[Mlir-commits] [mlir] andrzej/update collapse inner 3 (PR #94904)

llvmlistbot at llvm.org llvmlistbot at llvm.org
Sun Jun 9 09:45:14 PDT 2024


llvmbot wrote:


<!--LLVM PR SUMMARY COMMENT-->

@llvm/pr-subscribers-mlir

Author: Andrzej WarzyƄski (banach-space)

<details>
<summary>Changes</summary>

- **[mlir][vector] Update tests for collapse 1/n (nfc)**
- **fixup! [mlir][vector] Update tests for collapse 1/n (nfc)**
- **[mlir][vector] Update tests for collapse 2/n (nfc)**
- **[mlir][vector] Restrict `DropInnerMostUnitDimsTransferRead`**


---
Full diff: https://github.com/llvm/llvm-project/pull/94904.diff


2 Files Affected:

- (modified) mlir/lib/Dialect/Vector/Transforms/VectorTransforms.cpp (+15) 
- (modified) mlir/test/Dialect/Vector/vector-transfer-collapse-inner-most-dims.mlir (+171-35) 


``````````diff
diff --git a/mlir/lib/Dialect/Vector/Transforms/VectorTransforms.cpp b/mlir/lib/Dialect/Vector/Transforms/VectorTransforms.cpp
index f29eba90c3ceb..caf1506e0db93 100644
--- a/mlir/lib/Dialect/Vector/Transforms/VectorTransforms.cpp
+++ b/mlir/lib/Dialect/Vector/Transforms/VectorTransforms.cpp
@@ -1293,6 +1293,21 @@ class DropInnerMostUnitDimsTransferRead
     if (dimsToDrop == 0)
       return failure();
 
+    // Make sure that the indixes to be dropped are equal 0.
+    // TODO: Deal with cases when the indices are not 0.
+    auto isZeroIdx = [](Value idx) {
+      Attribute attr;
+      APInt value;
+      if (!matchPattern(idx, m_Constant(&attr)))
+        return false;
+      if (matchPattern(attr, m_ConstantInt(&value)))
+        if (!value.isZero())
+          return false;
+      return true;
+    };
+    if (!llvm::all_of(readOp.getIndices().take_back(dimsToDrop), isZeroIdx))
+      return failure();
+
     auto resultTargetVecType =
         VectorType::get(targetType.getShape().drop_back(dimsToDrop),
                         targetType.getElementType(),
diff --git a/mlir/test/Dialect/Vector/vector-transfer-collapse-inner-most-dims.mlir b/mlir/test/Dialect/Vector/vector-transfer-collapse-inner-most-dims.mlir
index b4cb640108bae..96151076330cd 100644
--- a/mlir/test/Dialect/Vector/vector-transfer-collapse-inner-most-dims.mlir
+++ b/mlir/test/Dialect/Vector/vector-transfer-collapse-inner-most-dims.mlir
@@ -1,12 +1,17 @@
 // RUN: mlir-opt %s -test-vector-transfer-collapse-inner-most-dims -split-input-file | FileCheck %s
 
-func.func @contiguous_inner_most_view(%in: memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>>) -> vector<1x8x1xf32>{
+//-----------------------------------------------------------------------------
+// 1. vector.transfer_read
+//-----------------------------------------------------------------------------
+
+func.func @contiguous_inner_most(%in: memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>>) -> vector<1x8x1xf32>{
   %c0 = arith.constant 0 : index
   %cst = arith.constant 0.0 : f32
   %0 = vector.transfer_read %in[%c0, %c0, %c0, %c0], %cst {in_bounds = [true, true, true]} : memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>>, vector<1x8x1xf32>
   return %0 : vector<1x8x1xf32>
 }
-//      CHECK: func @contiguous_inner_most_view(%[[SRC:.+]]: memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>>
+
+//      CHECK: func @contiguous_inner_most(%[[SRC:.+]]: memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>>
 //      CHECK:   %[[SRC_0:.+]] = memref.subview %[[SRC]]
 // CHECK-SAME:    memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>> to memref<1x1x8xf32, strided<[3072, 8, 1], offset: ?>>
 //      CHECK:   %[[VEC:.+]] = vector.transfer_read %[[SRC_0]]
@@ -14,15 +19,61 @@ func.func @contiguous_inner_most_view(%in: memref<1x1x8x1xf32, strided<[3072, 8,
 //      CHECK:   %[[RESULT:.+]] = vector.shape_cast %[[VEC]]
 //      CHECK:   return %[[RESULT]]
 
+// Same as the top example within this split, but with the inner vector
+// dim scalable. Note that this example only makes sense when "8 = [8]" (i.e.
+// vscale = 1). This is assumed (implicitly) via the `in_bounds` attribute.
+
+func.func @contiguous_inner_most_scalable_inner_dim(%in: memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>>) -> vector<1x[8]x1xf32>{
+  %c0 = arith.constant 0 : index
+  %cst = arith.constant 0.0 : f32
+  %0 = vector.transfer_read %in[%c0, %c0, %c0, %c0], %cst {in_bounds = [true, true, true]} : memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>>, vector<1x[8]x1xf32>
+  return %0 : vector<1x[8]x1xf32>
+}
+
+//      CHECK: func @contiguous_inner_most_scalable_inner_dim(%[[SRC:.+]]: memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>>
+//      CHECK:   %[[SRC_0:.+]] = memref.subview %[[SRC]]
+// CHECK-SAME:    memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>> to memref<1x1x8xf32, strided<[3072, 8, 1], offset: ?>>
+//      CHECK:   %[[VEC:.+]] = vector.transfer_read %[[SRC_0]]
+// CHECK-SAME:    memref<1x1x8xf32, strided<[3072, 8, 1], offset: ?>>, vector<1x[8]xf32>
+//      CHECK:   %[[RESULT:.+]] = vector.shape_cast %[[VEC]]
+//      CHECK:   return %[[RESULT]]
+
+// Same as the top example within this split, but the trailing unit dim was
+// replaced with a dyn dim - not supported
+
+func.func @non_unit_trailing_dim(%in: memref<1x1x8x?xf32, strided<[3072, 8, 1, 1], offset: ?>>) -> vector<1x8x1xf32>{
+  %c0 = arith.constant 0 : index
+  %cst = arith.constant 0.0 : f32
+  %0 = vector.transfer_read %in[%c0, %c0, %c0, %c0], %cst {in_bounds = [true, true, true]} : memref<1x1x8x?xf32, strided<[3072, 8, 1, 1], offset: ?>>, vector<1x8x1xf32>
+  return %0 : vector<1x8x1xf32>
+}
+
+//  CHECK-LABEL: func @non_unit_trailing_dim
+//    CHECK-NOT: memref.subview
+//    CHECK-NOT: vector.shape_cast
+
+// Same as the top example within this split, but with a scalable unit dim in
+// the output vector - not supported
+
+func.func @negative_scalable_unit_dim(%in: memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>>) -> vector<1x8x[1]xf32>{
+  %c0 = arith.constant 0 : index
+  %cst = arith.constant 0.0 : f32
+  %0 = vector.transfer_read %in[%c0, %c0, %c0, %c0], %cst {in_bounds = [true, true, true]} : memref<1x1x8x1xf32, strided<[3072, 8, 1, 1], offset: ?>>, vector<1x8x[1]xf32>
+  return %0 : vector<1x8x[1]xf32>
+}
+//  CHECK-LABEL: func @negative_scalable_unit_dim
+//    CHECK-NOT: memref.subview
+//    CHECK-NOT: vector.shape_cast
+
 // -----
 
-func.func @contiguous_outer_dyn_inner_most_view(%a: index, %b: index, %memref: memref<?x?x8x1xf32>) -> vector<8x1xf32> {
+func.func @contiguous_inner_most_dynamic_outer(%a: index, %b: index, %memref: memref<?x?x8x1xf32>) -> vector<8x1xf32> {
   %c0 = arith.constant 0 : index
   %pad = arith.constant 0.0 : f32
   %v = vector.transfer_read %memref[%a, %b, %c0, %c0], %pad {in_bounds = [true, true]} : memref<?x?x8x1xf32>, vector<8x1xf32>
   return %v : vector<8x1xf32>
 }
-// CHECK: func.func @contiguous_outer_dyn_inner_most_view(
+// CHECK: func.func @contiguous_inner_most_dynamic_outer
 // CHECK-SAME:   %[[IDX0:[a-zA-Z0-9]+]]
 // CHECK-SAME:   %[[IDX1:[a-zA-Z0-9]+]]
 // CHECK-SAME:   %[[SRC:[a-zA-Z0-9]+]]
@@ -38,71 +89,171 @@ func.func @contiguous_outer_dyn_inner_most_view(%a: index, %b: index, %memref: m
 // CHECK:        %[[RESULT:.+]] = vector.shape_cast %[[VEC]]
 // CHECK:        return %[[RESULT]]
 
+// Same as the top example within this split, but with the outer vector
+// dim scalable. Note that this example only makes sense when "8 = [8]" (i.e.
+// vscale = 1). This is assumed (implicitly) via the `in_bounds` attribute.
+
+func.func @contiguous_inner_most_outer_dim_dyn_scalable_inner_dim(%a: index, %b: index, %memref: memref<?x?x8x1xf32>) -> vector<[8]x1xf32> {
+  %c0 = arith.constant 0 : index
+  %pad = arith.constant 0.0 : f32
+  %v = vector.transfer_read %memref[%a, %b, %c0, %c0], %pad {in_bounds = [true, true]} : memref<?x?x8x1xf32>, vector<[8]x1xf32>
+  return %v : vector<[8]x1xf32>
+}
+// CHECK-LABEL:  func @contiguous_inner_most_outer_dim_dyn_scalable_inner_dim
+// CHECK-SAME:   %[[IDX0:[a-zA-Z0-9]+]]
+// CHECK-SAME:   %[[IDX1:[a-zA-Z0-9]+]]
+// CHECK-SAME:   %[[SRC:[a-zA-Z0-9]+]]
+// CHECK:         %[[VIEW:.+]] = memref.subview %[[SRC]]{{.*}} memref<?x?x8x1xf32> to memref<?x?x8xf32, strided<[?, 8, 1], offset: ?>>
+// CHECK:         %[[VEC_READ:.+]] = vector.transfer_read %[[VIEW]]
+// CHECK-SAME:    {in_bounds = [true]}
+// CHECK-SAME:     memref<?x?x8xf32, strided<[?, 8, 1], offset: ?>>, vector<[8]xf32>
+// CHECK:         vector.shape_cast %[[VEC_READ]]
+
 // -----
 
-func.func @contiguous_inner_most_dim(%A: memref<16x1xf32>, %i:index, %j:index) -> (vector<8x1xf32>) {
+func.func @contiguous_inner_most_dim_non_zero_idx(%A: memref<16x1xf32>, %i:index) -> (vector<8x1xf32>) {
   %c0 = arith.constant 0 : index
   %f0 = arith.constant 0.0 : f32
-  %1 = vector.transfer_read %A[%i, %j], %f0 : memref<16x1xf32>, vector<8x1xf32>
+  %1 = vector.transfer_read %A[%i, %c0], %f0 : memref<16x1xf32>, vector<8x1xf32>
   return %1 : vector<8x1xf32>
 }
-//      CHECK: func @contiguous_inner_most_dim(%[[SRC:.+]]: memref<16x1xf32>, %[[I:.+]]: index, %[[J:.+]]: index) -> vector<8x1xf32>
+//      CHECK: func @contiguous_inner_most_dim_non_zero_idx(%[[SRC:.+]]: memref<16x1xf32>, %[[I:.+]]: index, %[[J:.+]]: index) -> vector<8x1xf32>
 //      CHECK:   %[[SRC_0:.+]] = memref.subview %[[SRC]]
 // CHECK-SAME:     memref<16x1xf32> to memref<16xf32, strided<[1]>>
 //      CHECK:   %[[V:.+]] = vector.transfer_read %[[SRC_0]]
-//      CHECK:   %[[RESULT]] = vector.shape_cast %[[V]] : vector<8xf32> to vector<8x1xf32>
+//      CHECK:   %[[RESULT:.+]] = vector.shape_cast %[[V]] : vector<8xf32> to vector<8x1xf32>
 //      CHECK:   return %[[RESULT]]
 
+// The index to be dropped is != 0 - this is currently not supported.
+func.func @negative_contiguous_inner_most_dim_non_zero_idxs(%A: memref<16x1xf32>, %i:index) -> (vector<8x1xf32>) {
+  %f0 = arith.constant 0.0 : f32
+  %1 = vector.transfer_read %A[%i, %i], %f0 : memref<16x1xf32>, vector<8x1xf32>
+  return %1 : vector<8x1xf32>
+}
+// CHECK-LABEL: func @negative_contiguous_inner_most_dim_non_zero_idxs
+// CHECK-NOT:     memref.subview
+// CHECK:         vector.transfer_read
+
+// Same as the top example within this split, but with the outer vector
+// dim scalable. Note that this example only makes sense when "8 = [8]" (i.e.
+// vscale = 1). This is assumed (implicitly) via the `in_bounds` attribute.
+
+func.func @contiguous_inner_most_dim_non_zero_idx_scalable_inner_dim(%A: memref<16x1xf32>, %i:index) -> (vector<[8]x1xf32>) {
+  %c0 = arith.constant 0 : index
+  %f0 = arith.constant 0.0 : f32
+  %1 = vector.transfer_read %A[%i, %c0], %f0 : memref<16x1xf32>, vector<[8]x1xf32>
+  return %1 : vector<[8]x1xf32>
+}
+// CHECK-LABEL: func @contiguous_inner_most_dim_non_zero_idxs_scalable_inner_dim(
+// CHECK-SAME:    %[[SRC:.+]]: memref<16x1xf32>, %[[I:.+]]: index, %[[J:.+]]: index) -> vector<[8]x1xf32>
+//       CHECK:   %[[SRC_0:.+]] = memref.subview %[[SRC]]
+//  CHECK-SAME:     memref<16x1xf32> to memref<16xf32, strided<[1]>>
+//       CHECK:   %[[V:.+]] = vector.transfer_read %[[SRC_0]]
+//       CHECK:   %[[RESULT:.+]] = vector.shape_cast %[[V]] : vector<[8]xf32> to vector<[8]x1xf32>
+//       CHECK:   return %[[RESULT]]
+
 // -----
 
-func.func @contiguous_inner_most_dim_bounds(%A: memref<1000x1xf32>, %i:index, %ii:index) -> (vector<4x1xf32>) {
+func.func @contiguous_inner_most_dim_with_subview(%A: memref<1000x1xf32>, %i:index, %ii:index) -> (vector<4x1xf32>) {
   %c0 = arith.constant 0 : index
   %cst = arith.constant 0.0 : f32
   %0 = memref.subview %A[%i, 0] [40, 1] [1, 1] : memref<1000x1xf32> to memref<40x1xf32, strided<[1, 1], offset: ?>>
   %1 = vector.transfer_read %0[%ii, %c0], %cst {in_bounds = [true, true]} : memref<40x1xf32, strided<[1, 1], offset: ?>>, vector<4x1xf32>
   return %1 : vector<4x1xf32>
 }
-//      CHECK: func @contiguous_inner_most_dim_bounds(%[[SRC:.+]]: memref<1000x1xf32>, %[[II:.+]]: index, %[[J:.+]]: index) -> vector<4x1xf32>
+//      CHECK: func @contiguous_inner_most_dim_with_subview(%[[SRC:.+]]: memref<1000x1xf32>, %[[II:.+]]: index, %[[J:.+]]: index) -> vector<4x1xf32>
 //      CHECK:   %[[SRC_0:.+]] = memref.subview %[[SRC]]
 //      CHECK:   %[[SRC_1:.+]] = memref.subview %[[SRC_0]]
 //      CHECK:   %[[V:.+]] = vector.transfer_read %[[SRC_1]]
 // CHECK-SAME:       {in_bounds = [true]}
 // CHECK-SAME:       vector<4xf32>
 
+// Same as the top example within this split, but with the outer vector
+// dim scalable. Note that this example only makes sense when "4 = [4]" (i.e.
+// vscale = 1). This is assumed (implicitly) via the `in_bounds` attribute.
+
+func.func @contiguous_inner_most_dim_with_subview_scalable_inner_dim(%A: memref<1000x1xf32>, %i:index, %ii:index) -> (vector<[4]x1xf32>) {
+  %c0 = arith.constant 0 : index
+  %cst = arith.constant 0.0 : f32
+  %0 = memref.subview %A[%i, 0] [40, 1] [1, 1] : memref<1000x1xf32> to memref<40x1xf32, strided<[1, 1], offset: ?>>
+  %1 = vector.transfer_read %0[%ii, %c0], %cst {in_bounds = [true, true]} : memref<40x1xf32, strided<[1, 1], offset: ?>>, vector<[4]x1xf32>
+  return %1 : vector<[4]x1xf32>
+}
+// CHECK-LABEL: func @contiguous_inner_most_dim_with_subview_scalable_inner_dim
+//  CHECK-SAME:   %[[SRC:.+]]: memref<1000x1xf32>
+//       CHECK:   %[[SRC_0:.+]] = memref.subview %[[SRC]]
+//       CHECK:   %[[V:.+]] = vector.transfer_read %[[SRC_0]]
+//  CHECK-SAME:       {in_bounds = [true]}
+//  CHECK-SAME:       vector<[4]xf32>
+
 // -----
 
-func.func @contiguous_inner_most_dim_bounds_2d(%A: memref<1000x1x1xf32>, %i:index, %ii:index) -> (vector<4x1x1xf32>) {
+func.func @contiguous_inner_most_dim_with_subview_2d(%A: memref<1000x1x1xf32>, %i:index, %ii:index) -> (vector<4x1x1xf32>) {
   %c0 = arith.constant 0 : index
   %cst = arith.constant 0.0 : f32
   %0 = memref.subview %A[%i, 0, 0] [40, 1, 1] [1, 1, 1] : memref<1000x1x1xf32> to memref<40x1x1xf32, strided<[1, 1, 1], offset: ?>>
   %1 = vector.transfer_read %0[%ii, %c0, %c0], %cst {in_bounds = [true, true, true]} : memref<40x1x1xf32, strided<[1, 1, 1], offset: ?>>, vector<4x1x1xf32>
   return %1 : vector<4x1x1xf32>
 }
-//      CHECK: func @contiguous_inner_most_dim_bounds_2d(%[[SRC:.+]]: memref<1000x1x1xf32>, %[[II:.+]]: index, %[[J:.+]]: index) -> vector<4x1x1xf32>
+//      CHECK: func @contiguous_inner_most_dim_with_subview_2d(%[[SRC:.+]]: memref<1000x1x1xf32>, %[[II:.+]]: index, %[[J:.+]]: index) -> vector<4x1x1xf32>
 //      CHECK:   %[[SRC_0:.+]] = memref.subview %[[SRC]]
 //      CHECK:   %[[SRC_1:.+]] = memref.subview %[[SRC_0]]
 //      CHECK:   %[[V:.+]] = vector.transfer_read %[[SRC_1]]
 // CHECK-SAME:       {in_bounds = [true]}
 // CHECK-SAME:       vector<4xf32>
 
+// Same as the top example within this split, but with the outer vector
+// dim scalable. Note that this example only makes sense when "4 = [4]" (i.e.
+// vscale = 1). This is assumed (implicitly) via the `in_bounds` attribute.
+
+func.func @contiguous_inner_most_dim_with_subview_2d_scalable_inner_dim(%A: memref<1000x1x1xf32>, %i:index, %ii:index) -> (vector<[4]x1x1xf32>) {
+  %c0 = arith.constant 0 : index
+  %cst = arith.constant 0.0 : f32
+  %0 = memref.subview %A[%i, 0, 0] [40, 1, 1] [1, 1, 1] : memref<1000x1x1xf32> to memref<40x1x1xf32, strided<[1, 1, 1], offset: ?>>
+  %1 = vector.transfer_read %0[%ii, %c0, %c0], %cst {in_bounds = [true, true, true]} : memref<40x1x1xf32, strided<[1, 1, 1], offset: ?>>, vector<[4]x1x1xf32>
+  return %1 : vector<[4]x1x1xf32>
+}
+// CHECK-LABEL: func @contiguous_inner_most_dim_with_subview_2d_scalable_inner_dim(
+//  CHECK-SAME:   %[[SRC:.+]]: memref<1000x1x1xf32>, %[[II:.+]]: index, %[[J:.+]]: index) -> vector<[4]x1x1xf32>
+//       CHECK:   %[[SRC_0:.+]] = memref.subview %[[SRC]]
+//       CHECK:   %[[SRC_1:.+]] = memref.subview %[[SRC_0]]
+//       CHECK:   %[[V:.+]] = vector.transfer_read %[[SRC_1]]
+//  CHECK-SAME:       {in_bounds = [true]}
+//  CHECK-SAME:       vector<[4]xf32>
+//       CHECK:  vector.shape_cast %[[V]]
+
 // -----
 
-func.func @contiguous_inner_most_dim_out_of_bounds_2d(%arg0: memref<1x1xf32>) -> vector<4x8xf32> {
+// NOTE: This is an out-of-bounds access.
+
+func.func @negative_non_unit_inner_vec_dim(%arg0: memref<4x1xf32>) -> vector<4x8xf32> {
   %c0 = arith.constant 0 : index
   %cst = arith.constant 0.000000e+00 : f32
-  %0 = vector.transfer_read %arg0[%c0, %c0], %cst : memref<1x1xf32>, vector<4x8xf32>
+  %0 = vector.transfer_read %arg0[%c0, %c0], %cst : memref<4x1xf32>, vector<4x8xf32>
   return %0 : vector<4x8xf32>
 }
-// The inner most unit dim can not be dropped. In this context, we do not
-// generate rank-reduced memref.subview ops.
-//      CHECK: func.func @contiguous_inner_most_dim_out_of_bounds_2d
-// CHECK-SAME:   %[[SRC:[a-zA-Z0-9]+]]
+//      CHECK: func.func @negative_non_unit_inner_vec_dim
+//  CHECK-NOT:   memref.subview
+//      CHECK:   vector.transfer_read
+
+// -----
+
+func.func @negative_non_unit_inner_memref_dim(%arg0: memref<4x8xf32>) -> vector<4x1xf32> {
+  %c0 = arith.constant 0 : index
+  %cst = arith.constant 0.000000e+00 : f32
+  %0 = vector.transfer_read %arg0[%c0, %c0], %cst : memref<4x8xf32>, vector<4x1xf32>
+  return %0 : vector<4x1xf32>
+}
+//      CHECK: func.func @negative_non_unit_inner_memref_dim
 //  CHECK-NOT:   memref.subview
-//      CHECK:   %[[READ:.+]] = vector.transfer_read %[[SRC]]
-//      CHECK:   return %[[READ]] : vector<4x8xf32>
+//      CHECK:   vector.transfer_read
 
 // -----
 
+//-----------------------------------------------------------------------------
+// 2. vector.transfer_write
+//-----------------------------------------------------------------------------
+
 func.func @drop_two_inner_most_dim_for_transfer_write(%arg0: memref<1x512x16x1x1xf32>, %arg1: vector<1x16x16x1x1xf32>, %arg2: index) {
   %c0 = arith.constant 0 : index
   vector.transfer_write %arg1, %arg0[%c0, %arg2, %c0, %c0, %c0]
@@ -177,21 +328,6 @@ func.func @non_unit_strides(%arg0: memref<512x16x1xf32, strided<[8192, 16, 4], o
 
 // -----
 
-func.func @leading_scalable_dimension_transfer_read(%dest : memref<24x1xf32>) -> vector<[4]x1xf32> {
-  %c0 = arith.constant 0 : index
-  %pad = arith.constant 0.0 : f32
-  %0 = vector.transfer_read %dest[%c0, %c0], %pad {in_bounds = [true, true]} : memref<24x1xf32>, vector<[4]x1xf32>
-  return %0 : vector<[4]x1xf32>
-}
-// CHECK:      func.func @leading_scalable_dimension_transfer_read
-// CHECK-SAME:   %[[DEST:[a-zA-Z0-9]+]]
-// CHECK:        %[[SUBVIEW:.+]] = memref.subview %[[DEST]][0, 0] [24, 1] [1, 1] : memref<24x1xf32> to memref<24xf32, strided<[1]>>
-// CHECK:        %[[READ:.+]] = vector.transfer_read %[[SUBVIEW]]{{.*}} {in_bounds = [true]} : memref<24xf32, strided<[1]>>, vector<[4]xf32>
-// CHECK:        %[[CAST:.+]] = vector.shape_cast %[[READ]] : vector<[4]xf32> to vector<[4]x1xf32>
-// CHECK:        return %[[CAST]]
-
-// -----
-
 // Negative test: [1] (scalable 1) is _not_ a unit dimension.
 func.func @trailing_scalable_one_dim_transfer_read(%dest : memref<24x1xf32>) -> vector<4x[1]xf32> {
   %c0 = arith.constant 0 : index

``````````

</details>


https://github.com/llvm/llvm-project/pull/94904


More information about the Mlir-commits mailing list