[Mlir-commits] [mlir] [mlir][Linalg] Refine how broadcast dims are treated (PR #99015)

Andrzej WarzyƄski llvmlistbot at llvm.org
Mon Jul 22 01:22:57 PDT 2024


https://github.com/banach-space updated https://github.com/llvm/llvm-project/pull/99015

>From 9ecdde5b16f37fa1eaa4978cd62ea880ed6def42 Mon Sep 17 00:00:00 2001
From: Andrzej Warzynski <andrzej.warzynski at arm.com>
Date: Fri, 12 Jul 2024 16:52:55 +0000
Subject: [PATCH 1/2] [mlir][Linalg] Refine how broadcast dims are treated

This PR fixes how broadcast dims (identified as "zero" results in
permutation maps) corresponding to a reduction iterator are vectorised
in the case of generic Ops. Here's an example:

```mlir
  #map = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
  #map1 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, 0)>

  func.func @generic_with_reduction_and_broadcast(%arg0: tensor<1x12x197x197xf32>) -> (tensor<1x12x197x1xf32>) {
    %0 = tensor.empty() : tensor<1x12x197x1xf32>

    %1 = linalg.generic {indexing_maps = [#map, #map1],
                        iterator_types = ["parallel", "parallel", "parallel", "reduction"]}
      ins(%arg0 : tensor<1x12x197x197xf32>)
      outs(%0 : tensor<1x12x197x1xf32>) {

    ^bb0(%in: f32, %out: f32):
      %818 = arith.addf %in, %out : f32
      linalg.yield %818 : f32
    } -> tensor<1x12x197x1xf32>
    return %1 : tensor<1x12x197x1xf32>
  }
```

This is a perfectly valid Generic Op, but currently triggers two issues
in the vectoriser. The root cause is this map:

```mlir
  #map1 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, 0)>
```

This map triggers an assert in `reindexIndexingMap` -  this hook
incorrectly assumes that every result in the input map is a `dim`
expression and that there are no constants. That's not the case in this
example. `reindexIndexingMap` is extended to allow maps like the one
above. For now, only constant "zero" results are allowed. This can be
extended in the future once a good motivating example is available.

Separately, the permutation map highlighted above "breaks" mask
calculation (ATM masks are always computed, even in the presence of
static shapes). When applying the following permutation:
```mlir
  (d0, d1, d2, d3) -> (d0, d1, d2, 0)
```

to these canonical shapes (corresponding to the example above):
```
  (1, 12, 197, 197)
```
we end up with the following error:
```bash
error: vector types must have positive constant sizes but got 1, 12, 197, 0
```

The error makes sense and indicates that we should update the
permutation map above to:
```
  (d0, d1, d2, d3) -> (d0, d1, d2)
```

This would correctly give the following vector type:
```
  vector<1x12x197xi1>
```

Fixes #97247
---
 mlir/include/mlir/IR/AffineMap.h              |  4 ++
 .../Linalg/Transforms/Vectorization.cpp       | 18 +++++++-
 mlir/lib/IR/AffineMap.cpp                     | 23 ++++++++++
 .../Linalg/vectorization-with-patterns.mlir   | 40 +++++++++++++++++
 mlir/test/Dialect/Linalg/vectorization.mlir   | 45 +++++++++++++++++++
 5 files changed, 128 insertions(+), 2 deletions(-)

diff --git a/mlir/include/mlir/IR/AffineMap.h b/mlir/include/mlir/IR/AffineMap.h
index 676da6d176497..035a9bcdfb3f8 100644
--- a/mlir/include/mlir/IR/AffineMap.h
+++ b/mlir/include/mlir/IR/AffineMap.h
@@ -354,6 +354,10 @@ class AffineMap {
   /// returns the resulting values. `this` must be symbol-less.
   SmallVector<int64_t, 4> compose(ArrayRef<int64_t> values) const;
 
+  size_t numOfZeroResults() const;
+
+  AffineMap dropZeros();
+
   /// Returns true if the AffineMap represents a subset (i.e. a projection) of a
   /// symbol-less permutation map. `allowZeroInResults` allows projected
   /// permutation maps with constant zero result expressions.
diff --git a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
index 7f7168eb86832..e44c0ffec2bc9 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
@@ -476,7 +476,7 @@ static AffineMap reindexIndexingMap(AffineMap map) {
   assert(map.isProjectedPermutation(/*allowZeroInResults=*/true) &&
          "expected projected permutation");
   auto res = compressUnusedDims(map);
-  assert(res.getNumDims() == res.getNumResults() &&
+  assert(res.getNumDims() == (res.getNumResults() - res.numOfZeroResults()) &&
          "expected reindexed map with same number of dims and results");
   return res;
 }
@@ -629,7 +629,21 @@ static Value buildVectorWrite(RewriterBase &rewriter, Value value,
         loc, value, outputOperand->get(), ValueRange{});
   }
 
-  write = state.maskOperation(rewriter, write, linalgOp, opOperandMap);
+  // The operand map may contain "zero" results, e.g.:
+  //    (d0, d1, d2, d3) -> (d0, d1, d2, 0)
+  // When applied to canonical vector shapes like these:
+  //    (1, 16, 16, 4)
+  // we would get:
+  //    (1, 16, 16, 0)
+  // Instead, we should extract the following map:
+  //    (d0, d1, d2, d3) -> (d0, d1, d2)
+  // This way, the corresponding vector/mask type will be:
+  //    vector<1x16x16xty>
+  // rather than:
+  //    vector<1x16x16x0xty>
+  auto opOperantMapWithoutZeros = opOperandMap.dropZeros();
+  write =
+      state.maskOperation(rewriter, write, linalgOp, opOperantMapWithoutZeros);
 
   // If masked, set in-bounds to true. Masking guarantees that the access will
   // be in-bounds.
diff --git a/mlir/lib/IR/AffineMap.cpp b/mlir/lib/IR/AffineMap.cpp
index 859fb8ebc10e8..110a8d603f917 100644
--- a/mlir/lib/IR/AffineMap.cpp
+++ b/mlir/lib/IR/AffineMap.cpp
@@ -553,6 +553,18 @@ AffineMap AffineMap::dropResults(const llvm::SmallBitVector &positions) const {
   return AffineMap::get(getNumDims(), getNumSymbols(), exprs, getContext());
 }
 
+AffineMap AffineMap::dropZeros() {
+  auto exprs = llvm::to_vector<4>(getResults());
+  SmallVector<AffineExpr, 8> newExprs;
+
+  for (auto expr : getResults()) {
+    auto constExpr = dyn_cast<AffineConstantExpr>(expr);
+    if (!constExpr)
+      newExprs.push_back(expr);
+  }
+  return AffineMap::get(getNumDims(), getNumSymbols(), newExprs, getContext());
+}
+
 AffineMap AffineMap::compose(AffineMap map) const {
   assert(getNumDims() == map.getNumResults() && "Number of results mismatch");
   // Prepare `map` by concatenating the symbols and rewriting its exprs.
@@ -592,6 +604,17 @@ SmallVector<int64_t, 4> AffineMap::compose(ArrayRef<int64_t> values) const {
   return res;
 }
 
+size_t AffineMap::numOfZeroResults() const {
+  size_t res = 0;
+  for (auto expr : getResults()) {
+    auto constExpr = dyn_cast<AffineConstantExpr>(expr);
+    if (constExpr && constExpr.getValue() == 0)
+      res++;
+  }
+
+  return res;
+}
+
 bool AffineMap::isProjectedPermutation(bool allowZeroInResults) const {
   if (getNumSymbols() > 0)
     return false;
diff --git a/mlir/test/Dialect/Linalg/vectorization-with-patterns.mlir b/mlir/test/Dialect/Linalg/vectorization-with-patterns.mlir
index d7ff1ded9d933..bf015ef409b81 100644
--- a/mlir/test/Dialect/Linalg/vectorization-with-patterns.mlir
+++ b/mlir/test/Dialect/Linalg/vectorization-with-patterns.mlir
@@ -1899,3 +1899,43 @@ module attributes {transform.with_named_sequence} {
 //       CHECK:     %[[VAL_8:.*]] = vector.transpose %[[VAL_7]], [1, 0] : vector<1x4xf32> to vector<4x1xf32>
 //       CHECK:     vector.transfer_write %[[VAL_8]], %{{.*}} {in_bounds = [true, true]} : vector<4x1xf32>, tensor<4x1xf32>
 //       CHECK:     vector.transfer_write %[[VAL_7]], %{{.*}} {in_bounds = [true, true]} : vector<1x4xf32>, tensor<1x4xf32>
+
+// -----
+
+// Extracted from: https://github.com/llvm/llvm-project/issues/97247
+
+#map = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
+#map1 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, 0)>
+
+func.func @generic_with_reduction_and_broadcast(%arg0: tensor<1x12x197x197xf32>) -> (tensor<1x12x197x1xf32>) {
+  %0 = tensor.empty() : tensor<1x12x197x1xf32>
+  %1 = linalg.generic {indexing_maps = [#map, #map1], iterator_types = ["parallel", "parallel", "parallel", "reduction"]} ins(%arg0 : tensor<1x12x197x197xf32>) outs(%0 : tensor<1x12x197x1xf32>) {
+  ^bb0(%in: f32, %out: f32):
+    %818 = arith.addf %in, %out : f32
+    linalg.yield %818 : f32
+  } -> tensor<1x12x197x1xf32>
+  return %1 : tensor<1x12x197x1xf32>
+}
+module attributes {transform.with_named_sequence} {
+  transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) {
+    %0 = transform.structured.match ops{["linalg.generic"]} in %arg0 : (!transform.any_op) -> !transform.any_op
+    %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
+    %2 = transform.structured.vectorize_children_and_apply_patterns %1 : (!transform.any_op) -> !transform.any_op
+    transform.yield
+  }
+}
+
+// CHECK: #[[$ATTR_32:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)>
+
+// CHECK-LABEL:   func.func @generic_with_reduction_and_broadcast(
+// CHECK-SAME:                                                    %[[VAL_0:.*]]: tensor<1x12x197x197xf32>) -> tensor<1x12x197x1xf32> {
+// CHECK:           %[[VAL_1:.*]] = arith.constant 0.000000e+00 : f32
+// CHECK:           %[[VAL_2:.*]] = arith.constant 0 : index
+// CHECK:           %[[VAL_3:.*]] = tensor.empty() : tensor<1x12x197x1xf32>
+// CHECK:           %[[VAL_4:.*]] = vector.transfer_read %[[VAL_0]]{{\[}}%[[VAL_2]], %[[VAL_2]], %[[VAL_2]], %[[VAL_2]]], %[[VAL_1]] {in_bounds = [true, true, true, true]} : tensor<1x12x197x197xf32>, vector<1x12x197x197xf32>
+// CHECK:           %[[VAL_5:.*]] = vector.transfer_read %[[VAL_3]]{{\[}}%[[VAL_2]], %[[VAL_2]], %[[VAL_2]], %[[VAL_2]]], %[[VAL_1]] {in_bounds = [true, true, true], permutation_map = #[[$ATTR_32]]} : tensor<1x12x197x1xf32>, vector<1x12x197xf32>
+// CHECK:           %[[VAL_6:.*]] = vector.multi_reduction <add>, %[[VAL_4]], %[[VAL_5]] [3] : vector<1x12x197x197xf32> to vector<1x12x197xf32>
+// CHECK:           %[[VAL_7:.*]] = vector.broadcast %[[VAL_6]] : vector<1x12x197xf32> to vector<1x1x12x197xf32>
+// CHECK:           %[[VAL_8:.*]] = vector.transpose %[[VAL_7]], [1, 2, 3, 0] : vector<1x1x12x197xf32> to vector<1x12x197x1xf32>
+// CHECK:           %[[VAL_9:.*]] = vector.transfer_write %[[VAL_8]], %[[VAL_3]]{{\[}}%[[VAL_2]], %[[VAL_2]], %[[VAL_2]], %[[VAL_2]]] {in_bounds = [true, true, true, true]} : vector<1x12x197x1xf32>, tensor<1x12x197x1xf32>
+// CHECK:           return %[[VAL_9]] : tensor<1x12x197x1xf32>
diff --git a/mlir/test/Dialect/Linalg/vectorization.mlir b/mlir/test/Dialect/Linalg/vectorization.mlir
index 783149971f0d6..0e2b2458d29cd 100644
--- a/mlir/test/Dialect/Linalg/vectorization.mlir
+++ b/mlir/test/Dialect/Linalg/vectorization.mlir
@@ -147,6 +147,51 @@ module attributes {transform.with_named_sequence} {
 
 // -----
 
+#map = affine_map<(d0, d1) -> (d0, d1)>
+#map1 = affine_map<(d0, d1) -> (d0, 0)>
+
+func.func @dynamic_generic_with_reduction_and_broadcast(%arg0: tensor<?x?xf32>, %init: tensor<?x?xf32>) -> (tensor<?x?xf32>) {
+  %0 = linalg.generic { indexing_maps = [#map, #map1],
+                        iterator_types = ["parallel", "reduction"]}
+    ins(%arg0 : tensor<?x?xf32>)
+    outs(%init : tensor<?x?xf32>) {
+  ^bb0(%in: f32, %out: f32):
+    %1 = arith.addf %in, %out : f32
+    linalg.yield %1 : f32
+  } -> tensor<?x?xf32>
+  return %0 : tensor<?x?xf32>
+}
+// CHECK: #[[$MAP:.+]] = affine_map<(d0, d1) -> (d0)>
+
+// CHECK-LABEL:   func.func @dynamic_generic_with_reduction_and_broadcast(
+// CHECK-SAME:      %[[VAL_0:.*]]: tensor<?x?xf32>,
+// CHECK-SAME:      %[[VAL_1:.*]]: tensor<?x?xf32>) -> tensor<?x?xf32> {
+// CHECK:           %[[VAL_2:.*]] = arith.constant 0 : index
+// CHECK:           %[[VAL_3:.*]] = tensor.dim %[[VAL_0]], %[[VAL_2]] : tensor<?x?xf32>
+// CHECK:           %[[VAL_4:.*]] = arith.constant 1 : index
+// CHECK:           %[[VAL_5:.*]] = tensor.dim %[[VAL_0]], %[[VAL_4]] : tensor<?x?xf32>
+// CHECK:           %[[VAL_6:.*]] = arith.constant 0 : index
+// CHECK:           %[[VAL_7:.*]] = arith.constant 0.000000e+00 : f32
+// CHECK:           %[[VAL_8:.*]] = vector.create_mask %[[VAL_3]], %[[VAL_5]] : vector<4x4xi1>
+// CHECK:           %[[VAL_9:.*]] = vector.mask %[[VAL_8]] { vector.transfer_read %[[VAL_0]]{{\[}}%[[VAL_6]], %[[VAL_6]]], %[[VAL_7]] {in_bounds = [true, true]} : tensor<?x?xf32>, vector<4x4xf32> } : vector<4x4xi1> -> vector<4x4xf32>
+// CHECK:           %[[VAL_10:.*]] = arith.constant 0.000000e+00 : f32
+// CHECK:           %[[VAL_11:.*]] = vector.create_mask %[[VAL_3]] : vector<4xi1>
+// CHECK:           %[[VAL_12:.*]] = vector.mask %[[VAL_11]] { vector.transfer_read %[[VAL_1]]{{\[}}%[[VAL_6]], %[[VAL_6]]], %[[VAL_10]] {in_bounds = [true], permutation_map = #[[$MAP]]} : tensor<?x?xf32>, vector<4xf32> } : vector<4xi1> -> vector<4xf32>
+// CHECK:           %[[VAL_13:.*]] = vector.mask %[[VAL_8]] { vector.multi_reduction <add>, %[[VAL_9]], %[[VAL_12]] [1] : vector<4x4xf32> to vector<4xf32> } : vector<4x4xi1> -> vector<4xf32>
+// CHECK:           %[[VAL_14:.*]] = arith.constant 0 : index
+// CHECK:           %[[VAL_15:.*]] = vector.mask %[[VAL_11]] { vector.transfer_write %[[VAL_13]], %[[VAL_1]]{{\[}}%[[VAL_14]], %[[VAL_14]]] {in_bounds = [true], permutation_map = #[[$MAP]]} : vector<4xf32>, tensor<?x?xf32> } : vector<4xi1> -> tensor<?x?xf32>
+// CHECK:           return %[[VAL_15]] : tensor<?x?xf32>
+
+module attributes {transform.with_named_sequence} {
+  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
+    %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
+    transform.structured.vectorize %0 vector_sizes [4, 4] : !transform.any_op
+    transform.yield
+  }
+}
+
+// -----
+
 func.func @vectorize_dynamic_2d_transpose(%arg0: tensor<?x?xf32>,
                                           %arg1: tensor<?x?xf32>,
                                           %arg2: tensor<?x?xf32>) -> tensor<?x?xf32> {

>From c9c9bff34300a208b5b36ba5b8d143818ffba0e6 Mon Sep 17 00:00:00 2001
From: Andrzej Warzynski <andrzej.warzynski at arm.com>
Date: Mon, 22 Jul 2024 07:41:50 +0000
Subject: [PATCH 2/2] fixup! [mlir][Linalg] Refine how broadcast dims are
 treated

Addressing PR comments
---
 mlir/include/mlir/IR/AffineMap.h              | 18 +++++++++++--
 .../Linalg/Transforms/Vectorization.cpp       |  5 ++--
 mlir/lib/IR/AffineMap.cpp                     | 26 +++++++++----------
 3 files changed, 32 insertions(+), 17 deletions(-)

diff --git a/mlir/include/mlir/IR/AffineMap.h b/mlir/include/mlir/IR/AffineMap.h
index 035a9bcdfb3f8..e30950bbf292d 100644
--- a/mlir/include/mlir/IR/AffineMap.h
+++ b/mlir/include/mlir/IR/AffineMap.h
@@ -354,9 +354,23 @@ class AffineMap {
   /// returns the resulting values. `this` must be symbol-less.
   SmallVector<int64_t, 4> compose(ArrayRef<int64_t> values) const;
 
-  size_t numOfZeroResults() const;
+  /// Returns the number of "zero" results (constant values == 0) in this map.
+  ///
+  /// Example:
+  ///   * For `(d0, d1) -> (d0, d1, 0)` returns 1
+  ///   * For `(d0, d1, d2) -> (d0, d1)` returns 0
+  ///   * For `(d0, d1, d2) -> (d0, 0, d1, 0, d2)` returns 2
+  size_t getNumOfZeroResults() const;
 
-  AffineMap dropZeros();
+  /// Returns the AffineMap resulting from removing "zero" results (constant
+  /// values == 0) from this map.
+  ///
+  /// Example:
+  ///   * For `(d0, d1) -> (d0, d1, 0)` returns `(d0, d1) -> (d0, d1)`
+  ///   * For `(d0, d1, d2) -> (d0, d1)` returns `(d0, d1, d2) -> (d0, d1)`
+  ///   * For `(d0, d1, d2) -> (d0, 0, d1, 0, d2)` returns
+  ///     `(d0, d1, d2) -> (d0, d1, d2)`
+  AffineMap dropZeroResults();
 
   /// Returns true if the AffineMap represents a subset (i.e. a projection) of a
   /// symbol-less permutation map. `allowZeroInResults` allows projected
diff --git a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
index e44c0ffec2bc9..655623344a5f8 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
@@ -476,7 +476,8 @@ static AffineMap reindexIndexingMap(AffineMap map) {
   assert(map.isProjectedPermutation(/*allowZeroInResults=*/true) &&
          "expected projected permutation");
   auto res = compressUnusedDims(map);
-  assert(res.getNumDims() == (res.getNumResults() - res.numOfZeroResults()) &&
+  assert(res.getNumDims() ==
+             (res.getNumResults() - res.getNumOfZeroResults()) &&
          "expected reindexed map with same number of dims and results");
   return res;
 }
@@ -641,7 +642,7 @@ static Value buildVectorWrite(RewriterBase &rewriter, Value value,
   //    vector<1x16x16xty>
   // rather than:
   //    vector<1x16x16x0xty>
-  auto opOperantMapWithoutZeros = opOperandMap.dropZeros();
+  AffineMap opOperantMapWithoutZeros = opOperandMap.dropZeroResults();
   write =
       state.maskOperation(rewriter, write, linalgOp, opOperantMapWithoutZeros);
 
diff --git a/mlir/lib/IR/AffineMap.cpp b/mlir/lib/IR/AffineMap.cpp
index 110a8d603f917..59f6e723dbd97 100644
--- a/mlir/lib/IR/AffineMap.cpp
+++ b/mlir/lib/IR/AffineMap.cpp
@@ -553,18 +553,6 @@ AffineMap AffineMap::dropResults(const llvm::SmallBitVector &positions) const {
   return AffineMap::get(getNumDims(), getNumSymbols(), exprs, getContext());
 }
 
-AffineMap AffineMap::dropZeros() {
-  auto exprs = llvm::to_vector<4>(getResults());
-  SmallVector<AffineExpr, 8> newExprs;
-
-  for (auto expr : getResults()) {
-    auto constExpr = dyn_cast<AffineConstantExpr>(expr);
-    if (!constExpr)
-      newExprs.push_back(expr);
-  }
-  return AffineMap::get(getNumDims(), getNumSymbols(), newExprs, getContext());
-}
-
 AffineMap AffineMap::compose(AffineMap map) const {
   assert(getNumDims() == map.getNumResults() && "Number of results mismatch");
   // Prepare `map` by concatenating the symbols and rewriting its exprs.
@@ -604,7 +592,7 @@ SmallVector<int64_t, 4> AffineMap::compose(ArrayRef<int64_t> values) const {
   return res;
 }
 
-size_t AffineMap::numOfZeroResults() const {
+size_t AffineMap::getNumOfZeroResults() const {
   size_t res = 0;
   for (auto expr : getResults()) {
     auto constExpr = dyn_cast<AffineConstantExpr>(expr);
@@ -615,6 +603,18 @@ size_t AffineMap::numOfZeroResults() const {
   return res;
 }
 
+AffineMap AffineMap::dropZeroResults() {
+  auto exprs = llvm::to_vector(getResults());
+  SmallVector<AffineExpr> newExprs;
+
+  for (auto expr : getResults()) {
+    auto constExpr = dyn_cast<AffineConstantExpr>(expr);
+    if (!constExpr || constExpr.getValue() != 0)
+      newExprs.push_back(expr);
+  }
+  return AffineMap::get(getNumDims(), getNumSymbols(), newExprs, getContext());
+}
+
 bool AffineMap::isProjectedPermutation(bool allowZeroInResults) const {
   if (getNumSymbols() > 0)
     return false;



More information about the Mlir-commits mailing list