmall() && RHS.isSmall())) {
+    if (LLVM_UNLIKELY(detail::divWouldOverflow(LHS.getSmall(), RHS.getSmall())))
+      return -LHS;
+    return MPInt(detail::floorDiv(LHS.getSmall(), RHS.getSmall()));
+  }
+  return MPInt(floorDiv(detail::SlowMPInt(LHS), detail::SlowMPInt(RHS)));
+}
+// The RHS is always expected to be positive, and the result
+/// is always non-negative.
+LLVM_ATTRIBUTE_ALWAYS_INLINE MPInt mod(const MPInt &LHS, const MPInt &RHS) {
+  if (LLVM_LIKELY(LHS.isSmall() && RHS.isSmall()))
+    return MPInt(detail::mod(LHS.getSmall(), RHS.getSmall()));
+  return MPInt(mod(detail::SlowMPInt(LHS), detail::SlowMPInt(RHS)));
+}
+
+LLVM_ATTRIBUTE_ALWAYS_INLINE MPInt gcd(const MPInt &A, const MPInt &B) {
+  assert(A >= 0 && B >= 0 && "operands must be non-negative!");
+  if (LLVM_LIKELY(A.isSmall() && B.isSmall()))
+    return MPInt(std::gcd(A.getSmall(), B.getSmall()));
+  return MPInt(gcd(detail::SlowMPInt(A), detail::SlowMPInt(B)));
+}
+
+/// Returns the least common multiple of A and B.
+LLVM_ATTRIBUTE_ALWAYS_INLINE MPInt lcm(const MPInt &A, const MPInt &B) {
+  MPInt X = abs(A);
+  MPInt Y = abs(B);
+  return (X * Y) / gcd(X, Y);
+}
+
+/// This operation cannot overflow.
+LLVM_ATTRIBUTE_ALWAYS_INLINE MPInt MPInt::operator%(const MPInt &O) const {
+  if (LLVM_LIKELY(isSmall() && O.isSmall()))
+    return MPInt(getSmall() % O.getSmall());
+  return MPInt(detail::SlowMPInt(*this) % detail::SlowMPInt(O));
+}
+
+LLVM_ATTRIBUTE_ALWAYS_INLINE MPInt MPInt::operator-() const {
+  if (LLVM_LIKELY(isSmall())) {
+    if (LLVM_LIKELY(getSmall() != std::numeric_limits<int64_t>::min()))
+      return MPInt(-getSmall());
+    return MPInt(-detail::SlowMPInt(*this));
+  }
+  return MPInt(-detail::SlowMPInt(*this));
+}
+
+/// ---------------------------------------------------------------------------
+/// Assignment operators, preincrement, predecrement.
+/// ---------------------------------------------------------------------------
+LLVM_ATTRIBUTE_ALWAYS_INLINE MPInt &MPInt::operator+=(const MPInt &O) {
+  if (LLVM_LIKELY(isSmall() && O.isSmall())) {
+    int64_t Result = getSmall();
+    bool Overflow = detail::addOverflow(getSmall(), O.getSmall(), Result);
+    if (LLVM_LIKELY(!Overflow)) {
+      getSmall() = Result;
+      return *this;
+    }
+    // Note: this return is not strictly required but
+    // removing it leads to a performance regression.
+    return *this = MPInt(detail::SlowMPInt(*this) + detail::SlowMPInt(O));
+  }
+  return *this = MPInt(detail::SlowMPInt(*this) + detail::SlowMPInt(O));
+}
+LLVM_ATTRIBUTE_ALWAYS_INLINE MPInt &MPInt::operator-=(const MPInt &O) {
+  if (LLVM_LIKELY(isSmall() && O.isSmall())) {
+    int64_t Result = getSmall();
+    bool Overflow = detail::subOverflow(getSmall(), O.getSmall(), Result);
+    if (LLVM_LIKELY(!Overflow)) {
+      getSmall() = Result;
+      return *this;
+    }
+    // Note: this return is not strictly required but
+    // removing it leads to a performance regression.
+    return *this = MPInt(detail::SlowMPInt(*this) - detail::SlowMPInt(O));
+  }
+  return *this = MPInt(detail::SlowMPInt(*this) - detail::SlowMPInt(O));
+}
+LLVM_ATTRIBUTE_ALWAYS_INLINE MPInt &MPInt::operator*=(const MPInt &O) {
+  if (LLVM_LIKELY(isSmall() && O.isSmall())) {
+    int64_t Result = getSmall();
+    bool Overflow = detail::mulOverflow(getSmall(), O.getSmall(), Result);
+    if (LLVM_LIKELY(!Overflow)) {
+      getSmall() = Result;
+      return *this;
+    }
+    // Note: this return is not strictly require...
[truncated]

``````````

</details>


https://github.com/llvm/llvm-project/pull/94953


More information about the Mlir-commits mailing list