[Mlir-commits] [mlir] 2b2ce50 - [MLIR][SCF] Add an API to fuse consumer to a producer within scf loop (#88712)

llvmlistbot at llvm.org llvmlistbot at llvm.org
Sat Jun 1 11:23:45 PDT 2024


Author: Abhishek Varma
Date: 2024-06-01T11:23:41-07:00
New Revision: 2b2ce50fe843b5b550806a0ab15b06cd5c405d48

URL: https://github.com/llvm/llvm-project/commit/2b2ce50fe843b5b550806a0ab15b06cd5c405d48
DIFF: https://github.com/llvm/llvm-project/commit/2b2ce50fe843b5b550806a0ab15b06cd5c405d48.diff

LOG: [MLIR][SCF] Add an API to fuse consumer to a producer within scf loop (#88712)

This commit adds an API (`tileAndFuseConsumerOfSlice`) to fuse consumer to a producer within
scf.for/scf.forall loop.

To support this two new methods are added to the `TilingInterface`
- `getIterationDomainTileFromOperandTile`
- `getTiledImplementationFromOperandTile`.

Consumer operations that implement this method can be used to be fused with tiled producer operands in a manner similar to (but essentially the inverse of) the fusion of an untiled producer with a tiled consumer.

Note that this only does one `tiled producer` -> `consumer` fusion. This could be called repeatedly for fusing multiple consumers. The current implementation also is conservative in when this kicks in (like single use of the value returned by the inter-tile loops that surround the tiled producer, etc.) These can be relaxed over time.

Signed-off-by: Abhishek Varma <abhvarma at amd.com>

---------

Signed-off-by: Abhishek Varma <abhvarma at amd.com>
Signed-off-by: Abhishek Varma <avarma094 at gmail.com>
Co-authored-by: cxy <chenxunyu1993 at gmail.com>

Added: 
    mlir/test/Interfaces/TilingInterface/tile-and-fuse-consumer.mlir

Modified: 
    mlir/include/mlir/Dialect/SCF/Transforms/TileUsingInterface.h
    mlir/include/mlir/Dialect/Tensor/Transforms/Transforms.h
    mlir/include/mlir/Interfaces/TilingInterface.td
    mlir/lib/Dialect/Linalg/Transforms/TilingInterfaceImpl.cpp
    mlir/lib/Dialect/SCF/Transforms/TileUsingInterface.cpp
    mlir/lib/Dialect/Tensor/IR/TensorTilingInterfaceImpl.cpp
    mlir/lib/Dialect/Tensor/Transforms/SwapExtractSliceWithProducerPatterns.cpp
    mlir/test/lib/Interfaces/TilingInterface/TestTilingInterfaceTransformOps.cpp
    mlir/test/lib/Interfaces/TilingInterface/TestTilingInterfaceTransformOps.td

Removed: 
    


################################################################################
diff  --git a/mlir/include/mlir/Dialect/SCF/Transforms/TileUsingInterface.h b/mlir/include/mlir/Dialect/SCF/Transforms/TileUsingInterface.h
index 6d567171e185a..dac79111af3c9 100644
--- a/mlir/include/mlir/Dialect/SCF/Transforms/TileUsingInterface.h
+++ b/mlir/include/mlir/Dialect/SCF/Transforms/TileUsingInterface.h
@@ -14,6 +14,7 @@
 #include "mlir/IR/PatternMatch.h"
 #include "mlir/Interfaces/LoopLikeInterface.h"
 #include "mlir/Interfaces/TilingInterface.h"
+#include "mlir/Interfaces/ViewLikeInterface.h"
 
 #include <deque>
 
@@ -239,6 +240,19 @@ tileConsumerAndFuseProducersUsingSCF(RewriterBase &rewriter,
                                      TilingInterface consumer,
                                      const SCFTileAndFuseOptions &options);
 
+/// Fuse the consumer of the source of `candidateSliceOp` by computing the
+/// required slice of the consumer in-place.  Note that the method
+/// replaces the uses of `candidateSliceOp` with the tiled and fused consumer
+/// value but does not delete the slice operation.
+struct SCFFuseConsumerOfSliceResult {
+  OpOperand *origConsumerOperand; // Original untiled consumer's operand.
+  OpOperand
+      *tiledAndFusedConsumerOperand; // Tiled and fused consumer's operand.
+  SmallVector<Operation *> tiledOps;
+};
+FailureOr<scf::SCFFuseConsumerOfSliceResult>
+tileAndFuseConsumerOfSlice(RewriterBase &rewriter, Operation *candidateSliceOp);
+
 /// Method to lower an `op` that implements the `TilingInterface` to
 /// loops/scalars.
 FailureOr<SmallVector<scf::ForOp>>

diff  --git a/mlir/include/mlir/Dialect/Tensor/Transforms/Transforms.h b/mlir/include/mlir/Dialect/Tensor/Transforms/Transforms.h
index dd6b0e8682564..7dabc266c023b 100644
--- a/mlir/include/mlir/Dialect/Tensor/Transforms/Transforms.h
+++ b/mlir/include/mlir/Dialect/Tensor/Transforms/Transforms.h
@@ -11,6 +11,7 @@
 
 #include "mlir/Dialect/Tensor/IR/Tensor.h"
 #include "mlir/IR/PatternMatch.h"
+#include "mlir/Interfaces/ViewLikeInterface.h"
 
 namespace mlir {
 
@@ -22,7 +23,7 @@ namespace tensor {
 // Patterns
 //===----------------------------------------------------------------------===//
 
-/// Pattern to swap an `tensor.extract_slice` with its producer when the
+/// Method to swap an `tensor.extract_slice` with its producer when the
 /// producer implements the `TilingInterface`. The pattern itself does not
 /// provide a mechanism to control where the application happens. With use of
 /// transform dialect that control is done within the transform dialect. Other
@@ -30,6 +31,13 @@ namespace tensor {
 FailureOr<TilingResult> replaceExtractSliceWithTiledProducer(
     OpBuilder &builder, tensor::ExtractSliceOp sliceOp, OpResult producerOp);
 
+/// Method to swap an `tensor.insert_slice` with its consumer when the
+/// consumer implements the `TilingInterface`.
+FailureOr<TilingResult>
+replaceInsertSliceWithTiledConsumer(OpBuilder &builder,
+                                    OffsetSizeAndStrideOpInterface sliceOp,
+                                    OpOperand &consumerOp);
+
 //===----------------------------------------------------------------------===//
 // Populate functions.
 //===----------------------------------------------------------------------===//

diff  --git a/mlir/include/mlir/Interfaces/TilingInterface.td b/mlir/include/mlir/Interfaces/TilingInterface.td
index 14d775d986d20..bc83c81c0086c 100644
--- a/mlir/include/mlir/Interfaces/TilingInterface.td
+++ b/mlir/include/mlir/Interfaces/TilingInterface.td
@@ -63,7 +63,7 @@ def TilingInterface : OpInterface<"TilingInterface"> {
           The method returns the operation that is the tiled
           implementation.
         }],
-        /*retType=*/"FailureOr<TilingResult>",
+        /*retType=*/"FailureOr<::mlir::TilingResult>",
         /*methodName=*/"getTiledImplementation",
         /*args=*/(ins
             "OpBuilder &":$b,
@@ -82,7 +82,7 @@ def TilingInterface : OpInterface<"TilingInterface"> {
           by the tiled implementation. Expects the same `offsets` and `sizes` as
           used to obtain the tiled implementation of the operation.
         }],
-        /*retType=*/"LogicalResult",
+        /*retType=*/"::mlir::LogicalResult",
         /*methodName=*/"getResultTilePosition",
         /*args=*/(ins
           "OpBuilder &":$b,
@@ -96,6 +96,25 @@ def TilingInterface : OpInterface<"TilingInterface"> {
           return failure();
         }]
       >,
+      InterfaceMethod<
+        /*desc=*/[{
+          Method to return the tile of the iteration domain where
+          values from the given tile of the operand are used.
+        }],
+        /*retType=*/"::mlir::LogicalResult",
+        /*methodName=*/"getIterationDomainTileFromOperandTile",
+        /*args=*/(ins
+          "OpBuilder &":$b,
+          "unsigned":$operandNumber,
+          "ArrayRef<OpFoldResult> ":$offsets,
+          "ArrayRef<OpFoldResult> ":$sizes,
+          "SmallVectorImpl<OpFoldResult> &":$iterDomainOffsets,
+          "SmallVectorImpl<OpFoldResult> &":$iterDomainSizes),
+        /*methodBody=*/"",
+        /*defaultImplementation=*/[{
+          return failure();
+        }]
+      >,
       InterfaceMethod<
         /*desc=*/[{
           Method to generate the code that produces a tile of the result.
@@ -119,7 +138,7 @@ def TilingInterface : OpInterface<"TilingInterface"> {
             iteration space).
           - `sizes` provides the size of the tile.
         }],
-        /*retType=*/"FailureOr<TilingResult>",
+        /*retType=*/"FailureOr<::mlir::TilingResult>",
         /*methodName=*/"generateResultTileValue",
         /*args=*/(ins
           "OpBuilder &":$b,
@@ -131,6 +150,45 @@ def TilingInterface : OpInterface<"TilingInterface"> {
           return failure();
         }]
       >,
+      InterfaceMethod<
+        /*desc=*/[{
+          Method to generate the tiled implementation of an operation from
+          operand tile position.
+
+          NOTE: For most operations, this should be a trivial composition of
+          getIterationDomainTileFromOperandTile and getTiledImplementation.
+
+          Generates the IR that computes the tiled implementation of an
+          operation from operand tile.  The `offsets` and `sizes`
+          describe the tile of the operand required. This is 
diff erent from
+          `getTiledImplementation` which generates the tiled
+          implementation of the operation given a tile of the
+          iteration space. This method generates a tiled
+          implementation of the operation based on the tile of the
+          operand required. This method enables consumer fusion by using
+          tile and fuse. The method returns failure if the operation
+          can't be tiled to generate the operand tile. In practical terms
+          this implies it cannot be tiled and fused with its producers.
+
+          - `offsets` provides the offset of the tile in the coordinate system
+            of the original iteration space, i.e., if an iteration space
+            dimension had non-zero offset, it must be included in the offset
+            provided here (as opposed to zero-based offset "relative" to the
+            iteration space).
+          - `sizes` provides the size of the tile.
+        }],
+        /*retType=*/"FailureOr<::mlir::TilingResult>",
+        /*methodName=*/"getTiledImplementationFromOperandTile",
+        /*args=*/(ins
+          "OpBuilder &":$b,
+          "unsigned":$operandNumber,
+          "ArrayRef<OpFoldResult>":$offsets,
+          "ArrayRef<OpFoldResult>":$sizes),
+        /*methodBody=*/"",
+        /*defaultImplementation=*/[{
+          return failure();
+        }]
+      >,
       InterfaceMethod<
         /*desc=*/[{
           Generates the scalar implementation of the operation.
@@ -142,7 +200,7 @@ def TilingInterface : OpInterface<"TilingInterface"> {
           transformations are done, this method can be used to lower to scalar
           code that can then be lowered to LLVM or SPIR-V dialects.
         }],
-        /*retType=*/"LogicalResult",
+        /*retType=*/"::mlir::LogicalResult",
         /*methodName=*/"generateScalarImplementation",
         /*args=*/(ins
             "OpBuilder &":$b,

diff  --git a/mlir/lib/Dialect/Linalg/Transforms/TilingInterfaceImpl.cpp b/mlir/lib/Dialect/Linalg/Transforms/TilingInterfaceImpl.cpp
index f512be46cc13d..c3ab3cecfada7 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/TilingInterfaceImpl.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/TilingInterfaceImpl.cpp
@@ -110,7 +110,7 @@ struct LinalgOpTilingInterface
         }));
   }
 
-  // Instantiate the tiled implementation of the operation.
+  /// Instantiate the tiled implementation of the operation.
   FailureOr<TilingResult>
   getTiledImplementation(Operation *op, OpBuilder &b,
                          ArrayRef<OpFoldResult> offsets,
@@ -132,8 +132,63 @@ struct LinalgOpTilingInterface
     return TilingResult{{tiledOp}, SmallVector<Value>(tiledOp->getResults())};
   }
 
-  // Return the details of the output tile generated by the tiled
-  // implementation.
+  /// Utility to fetch the offsets and sizes when applied as per the indexing
+  /// map of the linalg op. This helps in fusing the linalg op as a consumer of
+  /// a given slice op.
+  void
+  getMappedOffsetAndSize(LinalgOp linalgOp, OpBuilder &b, AffineMap indexingMap,
+                         ArrayRef<OpFoldResult> offsets,
+                         ArrayRef<OpFoldResult> sizes,
+                         SmallVectorImpl<OpFoldResult> &mappedOffsets,
+                         SmallVectorImpl<OpFoldResult> &mappedSizes) const {
+    unsigned numLoops = linalgOp.getNumLoops();
+    auto tilingInterfaceOp = cast<TilingInterface>(linalgOp.getOperation());
+    mappedOffsets.resize(numLoops);
+    mappedSizes.resize(numLoops);
+    if (!indexingMap.isPermutation()) {
+      SmallVector<Range> iterationDomain =
+          tilingInterfaceOp.getIterationDomain(b);
+      for (const auto &&[index, value] : llvm::enumerate(iterationDomain)) {
+        mappedOffsets[index] = value.offset;
+        mappedSizes[index] = value.size;
+      }
+    }
+    for (const auto &&[index, value] :
+         llvm::enumerate(indexingMap.getResults())) {
+      unsigned dimPosition = cast<AffineDimExpr>(value).getPosition();
+      mappedOffsets[dimPosition] = offsets[index];
+      mappedSizes[dimPosition] = sizes[index];
+    }
+  }
+
+  /// Method to return the position of the result tile computed by the tiled
+  /// operation.
+  LogicalResult getIterationDomainTileFromOperandTile(
+      Operation *op, OpBuilder &b, unsigned operandNumber,
+      ArrayRef<OpFoldResult> offsets, ArrayRef<OpFoldResult> sizes,
+      SmallVectorImpl<OpFoldResult> &iterDomainOffsets,
+      SmallVectorImpl<OpFoldResult> &iterDomainSizes) const {
+    auto linalgOp = cast<LinalgOp>(op);
+
+    // Check that the indexing map used for the operand is a projected
+    // permutation. This could be relaxed with a more general approach that can
+    // map the offsets and sizes from the operand to iteration space tiles
+    // (filling in full extent for dimensions not used to access the result).
+    AffineMap indexingMap =
+        linalgOp.getMatchingIndexingMap(&op->getOpOperand(operandNumber));
+    if (!indexingMap.isProjectedPermutation()) {
+      return op->emitError()
+             << "unhandled get iter domain position when operand is not "
+                "accessed using a permuted projection";
+    }
+
+    getMappedOffsetAndSize(linalgOp, b, indexingMap, offsets, sizes,
+                           iterDomainOffsets, iterDomainSizes);
+    return success();
+  }
+
+  /// Return the details of the output tile generated by the tiled
+  /// implementation.
   LogicalResult
   getResultTilePosition(Operation *op, OpBuilder &b, unsigned resultNumber,
                         ArrayRef<OpFoldResult> offsets,
@@ -177,29 +232,16 @@ struct LinalgOpTilingInterface
           "unhandled tiled implementation generation when result is not "
           "accessed using a permuted projection");
     }
-
-    auto numLoops = linalgOp.getNumLoops();
+    SmallVector<OpFoldResult> mappedOffsets, mappedSizes;
+    getMappedOffsetAndSize(linalgOp, b, indexingMap, offsets, sizes,
+                           mappedOffsets, mappedSizes);
     auto tilingInterfaceOp = cast<TilingInterface>(op);
-    SmallVector<OpFoldResult> iterationTileOffsets(numLoops),
-        iterationTileSizes(numLoops);
-    if (!indexingMap.isPermutation()) {
-      SmallVector<Range> iterationDomain =
-          tilingInterfaceOp.getIterationDomain(b);
-      for (const auto &range : llvm::enumerate(iterationDomain)) {
-        iterationTileOffsets[range.index()] = range.value().offset;
-        iterationTileSizes[range.index()] = range.value().size;
-      }
-    }
-    for (const auto &resultExpr : llvm::enumerate(indexingMap.getResults())) {
-      unsigned dimPosition =
-          cast<AffineDimExpr>(resultExpr.value()).getPosition();
-      iterationTileOffsets[dimPosition] = offsets[resultExpr.index()];
-      iterationTileSizes[dimPosition] = sizes[resultExpr.index()];
-    }
-
     FailureOr<TilingResult> tilingResult =
-        tilingInterfaceOp.getTiledImplementation(b, iterationTileOffsets,
-                                                 iterationTileSizes);
+        tilingInterfaceOp.getTiledImplementation(b, mappedOffsets, mappedSizes);
+
+    if (failed(tilingResult))
+      return failure();
+
     if (tilingResult->tiledOps.size() != 1)
       return op->emitOpError("failed to generate tiled implementation");
 
@@ -208,6 +250,20 @@ struct LinalgOpTilingInterface
         SmallVector<Value>{tilingResult->tiledValues[resultNumber]}};
   }
 
+  /// Method to generate the tiled implementation of an operation from the tile
+  /// of the operand.
+  FailureOr<TilingResult> getTiledImplementationFromOperandTile(
+      Operation *op, OpBuilder &b, unsigned operandNumber,
+      ArrayRef<OpFoldResult> offsets, ArrayRef<OpFoldResult> sizes) const {
+    SmallVector<OpFoldResult> mappedOffsets, mappedSizes;
+    if (failed(getIterationDomainTileFromOperandTile(
+            op, b, operandNumber, offsets, sizes, mappedOffsets,
+            mappedSizes))) {
+      return failure();
+    }
+    return getTiledImplementation(op, b, mappedOffsets, mappedSizes);
+  }
+
   LogicalResult generateScalarImplementation(Operation *op, OpBuilder &builder,
                                              Location loc,
                                              ValueRange ivs) const {

diff  --git a/mlir/lib/Dialect/SCF/Transforms/TileUsingInterface.cpp b/mlir/lib/Dialect/SCF/Transforms/TileUsingInterface.cpp
index a72dafe725177..a54edf5e72e78 100644
--- a/mlir/lib/Dialect/SCF/Transforms/TileUsingInterface.cpp
+++ b/mlir/lib/Dialect/SCF/Transforms/TileUsingInterface.cpp
@@ -16,9 +16,11 @@
 #include "mlir/Dialect/Arith/IR/Arith.h"
 #include "mlir/Dialect/Arith/Utils/Utils.h"
 #include "mlir/Dialect/Func/IR/FuncOps.h"
+#include "mlir/Dialect/Linalg/IR/Linalg.h"
 #include "mlir/Dialect/SCF/Utils/Utils.h"
 #include "mlir/Dialect/Tensor/IR/Tensor.h"
 #include "mlir/Dialect/Utils/IndexingUtils.h"
+#include "mlir/IR/Dominance.h"
 #include "mlir/IR/Matchers.h"
 #include "mlir/IR/PatternMatch.h"
 #include "mlir/Interfaces/DestinationStyleOpInterface.h"
@@ -1098,6 +1100,412 @@ mlir::scf::tileConsumerAndFuseProducersUsingSCF(
                                    replacements};
 }
 
+//===----------------------------------------------------------------------===//
+// tileAndFuseConsumerUsingSCF implementation.
+//===----------------------------------------------------------------------===//
+
+/// A utility function that checks whether the only use of the result of a
+/// tensor.insert_slice op is in a scf.yield op.
+static LogicalResult
+checkAssumptionForFusingConsumer(tensor::InsertSliceOp candidateSliceOp) {
+  Value result = candidateSliceOp.getResult();
+  Value::use_range uses = result.getUses();
+  if (!llvm::hasSingleElement(uses)) {
+    LLVM_DEBUG(llvm::dbgs() << "Too many uses of the candidate slice op\n");
+    return failure();
+  }
+  OpOperand &operandUse = (*uses.begin());
+  Operation *userOp = operandUse.getOwner();
+  if (!isa<scf::YieldOp>(userOp)) {
+    LLVM_DEBUG(llvm::dbgs()
+               << "Expected scf.yield to be the only user, but got -> "
+               << (*userOp));
+    return failure();
+  }
+  if (result.getDefiningOp()->getBlock() != userOp->getBlock()) {
+    LLVM_DEBUG(llvm::dbgs() << "Expected tensor.insert_slice and scf.yield to "
+                               "be in the same block\n");
+    return failure();
+  }
+  return success();
+}
+
+/// Fetches the OpOperand of the only user (and use) of the value `val` which
+/// implements `TilingInterface` and `DestinationStyleOpInterface`. Returns
+/// failure otherwise.
+static FailureOr<OpOperand *> getConsumerFromUses(Value val,
+                                                  Block *containingOpBlock) {
+  // Step 1. Check that the value has exactly one use.
+  if (!llvm::hasSingleElement(val.getUses()))
+    return failure();
+  // Step 2. Get uses.
+  OpOperand &operand = (*val.getUses().begin());
+  Operation *consumerOp = operand.getOwner();
+  // TODO: We have to init result of consumer before scf.for, use
+  //       DestinationStyleOpInterface to get result shape from init for now.
+  //       Add support for other op such as op has InferTypeOpInterface.
+  if (!isa<TilingInterface>(consumerOp) ||
+      !isa<DestinationStyleOpInterface>(consumerOp))
+    return failure();
+  if (containingOpBlock != consumerOp->getBlock())
+    return failure();
+  return &operand;
+}
+
+/// Fetch the untiled consumer of a scf.for's result which is yielded by a
+/// tensor.insert_slice. This function makes the following assumptions :
+/// 1.  tensor.insert_slice has scf.yield as its only user.
+/// 2.  scf.for's corresponding result has only one use.
+static FailureOr<OpOperand *>
+getUntiledConsumerFromSlice(tensor::InsertSliceOp candidateSliceOp) {
+  if (failed(checkAssumptionForFusingConsumer(candidateSliceOp)))
+    return failure();
+  Value sliceResult = candidateSliceOp.getResult();
+  // Step 1. Fetch the corresponding output.
+  OpOperand &yieldOpOperand = (*sliceResult.getUses().begin());
+  unsigned resultNumber = yieldOpOperand.getOperandNumber();
+  // Step 2. Check containing op is scf.for.
+  Operation *containingOp = candidateSliceOp->getParentOp();
+  auto forOp = dyn_cast<scf::ForOp>(containingOp);
+  if (!forOp)
+    return failure();
+  Value resultingValue = forOp->getResult(resultNumber);
+
+  return getConsumerFromUses(resultingValue, containingOp->getBlock());
+}
+
+/// Fetch the first untiled consumer of a scf.forall's result which is yielded
+/// by a tensor.parallel_insert_slice.
+static FailureOr<OpOperand *>
+getUntiledConsumerFromSlice(tensor::ParallelInsertSliceOp candidateSliceOp) {
+  // Step 1. Fetch the corresponding output
+  Value sliceDest = candidateSliceOp.getDest();
+  auto iterArg = dyn_cast<BlockArgument>(sliceDest);
+  if (!iterArg)
+    return failure();
+  Operation *containingOp = iterArg.getOwner()->getParentOp();
+  if (containingOp != candidateSliceOp->getParentOp()->getParentOp())
+    return failure();
+  // Step 2. Check that the containing op is scf.forall.
+  auto forallOp = dyn_cast<scf::ForallOp>(containingOp);
+  if (!forallOp)
+    return failure();
+  Value resultingValue =
+      forallOp.getTiedOpResult(forallOp.getTiedOpOperand(iterArg));
+
+  return getConsumerFromUses(resultingValue, containingOp->getBlock());
+}
+
+/// This utility currently checks whether the loop either :-
+/// 1. Yields exactly one result.
+/// 2. Has consumer op as its first user and other users to be in the same
+/// containing block as that of consumer op's. Currently we clone the loop op
+/// right before the consumer op in order to maintain a valid def-use chain.
+/// This utility thus helps ensuring that no invalid IR is formed due to the
+/// same.
+static LogicalResult checkAssumptionForLoop(Operation *loopOp,
+                                            Operation *consumerOp) {
+  // Check if the loop op yields one result.
+  if (loopOp->getNumResults() == 1)
+    return success();
+  // Check if the consumerOp is the first user of the loopOp and if other users
+  // are in the same containing block as that of consumer op's.
+  Block *parentBlock = consumerOp->getBlock();
+  for (Operation *userOp : loopOp->getUsers()) {
+    if (userOp == consumerOp)
+      continue;
+    if (parentBlock != userOp->getBlock() ||
+        !consumerOp->isBeforeInBlock(userOp))
+      return failure();
+  }
+  return success();
+}
+
+/// A utility to fetch an untiled consumer of
+/// tensor.insert_slice/tensor.parallel_insert_slice.
+static FailureOr<OpOperand *> getUntiledConsumerFromSlice(Operation *sliceOp) {
+  if (auto insertSlice = dyn_cast<tensor::InsertSliceOp>(sliceOp)) {
+    return getUntiledConsumerFromSlice(insertSlice);
+  } else if (auto parallelInsertSlice =
+                 dyn_cast<tensor::ParallelInsertSliceOp>(sliceOp)) {
+    return getUntiledConsumerFromSlice(parallelInsertSlice);
+  } else {
+    return failure();
+  }
+}
+
+/// After fusing consumer into scf.for we want to modify the scf.yield operation
+/// to reflect the same by returning the values yielded by the tiled consumer.
+static void
+fixTerminatorSCFYield(RewriterBase &rewriter, scf::ForOp newForOp,
+                      TilingResult &tilingResult,
+                      ArrayRef<SmallVector<OpFoldResult>> &resultOffsets,
+                      ArrayRef<SmallVector<OpFoldResult>> &resultSizes,
+                      ArrayRef<BlockArgument> bbArgs) {
+  scf::YieldOp oldTerminatorOp =
+      cast<scf::YieldOp>(newForOp.getBody()->getTerminator());
+  unsigned totalOldResults = oldTerminatorOp->getNumResults();
+  unsigned totalTiledResults = tilingResult.tiledOps[0]->getNumResults();
+  SmallVector<Value> newYieldOperands;
+  newYieldOperands.reserve(totalOldResults + totalTiledResults);
+  for (auto oldResult : oldTerminatorOp.getResults()) {
+    newYieldOperands.push_back(oldResult);
+  }
+  rewriter.setInsertionPointAfter(oldTerminatorOp);
+  Location loc = newForOp.getLoc();
+  for (auto [tiledResult, bbArg, resultOffset, resultSize] :
+       llvm::zip_equal(tilingResult.tiledOps[0]->getResults(), bbArgs,
+                       resultOffsets, resultSizes)) {
+    SmallVector<OpFoldResult> strides(resultOffset.size(),
+                                      rewriter.getIndexAttr(1));
+    Value newInsertSliceOp = rewriter.create<tensor::InsertSliceOp>(
+        loc, tiledResult, bbArg, resultOffset, resultSize, strides);
+    newYieldOperands.push_back(newInsertSliceOp);
+  }
+  rewriter.create<scf::YieldOp>(loc, newYieldOperands);
+  rewriter.eraseOp(oldTerminatorOp);
+}
+
+/// After fusing consumer into scf.forall we want to yield each of the resulting
+/// values by the tiled consumer within scf.forall.in_parallel region.
+static void
+fixTerminatorSCFInParallel(RewriterBase &rewriter, scf::ForallOp newForallOp,
+                           SmallVector<Value> tiledResults,
+                           ArrayRef<SmallVector<OpFoldResult>> &resultOffsets,
+                           ArrayRef<SmallVector<OpFoldResult>> &resultSizes,
+                           ArrayRef<BlockArgument> bbArgs) {
+  scf::InParallelOp newTerminatorOp = newForallOp.getTerminator();
+  rewriter.setInsertionPointToStart(newTerminatorOp.getBody());
+  Location firstYieldOpLoc =
+      (*(newTerminatorOp.getYieldingOps().begin())).getLoc();
+  for (auto [tiledResult, bbArg, resultOffset, resultSize] :
+       llvm::zip_equal(tiledResults, bbArgs, resultOffsets, resultSizes)) {
+    SmallVector<OpFoldResult> strides(resultOffset.size(),
+                                      rewriter.getIndexAttr(1));
+    rewriter.create<tensor::ParallelInsertSliceOp>(
+        firstYieldOpLoc, tiledResult, bbArg, resultOffset, resultSize, strides);
+  }
+}
+
+/// Implementation of fusing consumer of a single slice by computing the
+/// slice of the consumer in-place for scf loop.
+FailureOr<scf::SCFFuseConsumerOfSliceResult>
+mlir::scf::tileAndFuseConsumerOfSlice(RewriterBase &rewriter,
+                                      Operation *candidateSliceOp) {
+  if (!isa<tensor::InsertSliceOp, tensor::ParallelInsertSliceOp>(
+          candidateSliceOp))
+    return failure();
+
+  bool isInsertSliceOp = isa<tensor::InsertSliceOp>(candidateSliceOp);
+
+  // 1. Get the consumer of scf.for for the result yielded by
+  // tensor.insert_slice/parallel_insert_slice.
+  FailureOr<OpOperand *> maybeConsumerOpOperand =
+      getUntiledConsumerFromSlice(candidateSliceOp);
+  if (failed(maybeConsumerOpOperand)) {
+    return rewriter.notifyMatchFailure(candidateSliceOp,
+                                       "could not fetch consumer to fuse");
+  }
+  OpOperand *consumerOpOperand = *maybeConsumerOpOperand;
+  Operation *consumerOp = consumerOpOperand->getOwner();
+  unsigned operandNumber = consumerOpOperand->getOperandNumber();
+  unsigned resultNumber = 0;
+  if (auto producerResult = dyn_cast<OpResult>(consumerOpOperand->get())) {
+    resultNumber = producerResult.getResultNumber();
+  } else {
+    return rewriter.notifyMatchFailure(
+        consumerOp, "consumer op's operand doesn't seem to be an OpResult");
+  }
+
+  Operation *oldLoopOp = nullptr;
+  SmallVector<Value> newOuts;
+  Block *oldLoopBody = nullptr;
+  unsigned initSize = 0;
+  unsigned rank = 1;
+  if (isInsertSliceOp) {
+    auto forOp = candidateSliceOp->getParentOfType<scf::ForOp>();
+    oldLoopOp = forOp;
+    llvm::append_range(newOuts, forOp.getInits());
+    oldLoopBody = forOp.getBody();
+    initSize = forOp.getInits().size();
+  } else {
+    auto forallOp = candidateSliceOp->getParentOfType<scf::ForallOp>();
+    oldLoopOp = forallOp;
+    llvm::append_range(newOuts, forallOp.getOutputs());
+    oldLoopBody = forallOp.getBody();
+    initSize = forallOp.getOutputs().size();
+    rank = forallOp.getRank();
+  }
+
+  if (failed(checkAssumptionForLoop(oldLoopOp, consumerOp))) {
+    return rewriter.notifyMatchFailure(
+        oldLoopOp, "containing loop op should either yield just one value or "
+                   "have the consumer op as its first user");
+  }
+
+  OpBuilder::InsertionGuard g(rewriter);
+
+  // 2. Check consumer is not using scf loop's output as init.
+  auto dstOp = cast<DestinationStyleOpInterface>(consumerOp);
+  SmallVector<Value> dpsInits =
+      llvm::map_to_vector(dstOp.getDpsInits(), [](Value v) { return v; });
+  if (llvm::is_contained(dpsInits, oldLoopOp->getResult(resultNumber))) {
+    return rewriter.notifyMatchFailure(
+        consumerOp,
+        "consumer op taking the result of scf.for as init is not supported");
+  }
+  newOuts.append(dpsInits);
+
+  Location loc = oldLoopOp->getLoc();
+
+  // 3. Create new scf loop op.
+  rewriter.setInsertionPoint(consumerOp);
+  Operation *newLoopOp = nullptr;
+  Block *newLoopBody = nullptr;
+  if (isInsertSliceOp) {
+    auto forOp = cast<scf::ForOp>(oldLoopOp);
+    auto newForOp = rewriter.create<scf::ForOp>(loc, forOp.getLowerBound(),
+                                                forOp.getUpperBound(),
+                                                forOp.getStep(), newOuts);
+    newLoopOp = newForOp;
+    newLoopBody = newForOp.getBody();
+  } else {
+    auto forallOp = cast<scf::ForallOp>(oldLoopOp);
+    auto newForallOp = rewriter.create<scf::ForallOp>(
+        loc, forallOp.getMixedLowerBound(), forallOp.getMixedUpperBound(),
+        forallOp.getMixedStep(), newOuts, forallOp.getMapping());
+    newLoopOp = newForallOp;
+    rewriter.eraseOp(newForallOp.getTerminator());
+    newLoopBody = newForallOp.getBody();
+  }
+
+  // 4. Move the loop body to the new op.
+  unsigned oldNumArguments = oldLoopBody->getNumArguments();
+  rewriter.mergeBlocks(oldLoopBody, newLoopBody,
+                       newLoopBody->getArguments().take_front(oldNumArguments));
+
+  // 5. Set insertion point before terminator op of the loop and create a new
+  // tensor.insert_slice. In the scf.for case this is a clone of the
+  // candidateSliceOp whereas in the scf.forall case this is created from the
+  // operands of tensor.parallel_insert_slice.
+  tensor::InsertSliceOp clonedInsertSliceOp;
+  if (auto sliceOp =
+          dyn_cast<tensor::ParallelInsertSliceOp>(candidateSliceOp)) {
+    auto newForallOp = cast<scf::ForallOp>(newLoopOp);
+    rewriter.setInsertionPoint(newForallOp.getTerminator());
+    clonedInsertSliceOp = rewriter.create<tensor::InsertSliceOp>(
+        loc, sliceOp.getSource(), sliceOp.getDest(), sliceOp.getMixedOffsets(),
+        sliceOp.getMixedSizes(), sliceOp.getMixedStrides());
+  } else {
+    rewriter.setInsertionPoint(candidateSliceOp);
+    clonedInsertSliceOp =
+        cast<tensor::InsertSliceOp>(rewriter.clone(*candidateSliceOp));
+  }
+
+  // 6.a. Clone consumer op.
+  auto newForOpBlockArgsForConsumerDest =
+      newLoopBody->getArguments().drop_front(oldNumArguments);
+  auto clonedConsumerOp = cast<TilingInterface>(cloneOpAndUpdateDestinationArgs(
+      rewriter, consumerOp, newForOpBlockArgsForConsumerDest));
+
+  // 6.b. Replace all uses of the loop result with the result of the cloned
+  // tensor.insert_slice.
+  OpOperand &operandToReplace = clonedConsumerOp->getOpOperand(operandNumber);
+  rewriter.modifyOpInPlace(clonedConsumerOp, [&]() {
+    operandToReplace.set(clonedInsertSliceOp.getResult());
+  });
+
+  // 7 - Perform tiling of the cloned consumer and replace the operand at
+  // `operandNumber` with the source of the cloned tensor.insert_slice op.
+  auto ossSliceOp =
+      cast<OffsetSizeAndStrideOpInterface>(clonedInsertSliceOp.getOperation());
+  FailureOr<TilingResult> tileAndFuseResult =
+      tensor::replaceInsertSliceWithTiledConsumer(
+          rewriter, ossSliceOp, clonedConsumerOp->getOpOperand(operandNumber));
+  if (failed(tileAndFuseResult)) {
+    return failure();
+  }
+  rewriter.replaceAllUsesWith(
+      tileAndFuseResult->tiledOps[0]->getOperand(operandNumber),
+      clonedInsertSliceOp.getSource());
+
+  // 8 - Extract offset/sizes/strides required to create the
+  // tensor.insert_slice/parallel_insert_slice for each result of the consumer.
+  SmallVector<OpFoldResult> offsets = ossSliceOp.getMixedOffsets();
+  SmallVector<OpFoldResult> sizes = ossSliceOp.getMixedSizes();
+  SmallVector<OpFoldResult> strides = ossSliceOp.getMixedStrides();
+
+  // 9. Check all insert stride is 1.
+  if (llvm::any_of(strides, [](OpFoldResult stride) {
+        return !isConstantIntValue(stride, 1);
+      })) {
+    return rewriter.notifyMatchFailure(
+        candidateSliceOp, "containingOp's result yield with stride");
+  }
+
+  // 10. Try to get iter domain position from input position.
+  SmallVector<OpFoldResult> iterDomainOffsets, iterDomainSizes;
+  if (failed(clonedConsumerOp.getIterationDomainTileFromOperandTile(
+          rewriter, operandNumber, offsets, sizes, iterDomainOffsets,
+          iterDomainSizes))) {
+    return rewriter.notifyMatchFailure(
+        clonedConsumerOp, "can't get iter domain position from input position");
+  }
+
+  // 11. Try to fetch the offset and size for all results of the cloned
+  // consumer. This would then be used to form the corresponding
+  // tensor.insert_slice/parallel_insert_slice later.
+  unsigned totalNumResultsOfConsumer = clonedConsumerOp->getNumResults();
+  SmallVector<SmallVector<OpFoldResult>> resultOffsets(
+      totalNumResultsOfConsumer);
+  SmallVector<SmallVector<OpFoldResult>> resultSizes(totalNumResultsOfConsumer);
+  for (auto [idx, v] : llvm::enumerate(clonedConsumerOp->getResults())) {
+    if (failed(clonedConsumerOp.getResultTilePosition(
+            rewriter, idx, iterDomainOffsets, iterDomainSizes,
+            resultOffsets[idx], resultSizes[idx]))) {
+      return rewriter.notifyMatchFailure(
+          clonedConsumerOp,
+          "can't get result domain position from iter domain position");
+    }
+  }
+
+  auto arrayRefOffsets = ArrayRef<SmallVector<OpFoldResult>>(resultOffsets);
+  auto arrayRefSizes = ArrayRef<SmallVector<OpFoldResult>>(resultSizes);
+  if (isInsertSliceOp) {
+    auto newForOp = cast<scf::ForOp>(newLoopOp);
+    fixTerminatorSCFYield(
+        rewriter, newForOp, *tileAndFuseResult, arrayRefOffsets, arrayRefSizes,
+        newForOp.getBody()->getArguments().drop_front(1 + initSize));
+  } else {
+    auto newForallOp = cast<scf::ForallOp>(newLoopOp);
+    fixTerminatorSCFInParallel(
+        rewriter, newForallOp, tileAndFuseResult->tiledOps[0]->getResults(),
+        arrayRefOffsets, arrayRefSizes,
+        newForallOp.getBody()->getArguments().drop_front(rank + initSize));
+  }
+
+  // 12. Replace the result of scf loop and consumer op with new loop's results.
+  for (auto &&[oldResult, newResult] :
+       llvm::zip_first(oldLoopOp->getResults(), newLoopOp->getResults())) {
+    rewriter.replaceAllUsesWith(oldResult, newResult);
+  }
+
+  for (auto &&[oldResult, newResult] :
+       llvm::zip(consumerOp->getResults(),
+                 newLoopOp->getResults().drop_front(initSize))) {
+    rewriter.replaceAllUsesWith(oldResult, newResult);
+  }
+
+  // 13. Need to erase the old scf loop and the cloned consumer op.
+  rewriter.eraseOp(oldLoopOp);
+  rewriter.eraseOp(clonedConsumerOp);
+
+  return scf::SCFFuseConsumerOfSliceResult{
+      consumerOpOperand,
+      &(tileAndFuseResult->tiledOps[0]->getOpOperand(operandNumber)),
+      tileAndFuseResult->tiledOps};
+}
+
 //===----------------------------------------------------------------------===//
 // lowerToLoopsUsingSCFForOp implementation.
 //===----------------------------------------------------------------------===//

diff  --git a/mlir/lib/Dialect/Tensor/IR/TensorTilingInterfaceImpl.cpp b/mlir/lib/Dialect/Tensor/IR/TensorTilingInterfaceImpl.cpp
index d25efcf50ec56..9b2a97eb2b006 100644
--- a/mlir/lib/Dialect/Tensor/IR/TensorTilingInterfaceImpl.cpp
+++ b/mlir/lib/Dialect/Tensor/IR/TensorTilingInterfaceImpl.cpp
@@ -469,6 +469,106 @@ struct UnPackOpTiling
       return failure();
     return tilingResult.value();
   }
+
+  /// Method to return the position of iteration domain tile computed by the
+  /// tiled operation.
+  LogicalResult getIterationDomainTileFromOperandTile(
+      Operation *op, OpBuilder &b, unsigned operandNumber,
+      ArrayRef<OpFoldResult> offsets, ArrayRef<OpFoldResult> sizes,
+      SmallVectorImpl<OpFoldResult> &resultOffsets,
+      SmallVectorImpl<OpFoldResult> &resultSizes) const {
+    auto unPackOp = cast<UnPackOp>(op);
+    Location loc = unPackOp.getLoc();
+
+    int64_t numTiles = unPackOp.getInnerDimsPos().size();
+    auto destOffsets = offsets.drop_back(numTiles);
+    auto destSizes = sizes.drop_back(numTiles);
+    // The tiling is applied on interchanged dimensions. We have to undo the
+    // interchange to map sizes and offsets to the original input.
+    int64_t outputRank = unPackOp.getDestRank();
+    SmallVector<OpFoldResult> origOffsets(destOffsets.begin(),
+                                          destOffsets.end());
+    SmallVector<OpFoldResult> origSizes(destSizes.begin(), destSizes.end());
+    applyPermToRange(origOffsets, origSizes,
+                     invertPermutationVector(unPackOp.getOuterDimsPerm()));
+
+    DenseMap<int64_t, OpFoldResult> dimAndTileMapping =
+        unPackOp.getDimAndTileMapping();
+
+    for (auto dim : llvm::seq<int64_t>(0, outputRank)) {
+      using AV = affine::AffineValueExpr;
+      affine::AffineBuilder ab(b, loc);
+      AffineExpr dim0, dim1, sym;
+      bindDims(b.getContext(), dim0, dim1);
+      bindSymbols(b.getContext(), sym);
+      if (dimAndTileMapping.count(dim)) {
+        // If the data dimension is tiled, the i-th index is the product of
+        // offset_i and tile_i, and the i-th size is the product of sizes_i and
+        // tile_i.
+        auto avOffset = AV(dim0).bind(origOffsets[dim]);
+        auto avSize = AV(dim0).bind(origSizes[dim]);
+        auto avTileSize = AV(sym).bind(dimAndTileMapping[dim]);
+        resultOffsets.push_back(ab.mul(avOffset, avTileSize));
+        resultSizes.push_back(ab.mul(avSize, avTileSize));
+      } else {
+        resultOffsets.push_back(origOffsets[dim]);
+        resultSizes.push_back(origSizes[dim]);
+      }
+    }
+    return success();
+  }
+
+  /// Method to return the tiled implementation of tensor.unpack as a consumer.
+  FailureOr<TilingResult> getTiledImplementationFromOperandTile(
+      Operation *op, OpBuilder &b, unsigned operandNumber,
+      ArrayRef<OpFoldResult> offsets, ArrayRef<OpFoldResult> sizes) const {
+    auto unPackOp = cast<UnPackOp>(op);
+    // tensor.unpack op is fusible (as a consumer) only if inner dims are not
+    // tiled.
+    int64_t numTiles = unPackOp.getInnerDimsPos().size();
+    for (auto iter :
+         llvm::zip_equal(unPackOp.getMixedTiles(), sizes.take_back(numTiles))) {
+      if (!isEqualConstantIntOrValue(std::get<0>(iter), std::get<1>(iter)))
+        return failure();
+    }
+
+    Location loc = unPackOp.getLoc();
+
+    // Fetch offset/size for creating the slice of the dest operand of
+    // unpack op.
+    SmallVector<OpFoldResult> outputOffsets, outputSizes;
+    if (failed(getIterationDomainTileFromOperandTile(
+            op, b, /*operandNumber=*/0, offsets, sizes, outputOffsets,
+            outputSizes)))
+      return failure();
+
+    auto oneAttr = b.getI64IntegerAttr(1);
+    int64_t outputRank = unPackOp.getDestRank();
+    SmallVector<OpFoldResult> strides(outputRank, oneAttr);
+
+    SmallVector<Value> tiledOperands;
+    // Create slice of the dest operand.
+    auto extractDestSlice = b.create<ExtractSliceOp>(
+        loc, unPackOp.getDest(), outputOffsets, outputSizes, strides);
+    tiledOperands.push_back(extractDestSlice);
+
+    SmallVector<OpFoldResult> inputOffsets, inputSizes;
+    strides.append(unPackOp.getSourceRank() - outputRank, oneAttr);
+    // Create slice of the source operand.
+    auto extractSourceSlice = b.create<ExtractSliceOp>(
+        loc, unPackOp.getSource(), offsets, sizes, strides);
+    tiledOperands.insert(tiledOperands.begin(), extractSourceSlice);
+    for (auto tile : unPackOp.getInnerTiles())
+      tiledOperands.push_back(tile);
+
+    // Create tiled unpack op.
+    Operation *tiledUnPackOp =
+        b.create<UnPackOp>(loc, TypeRange{extractDestSlice.getType()},
+                           tiledOperands, op->getAttrs());
+
+    return TilingResult{{tiledUnPackOp},
+                        SmallVector<Value>(tiledUnPackOp->getResults())};
+  }
 };
 
 } // namespace

diff  --git a/mlir/lib/Dialect/Tensor/Transforms/SwapExtractSliceWithProducerPatterns.cpp b/mlir/lib/Dialect/Tensor/Transforms/SwapExtractSliceWithProducerPatterns.cpp
index 40d79c2053817..858adfc436164 100644
--- a/mlir/lib/Dialect/Tensor/Transforms/SwapExtractSliceWithProducerPatterns.cpp
+++ b/mlir/lib/Dialect/Tensor/Transforms/SwapExtractSliceWithProducerPatterns.cpp
@@ -40,3 +40,26 @@ FailureOr<TilingResult> tensor::replaceExtractSliceWithTiledProducer(
 
   return *tiledResult;
 }
+
+FailureOr<TilingResult> tensor::replaceInsertSliceWithTiledConsumer(
+    OpBuilder &builder, OffsetSizeAndStrideOpInterface sliceOp,
+    OpOperand &consumer) {
+  auto consumerOp = dyn_cast<TilingInterface>(consumer.getOwner());
+  if (!consumerOp)
+    return failure();
+
+  // `TilingInterface` currently only supports strides being 1.
+  if (llvm::any_of(sliceOp.getMixedStrides(), [](OpFoldResult ofr) {
+        return !isConstantIntValue(ofr, 1);
+      }))
+    return failure();
+
+  FailureOr<TilingResult> tiledResult =
+      consumerOp.getTiledImplementationFromOperandTile(
+          builder, consumer.getOperandNumber(), sliceOp.getMixedOffsets(),
+          sliceOp.getMixedSizes());
+  if (failed(tiledResult))
+    return failure();
+
+  return *tiledResult;
+}

diff  --git a/mlir/test/Interfaces/TilingInterface/tile-and-fuse-consumer.mlir b/mlir/test/Interfaces/TilingInterface/tile-and-fuse-consumer.mlir
new file mode 100644
index 0000000000000..400b558e37fcd
--- /dev/null
+++ b/mlir/test/Interfaces/TilingInterface/tile-and-fuse-consumer.mlir
@@ -0,0 +1,317 @@
+// RUN: mlir-opt --transform-interpreter --cse --split-input-file %s | FileCheck %s
+
+#map = affine_map<(d0) -> (d0)>
+module {
+  func.func @fuse_tileable_consumer_scf_for(%arg0: tensor<32xf32>, %arg1: tensor<32xf32>, %arg2: tensor<64xf32>) -> tensor<64xf32> {
+    %c4 = arith.constant 4 : index
+    %c64 = arith.constant 64 : index
+    %c0 = arith.constant 0 : index
+    %1:2 = scf.for %arg3 = %c0 to %c64 step %c4 iter_args(%arg4 = %arg2, %arg5 = %arg2) -> (tensor<64xf32>, tensor<64xf32>) {
+      %extracted_slice = tensor.extract_slice %arg4[%arg3] [32] [1] : tensor<64xf32> to tensor<32xf32>
+      %3 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} ins(%arg0, %arg1 : tensor<32xf32>, tensor<32xf32>) outs(%extracted_slice : tensor<32xf32>) {
+        ^bb0(%in: f32, %in_16: f32, %out: f32):
+          %13 = arith.mulf %in, %in_16 : f32
+          %14 = arith.addf %out, %13 : f32
+          linalg.yield %14 : f32
+        } -> tensor<32xf32>
+      %4 = tensor.insert_slice %3 into %arg4[%arg3] [32] [1] : tensor<32xf32> into tensor<64xf32>
+      scf.yield %arg5, %4 : tensor<64xf32>, tensor<64xf32>
+    }
+    %in_operand_2 = tensor.empty() : tensor<64xf32>
+    %out_operand_3 = tensor.empty() : tensor<64xf32>
+    %2 = linalg.elemwise_binary {fun = #linalg.binary_fn<add>} ins(%1#1, %in_operand_2 : tensor<64xf32>, tensor<64xf32>) outs(%out_operand_3 : tensor<64xf32>) -> tensor<64xf32>
+    return %2 : tensor<64xf32>
+  }
+}
+
+module attributes {transform.with_named_sequence} {
+  transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
+    %yield = transform.structured.match ops{["tensor.insert_slice"]} in %arg1
+      : (!transform.any_op) -> !transform.any_op
+    %a, %b = transform.test.fuse_consumer %yield
+      : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
+    transform.yield
+  }
+}
+//      CHECK: func.func @fuse_tileable_consumer_scf_for(
+// CHECK-SAME:     %[[ARG0:[a-zA-Z0-9]+]]: tensor<32xf32>
+// CHECK-SAME:     %[[ARG1:[a-zA-Z0-9]+]]: tensor<32xf32>
+// CHECK-SAME:     %[[ARG2:[a-zA-Z0-9]+]]: tensor<64xf32>)
+//      CHECK:   %[[C0:.*]] = arith.constant 0 : index
+//      CHECK:   %0 = tensor.empty() : tensor<64xf32>
+//      CHECK:   %[[FINAL_RESULT:.*]]:3 = scf.for %[[IV:.*]] = %[[C0]]
+// CHECK-SAME:      iter_args(%[[FIRST_OUT_ARG:.*]] = %[[ARG2]], %[[SECOND_OUT_ARG:.*]] = %[[ARG2]], %[[ELEM_OUT_ARG:.*]] = %0)
+// CHECK-SAME:   {
+//      CHECK:      %[[MAT_OUT_SLICE:.*]] = tensor.extract_slice %[[FIRST_OUT_ARG]][%[[IV]]] [32] [1]
+//      CHECK:      %[[MAT_OUT:.*]] = linalg.generic
+// CHECK-SAME:              outs(%[[MAT_OUT_SLICE]] : tensor<32xf32>)
+//      CHECK:      %[[INSERT_MAT:.*]] = tensor.insert_slice %[[MAT_OUT]] into %[[FIRST_OUT_ARG]][%[[IV]]] [32] [1]
+//      CHECK:      %[[SLICE_OPERAND2:.*]] = tensor.extract_slice %0[%[[IV]]] [32] [1]
+//      CHECK:      %[[SLICE_OUT:.*]] = tensor.extract_slice %[[ELEM_OUT_ARG]][%[[IV]]] [32] [1]
+//      CHECK:      %[[ELEM_OUT:.*]] = linalg.elemwise_binary {fun = #linalg.binary_fn<add>}
+// CHECK-SAME:              ins(%[[MAT_OUT]], %[[SLICE_OPERAND2]] :
+// CHECK-SAME:              outs(%[[SLICE_OUT]] :
+//      CHECK:      %[[INSERT_ELEM:.*]] = tensor.insert_slice %[[ELEM_OUT]] into %[[ELEM_OUT_ARG]][%[[IV]]] [32] [1]
+//      CHECK:      scf.yield %[[SECOND_OUT_ARG]], %[[INSERT_MAT]], %[[INSERT_ELEM]] :
+//      CHECK:   }
+//      CHECK:   return %[[FINAL_RESULT]]#2 :
+
+// -----
+
+module {
+  func.func @fuse_tileable_consumer_scf_forall(%arg0: tensor<32x32xf32>, %arg1: tensor<32x32xf32>, %arg2: tensor<64x64xf32>) -> tensor<64x64xf32> {
+    %c4 = arith.constant 4 : index
+    %c64 = arith.constant 64 : index
+    %c0 = arith.constant 0 : index
+    %1:2 = scf.forall (%arg3, %arg4) in (2, 2) shared_outs(%arg5 = %arg2, %arg6 = %arg2) -> (tensor<64x64xf32>, tensor<64x64xf32>) {
+      %extracted_slice = tensor.extract_slice %arg5[%arg3, %arg4] [32, 32] [1, 1] : tensor<64x64xf32> to tensor<32x32xf32>
+      %extracted_slice_1 = tensor.extract_slice %arg6[%arg3, %arg4] [32, 32] [1, 1] : tensor<64x64xf32> to tensor<32x32xf32>
+      %3 = linalg.matmul ins(%arg0, %arg1 : tensor<32x32xf32>, tensor<32x32xf32>) outs(%extracted_slice : tensor<32x32xf32>) -> tensor<32x32xf32>
+      scf.forall.in_parallel {
+         tensor.parallel_insert_slice %3 into %arg6[%arg3, %arg4] [32, 32] [1, 1] : tensor<32x32xf32> into tensor<64x64xf32>
+         tensor.parallel_insert_slice %extracted_slice_1 into %arg5[%arg3, %arg4] [32, 32] [1, 1] : tensor<32x32xf32> into tensor<64x64xf32>
+      }
+    }
+    %in_operand_2 = tensor.empty() : tensor<64x64xf32>
+    %out_operand_3 = tensor.empty() : tensor<64x64xf32>
+    %2 = linalg.elemwise_binary {fun = #linalg.binary_fn<add>} ins(%1#1, %in_operand_2 : tensor<64x64xf32>, tensor<64x64xf32>) outs(%out_operand_3 : tensor<64x64xf32>) -> tensor<64x64xf32>
+    return %2 : tensor<64x64xf32>
+  }
+}
+
+module attributes {transform.with_named_sequence} {
+  transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
+    %slice_ops = transform.structured.match ops{["tensor.parallel_insert_slice"]} in %arg1
+      : (!transform.any_op) -> !transform.any_op
+    %first_slice_op, %second_slice_op = transform.split_handle %slice_ops
+        : (!transform.any_op)
+        -> (!transform.any_op, !transform.any_op)
+    %a, %b = transform.test.fuse_consumer %first_slice_op
+      : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
+    transform.yield
+  }
+}
+//      CHECK: func.func @fuse_tileable_consumer_scf_forall(
+// CHECK-SAME:     %[[ARG0:[a-zA-Z0-9]+]]: tensor<32x32xf32>
+// CHECK-SAME:     %[[ARG1:[a-zA-Z0-9]+]]: tensor<32x32xf32>
+// CHECK-SAME:     %[[ARG2:[a-zA-Z0-9]+]]: tensor<64x64xf32>)
+//      CHECK:   %[[OUT_INIT:.*]] = tensor.empty() : tensor<64x64xf32>
+//      CHECK:   %[[FINAL_RESULT:.*]]:3 = scf.forall (%[[IV1:.*]], %[[IV2:.*]]) in (2, 2)
+// CHECK-SAME:      shared_outs(%[[FIRST_OUT_ARG:.*]] = %[[ARG2]], %[[SECOND_OUT_ARG:.*]] = %[[ARG2]], %[[ELEM_OUT_ARG:.*]] = %[[OUT_INIT]])
+// CHECK-SAME:   {
+//      CHECK:      %[[MAT_OUT_SLICE:.*]] = tensor.extract_slice %[[FIRST_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
+//      CHECK:      %[[SECOND_ARG_SLICE:.*]] = tensor.extract_slice %[[SECOND_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
+//      CHECK:      %[[MAT_OUT:.*]] = linalg.matmul
+// CHECK-SAME:              outs(%[[MAT_OUT_SLICE]] :
+//      CHECK:      %[[SLICE_OPERAND2:.*]] = tensor.extract_slice %[[OUT_INIT]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
+//      CHECK:      %[[SLICE_OUT:.*]] = tensor.extract_slice %[[ELEM_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
+//      CHECK:      %[[ELEM_OUT:.*]] = linalg.elemwise_binary {fun = #linalg.binary_fn<add>}
+// CHECK-SAME:              ins(%[[MAT_OUT]], %[[SLICE_OPERAND2]] :
+// CHECK-SAME:              outs(%[[SLICE_OUT]] :
+//      CHECK:      scf.forall.in_parallel {
+//      CHECK:          tensor.parallel_insert_slice %[[ELEM_OUT]] into %[[ELEM_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
+//      CHECK:          tensor.parallel_insert_slice %[[MAT_OUT]] into %[[SECOND_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
+//      CHECK:          tensor.parallel_insert_slice %[[SECOND_ARG_SLICE]] into %[[FIRST_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
+//      CHECK:       }
+//      CHECK:   }
+//      CHECK:   return %[[FINAL_RESULT]]#2 :
+
+// -----
+
+#map = affine_map<(d0) -> (d0)>
+module {
+  func.func @fuse_tileable_consumer_scf_for_multi_yielding_consumer(%arg0: tensor<32xf32>, %arg1: tensor<32xf32>, %arg2: tensor<64xf32>) -> tensor<64xf32> {
+    %c4 = arith.constant 4 : index
+    %c64 = arith.constant 64 : index
+    %c0 = arith.constant 0 : index
+    %1:2 = scf.for %arg3 = %c0 to %c64 step %c4 iter_args(%arg4 = %arg2, %arg5 = %arg2) -> (tensor<64xf32>, tensor<64xf32>) {
+      %extracted_slice = tensor.extract_slice %arg4[%arg3] [32] [1] : tensor<64xf32> to tensor<32xf32>
+      %3 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} ins(%arg0, %arg1 : tensor<32xf32>, tensor<32xf32>) outs(%extracted_slice : tensor<32xf32>) {
+        ^bb0(%in: f32, %in_16: f32, %out: f32):
+          %13 = arith.mulf %in, %in_16 : f32
+          %14 = arith.addf %out, %13 : f32
+          linalg.yield %14 : f32
+        } -> tensor<32xf32>
+      %4 = tensor.insert_slice %3 into %arg4[%arg3] [32] [1] : tensor<32xf32> into tensor<64xf32>
+      scf.yield %arg5, %4 : tensor<64xf32>, tensor<64xf32>
+    }
+    %in_operand_2 = tensor.empty() : tensor<64xf32>
+    %out_operand_3 = tensor.empty() : tensor<64xf32>
+    %out_operand_4 = tensor.empty() : tensor<64xf32>
+    %2:2 = linalg.generic {indexing_maps = [#map, #map, #map, #map], iterator_types = ["parallel"]} ins(%1#1, %in_operand_2 : tensor<64xf32>, tensor<64xf32>) outs(%out_operand_3, %out_operand_4 : tensor<64xf32>, tensor<64xf32>) {
+      ^bb0(%in: f32, %in_16: f32, %out_0: f32, %out_1: f32):
+          %13 = arith.mulf %in, %in_16 : f32
+          %14 = arith.subf %out_0, %13 : f32
+          %15 = arith.addf %out_1, %in : f32
+          linalg.yield %14, %15 : f32, f32
+    } -> (tensor<64xf32>, tensor<64xf32>)
+    return %2#1 : tensor<64xf32>
+  }
+}
+
+module attributes {transform.with_named_sequence} {
+  transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
+    %yield = transform.structured.match ops{["tensor.insert_slice"]} in %arg1
+      : (!transform.any_op) -> !transform.any_op
+    %a, %b = transform.test.fuse_consumer %yield
+      : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
+    transform.yield
+  }
+}
+//      CHECK: func.func @fuse_tileable_consumer_scf_for_multi_yielding_consumer(
+// CHECK-SAME:     %[[ARG0:[a-zA-Z0-9]+]]: tensor<32xf32>
+// CHECK-SAME:     %[[ARG1:[a-zA-Z0-9]+]]: tensor<32xf32>
+// CHECK-SAME:     %[[ARG2:[a-zA-Z0-9]+]]: tensor<64xf32>)
+//      CHECK:   %[[C0:.*]] = arith.constant 0 : index
+//      CHECK:   %0 = tensor.empty() : tensor<64xf32>
+//      CHECK:   %[[FINAL_RESULT:.*]]:4 = scf.for %[[IV:.*]] = %[[C0]]
+// CHECK-SAME:      iter_args(%[[FIRST_OUT_ARG:.*]] = %[[ARG2]], %[[SECOND_OUT_ARG:.*]] = %[[ARG2]], %[[ELEM_OUT_ARG_0:.*]] = %0, %[[ELEM_OUT_ARG_1:.*]] = %0)
+// CHECK-SAME:   {
+//      CHECK:      %[[MAT_OUT_SLICE:.*]] = tensor.extract_slice %[[FIRST_OUT_ARG]][%[[IV]]] [32] [1]
+//      CHECK:      %[[MAT_OUT:.*]] = linalg.generic
+// CHECK-SAME:              outs(%[[MAT_OUT_SLICE]] : tensor<32xf32>)
+//      CHECK:      %[[INSERT_MAT:.*]] = tensor.insert_slice %[[MAT_OUT]] into %[[FIRST_OUT_ARG]][%[[IV]]] [32] [1]
+//      CHECK:      %[[SLICE_OPERAND2:.*]] = tensor.extract_slice %0[%[[IV]]] [32] [1]
+//      CHECK:      %[[SLICE_OUT_0:.*]] = tensor.extract_slice %[[ELEM_OUT_ARG_0]][%[[IV]]] [32] [1]
+//      CHECK:      %[[SLICE_OUT_1:.*]] = tensor.extract_slice %[[ELEM_OUT_ARG_1]][%[[IV]]] [32] [1]
+//      CHECK:      %[[ELEM_OUT:.*]]:2 = linalg.generic
+// CHECK-SAME:              ins(%[[MAT_OUT]], %[[SLICE_OPERAND2]] :
+// CHECK-SAME:              outs(%[[SLICE_OUT_0]], %[[SLICE_OUT_1]] :
+//      CHECK:      %[[INSERT_ELEM_0:.*]] = tensor.insert_slice %[[ELEM_OUT]]#0 into %[[ELEM_OUT_ARG_0]][%[[IV]]] [32] [1]
+//      CHECK:      %[[INSERT_ELEM_1:.*]] = tensor.insert_slice %[[ELEM_OUT]]#1 into %[[ELEM_OUT_ARG_1]][%[[IV]]] [32] [1]
+//      CHECK:      scf.yield %[[SECOND_OUT_ARG]], %[[INSERT_MAT]], %[[INSERT_ELEM_0]], %[[INSERT_ELEM_1]] :
+//      CHECK:   }
+//      CHECK:   return %[[FINAL_RESULT]]#3 :
+
+// -----
+
+#map = affine_map<(d0, d1) -> (d0, d1)>
+module {
+    func.func @fuse_tileable_consumer_scf_forall_multi_yielding_consumer(%arg0: tensor<32x32xf32>, %arg1: tensor<32x32xf32>, %arg2: tensor<64x64xf32>, %arg3: tensor<64x32xf32>) -> (tensor<64x64xf32>, tensor<2048xf32>) {
+      %c4 = arith.constant 4 : index
+      %c64 = arith.constant 64 : index
+      %c0 = arith.constant 0 : index
+      %0:2 = scf.forall (%arg4, %arg5) in (2, 2) shared_outs(%arg6 = %arg3, %arg7 = %arg2) -> (tensor<64x32xf32>, tensor<64x64xf32>) {
+        %extracted_slice = tensor.extract_slice %arg6[%arg4, %arg5] [32, 32] [1, 1] : tensor<64x32xf32> to tensor<32x32xf32>
+        %extracted_slice_0 = tensor.extract_slice %arg7[%arg4, %arg5] [32, 32] [1, 1] : tensor<64x64xf32> to tensor<32x32xf32>
+        %6 = linalg.matmul ins(%arg0, %arg1 : tensor<32x32xf32>, tensor<32x32xf32>) outs(%extracted_slice : tensor<32x32xf32>) -> tensor<32x32xf32>
+        scf.forall.in_parallel {
+          tensor.parallel_insert_slice %6 into %arg7[%arg4, %arg5] [32, 32] [1, 1] : tensor<32x32xf32> into tensor<64x64xf32>
+          tensor.parallel_insert_slice %extracted_slice_0 into %arg6[%arg4, %arg5] [32, 32] [1, 1] : tensor<32x32xf32> into tensor<64x32xf32>
+        }
+      }
+      %1 = tensor.empty() : tensor<64x64xf32>
+      %2 = tensor.empty() : tensor<64x64xf32>
+      %3 = tensor.empty() : tensor<64x64xf32>
+      %4:2 = linalg.generic {indexing_maps = [#map, #map, #map, #map], iterator_types = ["parallel", "parallel"]} ins(%0#1, %1 : tensor<64x64xf32>, tensor<64x64xf32>) outs(%2, %3 : tensor<64x64xf32>, tensor<64x64xf32>) {
+      ^bb0(%in: f32, %in_0: f32, %out: f32, %out_1: f32):
+        %6 = arith.mulf %in, %in_0 : f32
+        %7 = arith.subf %out, %6 : f32
+        %8 = arith.addf %out_1, %in : f32
+        linalg.yield %7, %8 : f32, f32
+      } -> (tensor<64x64xf32>, tensor<64x64xf32>)
+      %5 = tensor.empty() : tensor<2048xf32>
+      %unpack = tensor.unpack %0#0 outer_dims_perm = [0] inner_dims_pos = [0] inner_tiles = [32] into %5 : tensor<64x32xf32> -> tensor<2048xf32>
+      return %4#1, %unpack : tensor<64x64xf32>, tensor<2048xf32>
+    }
+}
+
+module attributes {transform.with_named_sequence} {
+  transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
+    %slice_ops = transform.structured.match ops{["tensor.parallel_insert_slice"]} in %arg1
+      : (!transform.any_op) -> !transform.any_op
+    %first_slice_op, %second_slice_op = transform.split_handle %slice_ops
+        : (!transform.any_op)
+        -> (!transform.any_op, !transform.any_op)
+    %a, %b = transform.test.fuse_consumer %first_slice_op
+      : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
+    transform.yield
+  }
+}
+//      CHECK: func.func @fuse_tileable_consumer_scf_forall_multi_yielding_consumer(
+// CHECK-SAME:     %[[ARG0:[a-zA-Z0-9]+]]: tensor<32x32xf32>
+// CHECK-SAME:     %[[ARG1:[a-zA-Z0-9]+]]: tensor<32x32xf32>
+// CHECK-SAME:     %[[ARG2:[a-zA-Z0-9]+]]: tensor<64x64xf32>
+// CHECK-SAME:     %[[ARG3:[a-zA-Z0-9]+]]: tensor<64x32xf32>)
+//      CHECK:   %[[OUT_INIT:.*]] = tensor.empty() : tensor<64x64xf32>
+//      CHECK:   %[[FINAL_RESULT:.*]]:4 = scf.forall (%[[IV1:.*]], %[[IV2:.*]]) in (2, 2)
+// CHECK-SAME:      shared_outs(%[[FIRST_OUT_ARG:.*]] = %[[ARG3]], %[[SECOND_OUT_ARG:.*]] = %[[ARG2]], %[[ELEM_OUT_ARG_0:.*]] = %[[OUT_INIT]], %[[ELEM_OUT_ARG_1:.*]] = %[[OUT_INIT]])
+// CHECK-SAME:   {
+//      CHECK:      %[[MAT_OUT_SLICE:.*]] = tensor.extract_slice %[[FIRST_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
+//      CHECK:      %[[SECOND_ARG_SLICE:.*]] = tensor.extract_slice %[[SECOND_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
+//      CHECK:      %[[MAT_OUT:.*]] = linalg.matmul
+// CHECK-SAME:              outs(%[[MAT_OUT_SLICE]] :
+//      CHECK:      %[[SLICE_OPERAND2:.*]] = tensor.extract_slice %[[OUT_INIT]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
+//      CHECK:      %[[SLICE_OUT_0:.*]] = tensor.extract_slice %[[ELEM_OUT_ARG_0]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
+//      CHECK:      %[[SLICE_OUT_1:.*]] = tensor.extract_slice %[[ELEM_OUT_ARG_1]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
+//      CHECK:      %[[ELEM_OUT:.*]]:2 = linalg.generic
+// CHECK-SAME:              ins(%[[MAT_OUT]], %[[SLICE_OPERAND2]] :
+// CHECK-SAME:              outs(%[[SLICE_OUT_0]], %[[SLICE_OUT_1]] :
+//      CHECK:      scf.forall.in_parallel {
+//      CHECK:          tensor.parallel_insert_slice %[[ELEM_OUT]]#0 into %[[ELEM_OUT_ARG_0]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
+//      CHECK:          tensor.parallel_insert_slice %[[ELEM_OUT]]#1 into %[[ELEM_OUT_ARG_1]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
+//      CHECK:          tensor.parallel_insert_slice %[[MAT_OUT]] into %[[SECOND_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
+//      CHECK:          tensor.parallel_insert_slice %[[SECOND_ARG_SLICE]] into %[[FIRST_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
+//      CHECK:       }
+//      CHECK:   }
+//      CHECK:   %[[UNPACK:.*]] = tensor.unpack %[[FINAL_RESULT]]#0 outer_dims_perm = [0] inner_dims_pos = [0] inner_tiles = [32] into %{{.*}} : tensor<64x32xf32> -> tensor<2048xf32>
+//      CHECK:   return %[[FINAL_RESULT]]#3, %[[UNPACK]] :
+
+// -----
+
+#map = affine_map<(d0, d1) -> (d0, d1)>
+module {
+    func.func @fuse_unpack_consumer_into_scf_forall(%arg0: tensor<32x32xf32>, %arg1: tensor<32x32xf32>, %arg2: tensor<64x32xf32>) -> tensor<2048xf32> {
+        %c4 = arith.constant 4 : index
+        %c64 = arith.constant 64 : index
+        %c0 = arith.constant 0 : index
+        %1 = scf.forall (%arg3, %arg4) in (2, 2) shared_outs(%arg5 = %arg2) -> (tensor<64x32xf32>) {
+            %extracted_slice = tensor.extract_slice %arg5[%arg3, %arg4] [32, 32] [1, 1] : tensor<64x32xf32> to tensor<32x32xf32>
+            %3 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel", "parallel"]} ins(%arg0, %arg1 : tensor<32x32xf32>, tensor<32x32xf32>) outs(%extracted_slice : tensor<32x32xf32>) {
+                ^bb0(%in: f32, %in_16: f32, %out: f32):
+                %13 = arith.mulf %in, %in_16 : f32
+                %14 = arith.addf %out, %13 : f32
+                linalg.yield %14 : f32
+            } -> tensor<32x32xf32>
+            scf.forall.in_parallel {
+                tensor.parallel_insert_slice %3 into %arg5[%arg3, %arg4] [32, 32] [1, 1] : tensor<32x32xf32> into tensor<64x32xf32>
+            }
+        }
+        %output = tensor.empty() : tensor<2048xf32>
+        %unpack = tensor.unpack %1 outer_dims_perm = [0] inner_dims_pos = [0] inner_tiles = [32] into %output : tensor<64x32xf32> -> tensor<2048xf32>
+        return %unpack : tensor<2048xf32>
+    }
+}
+  
+module attributes {transform.with_named_sequence} {
+    transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) {
+        %slice_op = transform.structured.match ops{["tensor.parallel_insert_slice"]} in %arg1
+        : (!transform.any_op) -> !transform.any_op
+        %a, %b = transform.test.fuse_consumer %slice_op
+        : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
+        transform.yield
+    }
+}
+//      CHECK: #[[UNPACK_RESULT_MAP:.*]] = affine_map<(d0) -> (d0 * 32)>
+//      CHECK: func.func @fuse_unpack_consumer_into_scf_forall(
+// CHECK-SAME:     %[[ARG0:[a-zA-Z0-9]+]]: tensor<32x32xf32>
+// CHECK-SAME:     %[[ARG1:[a-zA-Z0-9]+]]: tensor<32x32xf32>
+// CHECK-SAME:     %[[ARG2:[a-zA-Z0-9]+]]: tensor<64x32xf32>)
+//      CHECK:   %[[OUT_INIT:.*]] = tensor.empty() : tensor<2048xf32>
+//      CHECK:   %[[FINAL_RESULT:.*]]:2 = scf.forall (%[[IV1:.*]], %[[IV2:.*]]) in (2, 2)
+// CHECK-SAME:      shared_outs(%[[FIRST_OUT_ARG:.*]] = %[[ARG2]], %[[UNPACK_OUT_ARG:.*]] = %[[OUT_INIT]])
+// CHECK-SAME:   {
+//      CHECK:      %[[GENERIC_OUT_SLICE:.*]] = tensor.extract_slice %[[FIRST_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
+//      CHECK:      %[[GENERIC_OUT:.*]] = linalg.generic
+// CHECK-SAME:              outs(%[[GENERIC_OUT_SLICE]] :
+//      CHECK:      %[[UNPACK_RESULT_OFFSET:.*]] = affine.apply #[[UNPACK_RESULT_MAP]](%[[IV1]])
+//      CHECK:      %[[TILED_UNPACK_DEST:.*]] = tensor.extract_slice %[[UNPACK_OUT_ARG]][%[[UNPACK_RESULT_OFFSET]]] [1024] [1]
+//      CHECK:      %[[TILED_UNPACK_OUT:.*]] = tensor.unpack %[[GENERIC_OUT]]
+// CHECK-SAME:                              outer_dims_perm = [0] inner_dims_pos = [0] inner_tiles = [32]
+// CHECK-SAME:                              into %[[TILED_UNPACK_DEST]]
+//      CHECK:      scf.forall.in_parallel {
+//      CHECK:          tensor.parallel_insert_slice %[[TILED_UNPACK_OUT]] into %[[UNPACK_OUT_ARG]][%[[UNPACK_RESULT_OFFSET]]] [1024] [1]
+//      CHECK:          tensor.parallel_insert_slice %[[GENERIC_OUT]] into %[[FIRST_OUT_ARG]][%[[IV1]], %[[IV2]]] [32, 32] [1, 1]
+//      CHECK:       }
+//      CHECK:   }
+//      CHECK:   return %[[FINAL_RESULT]]#1 :

diff  --git a/mlir/test/lib/Interfaces/TilingInterface/TestTilingInterfaceTransformOps.cpp b/mlir/test/lib/Interfaces/TilingInterface/TestTilingInterfaceTransformOps.cpp
index 335db1a61f476..833fb3cc65b81 100644
--- a/mlir/test/lib/Interfaces/TilingInterface/TestTilingInterfaceTransformOps.cpp
+++ b/mlir/test/lib/Interfaces/TilingInterface/TestTilingInterfaceTransformOps.cpp
@@ -160,6 +160,59 @@ transform::TestFuseAndYieldOp::apply(TransformRewriter &rewriter,
                         : DiagnosedSilenceableFailure::success();
 }
 
+//===----------------------------------------------------------------------===//
+// TestFuseConsumerOp
+//===----------------------------------------------------------------------===//
+
+/// Apply fusing of consumer transformation to all payload ops and store both
+/// the original consumer operation as well as the fused consumer operation.
+template <typename Range>
+static LogicalResult
+applyFuseConsumer(RewriterBase &rewriter, Operation *transformOp,
+                  Range &&payloadOps, TransformResults &transformResults) {
+  SmallVector<Operation *> originalConsumerOps;
+  SmallVector<Operation *> fusedConsumerOps;
+
+  for (Operation *target : payloadOps) {
+    rewriter.setInsertionPoint(target);
+
+    FailureOr<scf::SCFFuseConsumerOfSliceResult> fuseConsumerResults =
+        scf::tileAndFuseConsumerOfSlice(rewriter, target);
+
+    if (failed(fuseConsumerResults))
+      return failure();
+
+    // Report back the relevant handles to the transform op.
+    originalConsumerOps.push_back(
+        fuseConsumerResults->origConsumerOperand->getOwner());
+    fusedConsumerOps.push_back(
+        fuseConsumerResults->tiledAndFusedConsumerOperand->getOwner());
+  }
+
+  transformResults.set(transformOp->getOpResult(0), originalConsumerOps);
+  transformResults.set(transformOp->getOpResult(1), fusedConsumerOps);
+  return success();
+}
+
+DiagnosedSilenceableFailure
+transform::TestFuseConsumerOp::apply(TransformRewriter &rewriter,
+                                     TransformResults &transformResults,
+                                     TransformState &state) {
+  LogicalResult result =
+      applyFuseConsumer(rewriter, getOperation(),
+                        state.getPayloadOps(getTarget()), transformResults);
+  return failed(result) ? DiagnosedSilenceableFailure::definiteFailure()
+                        : DiagnosedSilenceableFailure::success();
+}
+
+void transform::TestFuseConsumerOp::getEffects(
+    SmallVectorImpl<MemoryEffects::EffectInstance> &effects) {
+  consumesHandle(getTarget(), effects);
+  producesHandle(getConsumer(), effects);
+  producesHandle(getFusedConsumer(), effects);
+  modifiesPayload(effects);
+}
+
 //===----------------------------------------------------------------------===//
 // TestTileUsingForallOp
 //===----------------------------------------------------------------------===//

diff  --git a/mlir/test/lib/Interfaces/TilingInterface/TestTilingInterfaceTransformOps.td b/mlir/test/lib/Interfaces/TilingInterface/TestTilingInterfaceTransformOps.td
index ef42375e5286d..d55d746bd6aa9 100644
--- a/mlir/test/lib/Interfaces/TilingInterface/TestTilingInterfaceTransformOps.td
+++ b/mlir/test/lib/Interfaces/TilingInterface/TestTilingInterfaceTransformOps.td
@@ -49,6 +49,25 @@ def TestFuseAndYieldOp : Op<Transform_Dialect, "test.fuse_and_yield",
   }];
 }
 
+def TestFuseConsumerOp : Op<Transform_Dialect, "test.fuse_consumer",
+       [DeclareOpInterfaceMethods<TransformOpInterface>,
+        DeclareOpInterfaceMethods<MemoryEffectsOpInterface>,
+        ReportTrackingListenerFailuresOpTrait]> {
+  let description = [{
+    Fuses the consumer of the operation pointed to by the target handle
+    using the options provided as attributes.
+  }];
+
+  let arguments =
+    (ins TransformHandleTypeInterface:$target);
+  let results = (outs TransformHandleTypeInterface:$consumer,
+                      TransformHandleTypeInterface:$fused_consumer);
+
+  let assemblyFormat = [{
+    $target attr-dict `:` functional-type(operands, results)
+  }];
+}
+
 def TestTileUsingForallOp : Op<Transform_Dialect, "test.tile_using_forall",
        [DeclareOpInterfaceMethods<TransformOpInterface>,
         DeclareOpInterfaceMethods<MemoryEffectsOpInterface>,


        


More information about the Mlir-commits mailing list