[Mlir-commits] [mlir] andrzej/update collapse inner 4 (PR #94906)
llvmlistbot at llvm.org
llvmlistbot at llvm.org
Sun Jun 9 10:17:36 PDT 2024
llvmbot wrote:
<!--LLVM PR SUMMARY COMMENT-->
@llvm/pr-subscribers-mlir-vector
Author: Andrzej WarzyĆski (banach-space)
<details>
<summary>Changes</summary>
- **[mlir][vector] Update tests for collapse 1/n (nfc)**
- **fixup! [mlir][vector] Update tests for collapse 1/n (nfc)**
- **[mlir][vector] Update tests for collapse 2/n (nfc)**
- **[mlir][vector] Restrict `DropInnerMostUnitDimsTransferRead`**
- **[mlir][vector] Update tests for collapse 3/n (nfc)**
---
Patch is 24.32 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/94906.diff
2 Files Affected:
- (modified) mlir/lib/Dialect/Vector/Transforms/VectorTransforms.cpp (+15)
- (modified) mlir/test/Dialect/Vector/vector-transfer-collapse-inner-most-dims.mlir (+228-82)
``````````diff
diff --git a/mlir/lib/Dialect/Vector/Transforms/VectorTransforms.cpp b/mlir/lib/Dialect/Vector/Transforms/VectorTransforms.cpp
index f29eba90c3ceb..caf1506e0db93 100644
--- a/mlir/lib/Dialect/Vector/Transforms/VectorTransforms.cpp
+++ b/mlir/lib/Dialect/Vector/Transforms/VectorTransforms.cpp
@@ -1293,6 +1293,21 @@ class DropInnerMostUnitDimsTransferRead
if (dimsToDrop == 0)
return failure();
+ // Make sure that the indixes to be dropped are equal 0.
+ // TODO: Deal with cases when the indices are not 0.
+ auto isZeroIdx = [](Value idx) {
+ Attribute attr;
+ APInt value;
+ if (!matchPattern(idx, m_Constant(&attr)))
+ return false;
+ if (matchPattern(attr, m_ConstantInt(&value)))
+ if (!value.isZero())
+ return false;
+ return true;
+ };
+ if (!llvm::all_of(readOp.getIndices().take_back(dimsToDrop), isZeroIdx))
+ return failure();
+
auto resultTargetVecType =
VectorType::get(targetType.getShape().drop_back(dimsToDrop),
targetType.getElementType(),
diff --git a/mlir/test/Dialect/Vector/vector-transfer-collapse-inner-most-dims.mlir b/mlir/test/Dialect/Vector/vector-transfer-collapse-inner-most-dims.mlir
index b4cb640108bae..4f8aab3729de8 100644
--- a/mlir/test/Dialect/Vector/vector-transfer-collapse-inner-most-dims.mlir
+++ b/mlir/test/Dialect/Vector/vector-transfer-collapse-inner-most-dims.mlir
@@ -1,12 +1,17 @@
// RUN: mlir-opt %s -test-vector-transfer-collapse-inner-most-dims -split-input-file | FileCheck %s
-func.func @contiguous_inner_most_view(%in: memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>>) -> vector<1x8x1xf32>{
+//-----------------------------------------------------------------------------
+// 1. vector.transfer_read
+//-----------------------------------------------------------------------------
+
+func.func @contiguous_inner_most(%in: memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>>) -> vector<1x8x1xf32>{
%c0 = arith.constant 0 : index
%cst = arith.constant 0.0 : f32
%0 = vector.transfer_read %in[%c0, %c0, %c0, %c0], %cst {in_bounds = [true, true, true]} : memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>>, vector<1x8x1xf32>
return %0 : vector<1x8x1xf32>
}
-// CHECK: func @contiguous_inner_most_view(%[[SRC:.+]]: memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>>
+
+// CHECK: func @contiguous_inner_most(%[[SRC:.+]]: memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>>
// CHECK: %[[SRC_0:.+]] = memref.subview %[[SRC]]
// CHECK-SAME: memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>> to memref<1x1x8xf32, strided<[3072, 8, 1], offset: ?>>
// CHECK: %[[VEC:.+]] = vector.transfer_read %[[SRC_0]]
@@ -14,15 +19,61 @@ func.func @contiguous_inner_most_view(%in: memref<1x1x8x1xf32, strided<[3072, 8,
// CHECK: %[[RESULT:.+]] = vector.shape_cast %[[VEC]]
// CHECK: return %[[RESULT]]
+// Same as the top example within this split, but with the inner vector
+// dim scalable. Note that this example only makes sense when "8 = [8]" (i.e.
+// vscale = 1). This is assumed (implicitly) via the `in_bounds` attribute.
+
+func.func @contiguous_inner_most_scalable_inner_dim(%in: memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>>) -> vector<1x[8]x1xf32>{
+ %c0 = arith.constant 0 : index
+ %cst = arith.constant 0.0 : f32
+ %0 = vector.transfer_read %in[%c0, %c0, %c0, %c0], %cst {in_bounds = [true, true, true]} : memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>>, vector<1x[8]x1xf32>
+ return %0 : vector<1x[8]x1xf32>
+}
+
+// CHECK: func @contiguous_inner_most_scalable_inner_dim(%[[SRC:.+]]: memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>>
+// CHECK: %[[SRC_0:.+]] = memref.subview %[[SRC]]
+// CHECK-SAME: memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>> to memref<1x1x8xf32, strided<[3072, 8, 1], offset: ?>>
+// CHECK: %[[VEC:.+]] = vector.transfer_read %[[SRC_0]]
+// CHECK-SAME: memref<1x1x8xf32, strided<[3072, 8, 1], offset: ?>>, vector<1x[8]xf32>
+// CHECK: %[[RESULT:.+]] = vector.shape_cast %[[VEC]]
+// CHECK: return %[[RESULT]]
+
+// Same as the top example within this split, but the trailing unit dim was
+// replaced with a dyn dim - not supported
+
+func.func @non_unit_trailing_dim(%in: memref<1x1x8x?xf32, strided<[3072, 8, 1, 1], offset: ?>>) -> vector<1x8x1xf32>{
+ %c0 = arith.constant 0 : index
+ %cst = arith.constant 0.0 : f32
+ %0 = vector.transfer_read %in[%c0, %c0, %c0, %c0], %cst {in_bounds = [true, true, true]} : memref<1x1x8x?xf32, strided<[3072, 8, 1, 1], offset: ?>>, vector<1x8x1xf32>
+ return %0 : vector<1x8x1xf32>
+}
+
+// CHECK-LABEL: func @non_unit_trailing_dim
+// CHECK-NOT: memref.subview
+// CHECK-NOT: vector.shape_cast
+
+// Same as the top example within this split, but with a scalable unit dim in
+// the output vector - not supported (scalable 1 is _not_ a unit dimension).
+
+func.func @negative_scalable_unit_dim(%in: memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>>) -> vector<1x8x[1]xf32>{
+ %c0 = arith.constant 0 : index
+ %cst = arith.constant 0.0 : f32
+ %0 = vector.transfer_read %in[%c0, %c0, %c0, %c0], %cst {in_bounds = [true, true, true]} : memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>>, vector<1x8x[1]xf32>
+ return %0 : vector<1x8x[1]xf32>
+}
+// CHECK-LABEL: func @negative_scalable_unit_dim
+// CHECK-NOT: memref.subview
+// CHECK-NOT: vector.shape_cast
+
// -----
-func.func @contiguous_outer_dyn_inner_most_view(%a: index, %b: index, %memref: memref<?x?x8x1xf32>) -> vector<8x1xf32> {
+func.func @contiguous_inner_most_dynamic_outer(%a: index, %b: index, %memref: memref<?x?x8x1xf32>) -> vector<8x1xf32> {
%c0 = arith.constant 0 : index
%pad = arith.constant 0.0 : f32
%v = vector.transfer_read %memref[%a, %b, %c0, %c0], %pad {in_bounds = [true, true]} : memref<?x?x8x1xf32>, vector<8x1xf32>
return %v : vector<8x1xf32>
}
-// CHECK: func.func @contiguous_outer_dyn_inner_most_view(
+// CHECK: func.func @contiguous_inner_most_dynamic_outer
// CHECK-SAME: %[[IDX0:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[IDX1:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[SRC:[a-zA-Z0-9]+]]
@@ -38,79 +89,179 @@ func.func @contiguous_outer_dyn_inner_most_view(%a: index, %b: index, %memref: m
// CHECK: %[[RESULT:.+]] = vector.shape_cast %[[VEC]]
// CHECK: return %[[RESULT]]
+// Same as the top example within this split, but with the outer vector
+// dim scalable. Note that this example only makes sense when "8 = [8]" (i.e.
+// vscale = 1). This is assumed (implicitly) via the `in_bounds` attribute.
+
+func.func @contiguous_inner_most_outer_dim_dyn_scalable_inner_dim(%a: index, %b: index, %memref: memref<?x?x8x1xf32>) -> vector<[8]x1xf32> {
+ %c0 = arith.constant 0 : index
+ %pad = arith.constant 0.0 : f32
+ %v = vector.transfer_read %memref[%a, %b, %c0, %c0], %pad {in_bounds = [true, true]} : memref<?x?x8x1xf32>, vector<[8]x1xf32>
+ return %v : vector<[8]x1xf32>
+}
+// CHECK-LABEL: func @contiguous_inner_most_outer_dim_dyn_scalable_inner_dim
+// CHECK-SAME: %[[IDX0:[a-zA-Z0-9]+]]
+// CHECK-SAME: %[[IDX1:[a-zA-Z0-9]+]]
+// CHECK-SAME: %[[SRC:[a-zA-Z0-9]+]]
+// CHECK: %[[VIEW:.+]] = memref.subview %[[SRC]]{{.*}} memref<?x?x8x1xf32> to memref<?x?x8xf32, strided<[?, 8, 1], offset: ?>>
+// CHECK: %[[VEC_READ:.+]] = vector.transfer_read %[[VIEW]]
+// CHECK-SAME: {in_bounds = [true]}
+// CHECK-SAME: memref<?x?x8xf32, strided<[?, 8, 1], offset: ?>>, vector<[8]xf32>
+// CHECK: vector.shape_cast %[[VEC_READ]]
+
// -----
-func.func @contiguous_inner_most_dim(%A: memref<16x1xf32>, %i:index, %j:index) -> (vector<8x1xf32>) {
+func.func @contiguous_inner_most_dim_non_zero_idx(%A: memref<16x1xf32>, %i:index) -> (vector<8x1xf32>) {
%c0 = arith.constant 0 : index
%f0 = arith.constant 0.0 : f32
- %1 = vector.transfer_read %A[%i, %j], %f0 : memref<16x1xf32>, vector<8x1xf32>
+ %1 = vector.transfer_read %A[%i, %c0], %f0 : memref<16x1xf32>, vector<8x1xf32>
return %1 : vector<8x1xf32>
}
-// CHECK: func @contiguous_inner_most_dim(%[[SRC:.+]]: memref<16x1xf32>, %[[I:.+]]: index, %[[J:.+]]: index) -> vector<8x1xf32>
+// CHECK: func @contiguous_inner_most_dim_non_zero_idx(%[[SRC:.+]]: memref<16x1xf32>, %[[I:.+]]: index) -> vector<8x1xf32>
// CHECK: %[[SRC_0:.+]] = memref.subview %[[SRC]]
// CHECK-SAME: memref<16x1xf32> to memref<16xf32, strided<[1]>>
// CHECK: %[[V:.+]] = vector.transfer_read %[[SRC_0]]
-// CHECK: %[[RESULT]] = vector.shape_cast %[[V]] : vector<8xf32> to vector<8x1xf32>
+// CHECK: %[[RESULT:.+]] = vector.shape_cast %[[V]] : vector<8xf32> to vector<8x1xf32>
// CHECK: return %[[RESULT]]
+// The index to be dropped is != 0 - this is currently not supported.
+func.func @negative_contiguous_inner_most_dim_non_zero_idxs(%A: memref<16x1xf32>, %i:index) -> (vector<8x1xf32>) {
+ %f0 = arith.constant 0.0 : f32
+ %1 = vector.transfer_read %A[%i, %i], %f0 : memref<16x1xf32>, vector<8x1xf32>
+ return %1 : vector<8x1xf32>
+}
+// CHECK-LABEL: func @negative_contiguous_inner_most_dim_non_zero_idxs
+// CHECK-NOT: memref.subview
+// CHECK: vector.transfer_read
+
+// Same as the top example within this split, but with the outer vector
+// dim scalable. Note that this example only makes sense when "8 = [8]" (i.e.
+// vscale = 1). This is assumed (implicitly) via the `in_bounds` attribute.
+
+func.func @contiguous_inner_most_dim_non_zero_idx_scalable_inner_dim(%A: memref<16x1xf32>, %i:index) -> (vector<[8]x1xf32>) {
+ %c0 = arith.constant 0 : index
+ %f0 = arith.constant 0.0 : f32
+ %1 = vector.transfer_read %A[%i, %c0], %f0 : memref<16x1xf32>, vector<[8]x1xf32>
+ return %1 : vector<[8]x1xf32>
+}
+// CHECK-LABEL: func @contiguous_inner_most_dim_non_zero_idx_scalable_inner_dim(
+// CHECK-SAME: %[[SRC:.+]]: memref<16x1xf32>, %[[I:.+]]: index) -> vector<[8]x1xf32>
+// CHECK: %[[SRC_0:.+]] = memref.subview %[[SRC]]
+// CHECK-SAME: memref<16x1xf32> to memref<16xf32, strided<[1]>>
+// CHECK: %[[V:.+]] = vector.transfer_read %[[SRC_0]]
+// CHECK: %[[RESULT:.+]] = vector.shape_cast %[[V]] : vector<[8]xf32> to vector<[8]x1xf32>
+// CHECK: return %[[RESULT]]
+
// -----
-func.func @contiguous_inner_most_dim_bounds(%A: memref<1000x1xf32>, %i:index, %ii:index) -> (vector<4x1xf32>) {
+func.func @contiguous_inner_most_dim_with_subview(%A: memref<1000x1xf32>, %i:index, %ii:index) -> (vector<4x1xf32>) {
%c0 = arith.constant 0 : index
%cst = arith.constant 0.0 : f32
%0 = memref.subview %A[%i, 0] [40, 1] [1, 1] : memref<1000x1xf32> to memref<40x1xf32, strided<[1, 1], offset: ?>>
%1 = vector.transfer_read %0[%ii, %c0], %cst {in_bounds = [true, true]} : memref<40x1xf32, strided<[1, 1], offset: ?>>, vector<4x1xf32>
return %1 : vector<4x1xf32>
}
-// CHECK: func @contiguous_inner_most_dim_bounds(%[[SRC:.+]]: memref<1000x1xf32>, %[[II:.+]]: index, %[[J:.+]]: index) -> vector<4x1xf32>
+// CHECK: func @contiguous_inner_most_dim_with_subview(%[[SRC:.+]]: memref<1000x1xf32>, %[[II:.+]]: index, %[[J:.+]]: index) -> vector<4x1xf32>
// CHECK: %[[SRC_0:.+]] = memref.subview %[[SRC]]
// CHECK: %[[SRC_1:.+]] = memref.subview %[[SRC_0]]
// CHECK: %[[V:.+]] = vector.transfer_read %[[SRC_1]]
// CHECK-SAME: {in_bounds = [true]}
// CHECK-SAME: vector<4xf32>
+// Same as the top example within this split, but with the outer vector
+// dim scalable. Note that this example only makes sense when "4 = [4]" (i.e.
+// vscale = 1). This is assumed (implicitly) via the `in_bounds` attribute.
+
+func.func @contiguous_inner_most_dim_with_subview_scalable_inner_dim(%A: memref<1000x1xf32>, %i:index, %ii:index) -> (vector<[4]x1xf32>) {
+ %c0 = arith.constant 0 : index
+ %cst = arith.constant 0.0 : f32
+ %0 = memref.subview %A[%i, 0] [40, 1] [1, 1] : memref<1000x1xf32> to memref<40x1xf32, strided<[1, 1], offset: ?>>
+ %1 = vector.transfer_read %0[%ii, %c0], %cst {in_bounds = [true, true]} : memref<40x1xf32, strided<[1, 1], offset: ?>>, vector<[4]x1xf32>
+ return %1 : vector<[4]x1xf32>
+}
+// CHECK-LABEL: func @contiguous_inner_most_dim_with_subview_scalable_inner_dim
+// CHECK-SAME: %[[SRC:.+]]: memref<1000x1xf32>
+// CHECK: %[[SRC_0:.+]] = memref.subview %[[SRC]]
+// CHECK: %[[V:.+]] = vector.transfer_read %[[SRC_0]]
+// CHECK-SAME: {in_bounds = [true]}
+// CHECK-SAME: vector<[4]xf32>
+
// -----
-func.func @contiguous_inner_most_dim_bounds_2d(%A: memref<1000x1x1xf32>, %i:index, %ii:index) -> (vector<4x1x1xf32>) {
+func.func @contiguous_inner_most_dim_with_subview_2d(%A: memref<1000x1x1xf32>, %i:index, %ii:index) -> (vector<4x1x1xf32>) {
%c0 = arith.constant 0 : index
%cst = arith.constant 0.0 : f32
%0 = memref.subview %A[%i, 0, 0] [40, 1, 1] [1, 1, 1] : memref<1000x1x1xf32> to memref<40x1x1xf32, strided<[1, 1, 1], offset: ?>>
%1 = vector.transfer_read %0[%ii, %c0, %c0], %cst {in_bounds = [true, true, true]} : memref<40x1x1xf32, strided<[1, 1, 1], offset: ?>>, vector<4x1x1xf32>
return %1 : vector<4x1x1xf32>
}
-// CHECK: func @contiguous_inner_most_dim_bounds_2d(%[[SRC:.+]]: memref<1000x1x1xf32>, %[[II:.+]]: index, %[[J:.+]]: index) -> vector<4x1x1xf32>
+// CHECK: func @contiguous_inner_most_dim_with_subview_2d(%[[SRC:.+]]: memref<1000x1x1xf32>, %[[II:.+]]: index, %[[J:.+]]: index) -> vector<4x1x1xf32>
// CHECK: %[[SRC_0:.+]] = memref.subview %[[SRC]]
// CHECK: %[[SRC_1:.+]] = memref.subview %[[SRC_0]]
// CHECK: %[[V:.+]] = vector.transfer_read %[[SRC_1]]
// CHECK-SAME: {in_bounds = [true]}
// CHECK-SAME: vector<4xf32>
+// Same as the top example within this split, but with the outer vector
+// dim scalable. Note that this example only makes sense when "4 = [4]" (i.e.
+// vscale = 1). This is assumed (implicitly) via the `in_bounds` attribute.
+
+func.func @contiguous_inner_most_dim_with_subview_2d_scalable_inner_dim(%A: memref<1000x1x1xf32>, %i:index, %ii:index) -> (vector<[4]x1x1xf32>) {
+ %c0 = arith.constant 0 : index
+ %cst = arith.constant 0.0 : f32
+ %0 = memref.subview %A[%i, 0, 0] [40, 1, 1] [1, 1, 1] : memref<1000x1x1xf32> to memref<40x1x1xf32, strided<[1, 1, 1], offset: ?>>
+ %1 = vector.transfer_read %0[%ii, %c0, %c0], %cst {in_bounds = [true, true, true]} : memref<40x1x1xf32, strided<[1, 1, 1], offset: ?>>, vector<[4]x1x1xf32>
+ return %1 : vector<[4]x1x1xf32>
+}
+// CHECK-LABEL: func @contiguous_inner_most_dim_with_subview_2d_scalable_inner_dim(
+// CHECK-SAME: %[[SRC:.+]]: memref<1000x1x1xf32>, %[[II:.+]]: index, %[[J:.+]]: index) -> vector<[4]x1x1xf32>
+// CHECK: %[[SRC_0:.+]] = memref.subview %[[SRC]]
+// CHECK: %[[SRC_1:.+]] = memref.subview %[[SRC_0]]
+// CHECK: %[[V:.+]] = vector.transfer_read %[[SRC_1]]
+// CHECK-SAME: {in_bounds = [true]}
+// CHECK-SAME: vector<[4]xf32>
+// CHECK: vector.shape_cast %[[V]]
+
// -----
-func.func @contiguous_inner_most_dim_out_of_bounds_2d(%arg0: memref<1x1xf32>) -> vector<4x8xf32> {
+// NOTE: This is an out-of-bounds access.
+
+func.func @negative_non_unit_inner_vec_dim(%arg0: memref<4x1xf32>) -> vector<4x8xf32> {
%c0 = arith.constant 0 : index
%cst = arith.constant 0.000000e+00 : f32
- %0 = vector.transfer_read %arg0[%c0, %c0], %cst : memref<1x1xf32>, vector<4x8xf32>
+ %0 = vector.transfer_read %arg0[%c0, %c0], %cst : memref<4x1xf32>, vector<4x8xf32>
return %0 : vector<4x8xf32>
}
-// The inner most unit dim can not be dropped. In this context, we do not
-// generate rank-reduced memref.subview ops.
-// CHECK: func.func @contiguous_inner_most_dim_out_of_bounds_2d
-// CHECK-SAME: %[[SRC:[a-zA-Z0-9]+]]
+// CHECK: func.func @negative_non_unit_inner_vec_dim
// CHECK-NOT: memref.subview
-// CHECK: %[[READ:.+]] = vector.transfer_read %[[SRC]]
-// CHECK: return %[[READ]] : vector<4x8xf32>
+// CHECK: vector.transfer_read
// -----
-func.func @drop_two_inner_most_dim_for_transfer_write(%arg0: memref<1x512x16x1x1xf32>, %arg1: vector<1x16x16x1x1xf32>, %arg2: index) {
+func.func @negative_non_unit_inner_memref_dim(%arg0: memref<4x8xf32>) -> vector<4x1xf32> {
+ %c0 = arith.constant 0 : index
+ %cst = arith.constant 0.000000e+00 : f32
+ %0 = vector.transfer_read %arg0[%c0, %c0], %cst : memref<4x8xf32>, vector<4x1xf32>
+ return %0 : vector<4x1xf32>
+}
+// CHECK: func.func @negative_non_unit_inner_memref_dim
+// CHECK-NOT: memref.subview
+// CHECK: vector.transfer_read
+
+// -----
+
+//-----------------------------------------------------------------------------
+// 2. vector.transfer_write
+//-----------------------------------------------------------------------------
+
+func.func @drop_two_inner_most_dim(%arg0: memref<1x512x16x1x1xf32>, %arg1: vector<1x16x16x1x1xf32>, %arg2: index) {
%c0 = arith.constant 0 : index
vector.transfer_write %arg1, %arg0[%c0, %arg2, %c0, %c0, %c0]
{in_bounds = [true, true, true, true, true]}
: vector<1x16x16x1x1xf32>, memref<1x512x16x1x1xf32>
return
}
-// CHECK: func.func @drop_two_inner_most_dim_for_transfer_write
+// CHECK: func.func @drop_two_inner_most_dim
// CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[VEC:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[IDX:[a-zA-Z0-9]+]]
@@ -121,16 +272,67 @@ func.func @drop_two_inner_most_dim_for_transfer_write(%arg0: memref<1x512x16x1x1
// CHECK: vector.transfer_write %[[CAST]], %[[SUBVIEW]]
// CHECK-SAME: [%[[C0]], %[[IDX]], %[[C0]]]
+// Same as the top example within this split, but with the inner vector
+// dim scalable. Note that this example only makes sense when "16 = [16]" (i.e.
+// vscale = 1). This is assumed (implicitly) via the `in_bounds` attribute.
+
+func.func @drop_two_inner_most_dim_scalable_inner_dim(%arg0: memref<1x512x16x1x1xf32>, %arg1: vector<1x16x[16]x1x1xf32>, %arg2: index) {
+ %c0 = arith.constant 0 : index
+ vector.transfer_write %arg1, %arg0[%c0, %arg2, %c0, %c0, %c0]
+ {in_bounds = [true, true, true, true, true]}
+ : vector<1x16x[16]x1x1xf32>, memref<1x512x16x1x1xf32>
+ return
+}
+// CHECK: func.func @drop_two_inner_most_dim_scalable_inner_dim
+// CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]]
+// CHECK-SAME: %[[VEC:[a-zA-Z0-9]+]]
+// CHECK-SAME: %[[IDX:[a-zA-Z0-9]+]]
+// CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index
+// CHECK: %[[SUBVIEW:.+]] = memref.subview %[[DEST]]
+// CHECK-SAME: memref<1x512x16x1x1xf32> to memref<1x512x16xf32, strided<[8192, 16, 1]>>
+// CHECK: %[[CAST:.+]] = vector.shape_cast %[[VEC]] : vector<1x16x[16]x1x1xf32> to vector<1x16x[16]xf32>
+// CHECK: vector.transfer_write %[[CAST]], %[[SUBVIEW]]
+// CHECK-SAME: [%[[C0]], %[[IDX]], %[[C0]]]
+
+// Same as the top example within this split, but the trailing unit dim was
+// replaced with a dyn dim - not supported
+
+func.func @negative_non_unit_trailing_dim(%arg0: memref<1x512x16x1x?xf32>, %arg1: vector<1x16x16x1x1xf32>, %arg2: index) {
+ %c0 = arith.constant 0 : index
+ vector.transfer_write %arg1, %arg0[%c0, %arg2, %c0, %c0, %c0]
+ {in_bounds = [true, true, true, true, true]}
+ : vector<1x16x16x1x1xf32>, memref<1x512x16x1x?xf32>
+ return
+}
+// CHECK: func.func @negative_non_unit_trailing_dim
+// CHECK-NOT: memref.subview
+// CHECK-NOT: vector.shape_cast
+
+// Same as the top example within this split, but with a scalable unit dim in
+// the output vector - not supported
+
+func.func @negative_scalable_unit_dim(%arg0: memref<1x512x16x1x1xf32>, %arg1: vector<1x16x16x1x[1]xf32>, %arg2: index) {
+ %c0 = arith.constant 0 : index
+ vector.transfer_write %arg1, %arg0[%c0, %arg2, %c0, %c0, %c0]
+ {in_bounds = [true, true, true, true, true]}
+ : vector<1x16x16x1x[1]xf32>, memref<1x512x16x1x1xf32>
+ return
+}
+
+// CHECK: func.func @negative_scalable_unit_dim
+// CHECK-NOT: memref.subview
+// CHECK-NOT: vector.shape_cast
+
// -----
-func.func @drop_inner_most_dim_for_transfer_write(%arg0: memref<1x512x16x1xf32, strided<[8192, 16, 1, 1], offset: ?>>, %arg1: vector<1x16x16x1xf32>, %arg2: index) {
+func.func @drop_inner_most_dim(%arg0: memref<1x512x16x1xf32, strided<[8192, 16, 1, 1], offset: ?>>, %arg1: vector<1x16x16x1xf32>, %arg2: index) {
%c0 = arith.constant 0 : index
vector.transfer_write %arg1, %arg0[%c0, %arg2, %c0, %c0]
{in_bounds = [tr...
[truncated]
``````````
</details>
https://github.com/llvm/llvm-project/pull/94906
More information about the Mlir-commits
mailing list