[Mlir-commits] [mlir] [mlir] Fix bugs in expand_shape patterns after semantics changes (PR #94631)

llvmlistbot at llvm.org llvmlistbot at llvm.org
Thu Jun 6 09:07:29 PDT 2024


https://github.com/Max191 updated https://github.com/llvm/llvm-project/pull/94631

>From 930a4d72e8d818af62744070c00cd667aaacbd9e Mon Sep 17 00:00:00 2001
From: Max Dawkins <max.dawkins at gmail.com>
Date: Thu, 6 Jun 2024 10:46:45 -0400
Subject: [PATCH 1/2] [mlir] Fix bugs in expand_shape patterns after semantics
 changes

---
 .../mlir/Dialect/Utils/ReshapeOpsUtils.h      | 56 ++++++++++++++----
 mlir/test/Dialect/Tensor/canonicalize.mlir    | 57 ++++++++++++++++++-
 2 files changed, 101 insertions(+), 12 deletions(-)

diff --git a/mlir/include/mlir/Dialect/Utils/ReshapeOpsUtils.h b/mlir/include/mlir/Dialect/Utils/ReshapeOpsUtils.h
index e8f6edc3f133e..3b986f4a60064 100644
--- a/mlir/include/mlir/Dialect/Utils/ReshapeOpsUtils.h
+++ b/mlir/include/mlir/Dialect/Utils/ReshapeOpsUtils.h
@@ -85,21 +85,55 @@ bool isReassociationValid(ArrayRef<AffineMap> reassociation,
 template <typename ReshapeOpTy, typename InverseReshapeOpTy>
 static OpFoldResult foldReshapeOp(ReshapeOpTy reshapeOp,
                                   ArrayRef<Attribute> operands) {
-
+  // Fold identity reshape.
   if (reshapeOp.getSrcType() == reshapeOp.getType())
     return reshapeOp.getSrc();
 
-  // Fold producer-consumer reshape ops where the operand type of the
-  // producer is same as the return type of the consumer.
-  auto reshapeSrcOp =
-      reshapeOp.getSrc().template getDefiningOp<InverseReshapeOpTy>();
-  if (reshapeSrcOp && reshapeSrcOp.getSrcType() == reshapeOp.getResultType())
-    return reshapeSrcOp.getSrc();
-
   // Reshape of a constant can be replaced with a new constant.
   if (auto elements = dyn_cast_or_null<DenseElementsAttr>(operands.front()))
     return elements.reshape(cast<ShapedType>(reshapeOp.getResult().getType()));
 
+  // Fold if the producer reshape source has the same shape with at most 1
+  // dynamic dimension.
+  auto reshapeSrcOp =
+      reshapeOp.getSrc().template getDefiningOp<InverseReshapeOpTy>();
+  if (!reshapeSrcOp)
+    return nullptr;
+  auto srcType = reshapeSrcOp.getSrcType();
+  auto resultType = reshapeOp.getResultType();
+  if (srcType != resultType)
+    return nullptr;
+
+  // If the reshapes are expanding and then collapsing, the ops can be folded
+  // despite multiple dynamic dimensions.
+  if (srcType.getRank() < reshapeSrcOp.getResultType().getRank())
+    return reshapeSrcOp.getSrc();
+  // Otherwise, only 1 dynamic dimension is allowed.
+  if (srcType == resultType &&
+      llvm::count_if(srcType.getShape(), ShapedType::isDynamic) < 2) {
+    return reshapeSrcOp.getSrc();
+  }
+
+  // Fold producer-consumer reshape ops when they are perfect inverses of each
+  // other:
+  //   1) Reassociation indices are equivalent.
+  //   2) Boundary types are equivalent.
+  //   3) No reassociations have more than 1 dynamic dimension, and reassociated
+  //      shapes are equal for each reassociation.
+  auto reassociations = reshapeOp.getReassociationIndices();
+  auto inverseReassociations = reshapeSrcOp.getReassociationIndices();
+  if (reassociations != inverseReassociations)
+    return nullptr;
+  ArrayRef<int64_t> expandedSrcShape = srcType.getShape();
+  ArrayRef<int64_t> expandedResultShape = resultType.getShape();
+  if (llvm::none_of(reassociations, [&](auto reInd) {
+        auto srcSlice = expandedSrcShape.slice(reInd.front(), reInd.size());
+        auto resSlice = expandedResultShape.slice(reInd.front(), reInd.size());
+        return srcSlice == resSlice &&
+               llvm::count_if(srcSlice, ShapedType::isDynamic) > 1;
+      })) {
+    return reshapeSrcOp.getSrc();
+  }
   return nullptr;
 }
 
@@ -360,10 +394,12 @@ struct ComposeExpandOfCollapseOp : public OpRewritePattern<ExpandOpTy> {
           resultShape.slice(resultIndices.front(), resultIndices.size());
 
       if (srcSubShape.size() == resultSubShape.size()) {
-        if (srcSubShape == resultSubShape)
+        if (srcSubShape == resultSubShape &&
+            llvm::count_if(srcSubShape, ShapedType::isDynamic) < 2) {
           composedReassociation.push_back(srcIndices);
-        else
+        } else {
           return std::nullopt;
+        }
       }
 
       // Find reassociation to collapse `srcSubShape` into `resultSubShape`.
diff --git a/mlir/test/Dialect/Tensor/canonicalize.mlir b/mlir/test/Dialect/Tensor/canonicalize.mlir
index f7fbd3834288b..4a04d37d4be29 100644
--- a/mlir/test/Dialect/Tensor/canonicalize.mlir
+++ b/mlir/test/Dialect/Tensor/canonicalize.mlir
@@ -1139,7 +1139,7 @@ func.func @fold_collapse_of_expand(%arg0 : tensor<12x4xf32>) -> tensor<12x4xf32>
   return %1 : tensor<12x4xf32>
 }
 // CHECK-LABEL: @fold_collapse_of_expand
-//   CHECK-NOT:   linalg.{{.*}}shape
+//   CHECK-NOT:   tensor.{{.*}}_shape
 
 // -----
 
@@ -1152,7 +1152,60 @@ func.func @fold_collapse_of_expand_dynamic(%arg0 : tensor<?x?xf32>, %arg1: index
   return %1 : tensor<?x?xf32>
 }
 // CHECK-LABEL: @fold_collapse_of_expand_dynamic
-//   CHECK-NOT:   linalg.{{.*}}_shape
+//   CHECK-NOT:   tensor.{{.*}}_shape
+
+// -----
+
+func.func @fold_collapse_of_expand_fully_dynamic(%arg0 : tensor<?x?xf32>, %arg1: index, %arg2: index, %arg3: index)
+    -> tensor<?x?xf32> {
+  %0 = tensor.expand_shape %arg0 [[0, 1], [2]] output_shape [%arg1, %arg2, %arg3]
+      : tensor<?x?xf32> into tensor<?x?x?xf32>
+  %1 = tensor.collapse_shape %0 [[0, 1], [2]]
+      : tensor<?x?x?xf32> into tensor<?x?xf32>
+  return %1 : tensor<?x?xf32>
+}
+// CHECK-LABEL: @fold_collapse_of_expand_fully_dynamic
+//   CHECK-NOT:   tensor.{{.*}}_shape
+
+// -----
+
+func.func @fold_expand_of_collapse(%arg0 : tensor<3x4x4xf32>) -> tensor<3x4x4xf32> {
+  %0 = tensor.collapse_shape %arg0 [[0, 1], [2]]
+      : tensor<3x4x4xf32> into tensor<12x4xf32>
+  %1 = tensor.expand_shape %0 [[0, 1], [2]] output_shape [3, 4, 4]
+      : tensor<12x4xf32> into tensor<3x4x4xf32>
+  return %1 : tensor<3x4x4xf32>
+}
+// CHECK-LABEL: @fold_expand_of_collapse
+//   CHECK-NOT:   tensor.{{.*}}_shape
+
+// -----
+
+func.func @fold_expand_of_collapse_dynamic(%arg0 : tensor<?x4x?xf32>, %arg1: index, %arg2: index)
+    -> tensor<?x4x?xf32> {
+  %0 = tensor.collapse_shape %arg0 [[0, 1], [2]]
+      : tensor<?x4x?xf32> into tensor<?x?xf32>
+  %1 = tensor.expand_shape %0 [[0, 1], [2]] output_shape [%arg1, 4, %arg2]
+      : tensor<?x?xf32> into tensor<?x4x?xf32>
+  return %1 : tensor<?x4x?xf32>
+}
+// CHECK-LABEL: @fold_expand_of_collapse_dynamic
+//   CHECK-NOT:   tensor.{{.*}}_shape
+
+// -----
+
+func.func @no_fold_expand_of_collapse_dynamic(%arg0 : tensor<?x?x?xf32>, %arg1: index, %arg2: index, %arg3: index)
+    -> tensor<?x?x?xf32> {
+  %0 = tensor.collapse_shape %arg0 [[0, 1], [2]]
+      : tensor<?x?x?xf32> into tensor<?x?xf32>
+  %1 = tensor.expand_shape %0 [[0, 1], [2]] output_shape [%arg1, %arg2, %arg3]
+      : tensor<?x?xf32> into tensor<?x?x?xf32>
+  return %1 : tensor<?x?x?xf32>
+}
+// CHECK-LABEL: @no_fold_expand_of_collapse_dynamic
+//       CHECK:   tensor.collapse_shape
+//       CHECK:   %[[EXPAND:.+]] = tensor.expand_shape
+//       CHECK:   return %[[EXPAND]]
 
 // -----
 

>From 0536c7ec051aa8b2d6b2b9cc04a54a2d5bcfdb8d Mon Sep 17 00:00:00 2001
From: Max Dawkins <max.dawkins at gmail.com>
Date: Thu, 6 Jun 2024 12:07:17 -0400
Subject: [PATCH 2/2] fix bug

---
 mlir/include/mlir/Dialect/Utils/ReshapeOpsUtils.h |  9 ++++-----
 mlir/test/Dialect/Tensor/canonicalize.mlir        | 15 +++++++++++++++
 2 files changed, 19 insertions(+), 5 deletions(-)

diff --git a/mlir/include/mlir/Dialect/Utils/ReshapeOpsUtils.h b/mlir/include/mlir/Dialect/Utils/ReshapeOpsUtils.h
index 3b986f4a60064..31a23be26d5a7 100644
--- a/mlir/include/mlir/Dialect/Utils/ReshapeOpsUtils.h
+++ b/mlir/include/mlir/Dialect/Utils/ReshapeOpsUtils.h
@@ -104,11 +104,6 @@ static OpFoldResult foldReshapeOp(ReshapeOpTy reshapeOp,
   if (srcType != resultType)
     return nullptr;
 
-  // If the reshapes are expanding and then collapsing, the ops can be folded
-  // despite multiple dynamic dimensions.
-  if (srcType.getRank() < reshapeSrcOp.getResultType().getRank())
-    return reshapeSrcOp.getSrc();
-  // Otherwise, only 1 dynamic dimension is allowed.
   if (srcType == resultType &&
       llvm::count_if(srcType.getShape(), ShapedType::isDynamic) < 2) {
     return reshapeSrcOp.getSrc();
@@ -124,6 +119,10 @@ static OpFoldResult foldReshapeOp(ReshapeOpTy reshapeOp,
   auto inverseReassociations = reshapeSrcOp.getReassociationIndices();
   if (reassociations != inverseReassociations)
     return nullptr;
+  // If the reshapes are expanding and then collapsing, the ops can be folded
+  // despite multiple dynamic dimensions.
+  if (srcType.getRank() < reshapeSrcOp.getResultType().getRank())
+    return reshapeSrcOp.getSrc();
   ArrayRef<int64_t> expandedSrcShape = srcType.getShape();
   ArrayRef<int64_t> expandedResultShape = resultType.getShape();
   if (llvm::none_of(reassociations, [&](auto reInd) {
diff --git a/mlir/test/Dialect/Tensor/canonicalize.mlir b/mlir/test/Dialect/Tensor/canonicalize.mlir
index 4a04d37d4be29..9a6b03986ccb6 100644
--- a/mlir/test/Dialect/Tensor/canonicalize.mlir
+++ b/mlir/test/Dialect/Tensor/canonicalize.mlir
@@ -1169,6 +1169,21 @@ func.func @fold_collapse_of_expand_fully_dynamic(%arg0 : tensor<?x?xf32>, %arg1:
 
 // -----
 
+func.func @no_fold_parallel_collapse_of_expand_dynamic(%arg0 : tensor<?x?x?xf32>, %arg1: index, %arg2: index, %arg3: index, %arg4: index)
+    -> tensor<?x?x?xf32> {
+  %0 = tensor.expand_shape %arg0 [[0, 1], [2], [3]] output_shape [%arg1, %arg2, %arg3, %arg4]
+      : tensor<?x?x?xf32> into tensor<?x?x?x?xf32>
+  %1 = tensor.collapse_shape %0 [[0], [1], [2, 3]]
+      : tensor<?x?x?x?xf32> into tensor<?x?x?xf32>
+  return %1 : tensor<?x?x?xf32>
+}
+// CHECK-LABEL: @no_fold_parallel_collapse_of_expand_dynamic
+//       CHECK:   tensor.expand_shape
+//       CHECK:   %[[COLLAPSE:.+]] = tensor.collapse_shape
+//       CHECK:   return %[[COLLAPSE]]
+
+// -----
+
 func.func @fold_expand_of_collapse(%arg0 : tensor<3x4x4xf32>) -> tensor<3x4x4xf32> {
   %0 = tensor.collapse_shape %arg0 [[0, 1], [2]]
       : tensor<3x4x4xf32> into tensor<12x4xf32>



More information about the Mlir-commits mailing list