[Mlir-commits] [mlir] [mlir][Tensor] Add pattern to fold concats of empty. (PR #98994)
llvmlistbot at llvm.org
llvmlistbot at llvm.org
Mon Jul 15 22:48:04 PDT 2024
llvmbot wrote:
<!--LLVM PR SUMMARY COMMENT-->
@llvm/pr-subscribers-mlir
Author: None (MaheshRavishankar)
<details>
<summary>Changes</summary>
A concatenation of empty tensors can be replaced by a single empty tensor of the concatenated shape. Add this pattern to `populateFoldTensorEmptyPatterns`.
---
Full diff: https://github.com/llvm/llvm-project/pull/98994.diff
2 Files Affected:
- (modified) mlir/lib/Dialect/Tensor/Transforms/EmptyOpPatterns.cpp (+35-2)
- (modified) mlir/test/Dialect/Tensor/fold-empty-op.mlir (+38)
``````````diff
diff --git a/mlir/lib/Dialect/Tensor/Transforms/EmptyOpPatterns.cpp b/mlir/lib/Dialect/Tensor/Transforms/EmptyOpPatterns.cpp
index 43ad0acaf7420..60b0c3e759b6c 100644
--- a/mlir/lib/Dialect/Tensor/Transforms/EmptyOpPatterns.cpp
+++ b/mlir/lib/Dialect/Tensor/Transforms/EmptyOpPatterns.cpp
@@ -136,6 +136,38 @@ struct FoldEmptyTensorWithUnPackOp : public OpRewritePattern<UnPackOp> {
}
};
+// Fold concat operation where all the operands are empty.
+struct FoldConcatsOfEmpty : public OpRewritePattern<ConcatOp> {
+ using OpRewritePattern<ConcatOp>::OpRewritePattern;
+
+ LogicalResult matchAndRewrite(tensor::ConcatOp concatOp,
+ PatternRewriter &rewriter) const override {
+ auto concatOperands = concatOp.getInputs();
+ if (concatOperands.empty()) {
+ return failure();
+ }
+ auto firstEmptyOp = concatOperands.front().getDefiningOp<tensor::EmptyOp>();
+ if (!firstEmptyOp) {
+ return failure();
+ }
+ auto isDefinedByEmptyOp = [](Value v) -> bool {
+ return v.getDefiningOp<tensor::EmptyOp>();
+ };
+ if (!llvm::all_of(concatOperands.drop_front(), isDefinedByEmptyOp)) {
+ return rewriter.notifyMatchFailure(
+ concatOp, "not all operands are defined by an empty op");
+ }
+ SmallVector<SmallVector<OpFoldResult>> resultShape;
+ if (failed(concatOp.reifyResultShapes(rewriter, resultShape))) {
+ return rewriter.notifyMatchFailure(concatOp,
+ "failed to get result shape");
+ }
+ rewriter.replaceOpWithNewOp<tensor::EmptyOp>(
+ concatOp, resultShape[0], concatOp.getResultType().getElementType());
+ return success();
+ }
+};
+
} // namespace
void mlir::tensor::populateFoldTensorEmptyPatterns(RewritePatternSet &patterns,
@@ -144,6 +176,7 @@ void mlir::tensor::populateFoldTensorEmptyPatterns(RewritePatternSet &patterns,
FoldEmptyTensorWithReshapeOp<tensor::ExpandShapeOp>,
FoldEmptyTensorWithReshapeOp<tensor::CollapseShapeOp>>(
patterns.getContext(), /*benefit=*/1, foldSingleUseOnly);
- patterns.add<FoldEmptyTensorWithPackOp, FoldEmptyTensorWithUnPackOp>(
- patterns.getContext(), /*benefit=*/1);
+ patterns.add<FoldConcatsOfEmpty, FoldEmptyTensorWithPackOp,
+ FoldEmptyTensorWithUnPackOp>(patterns.getContext(),
+ /*benefit=*/1);
}
diff --git a/mlir/test/Dialect/Tensor/fold-empty-op.mlir b/mlir/test/Dialect/Tensor/fold-empty-op.mlir
index e94f6ec7ec56e..5beb8c250aa10 100644
--- a/mlir/test/Dialect/Tensor/fold-empty-op.mlir
+++ b/mlir/test/Dialect/Tensor/fold-empty-op.mlir
@@ -164,3 +164,41 @@ func.func @double_use_of_tensor_empty(%arg0: index, %arg1: index)
// CHECK: tensor.empty{{.*}} : tensor<?x10x40xf32>
// CHECK: tensor.extract_slice
// CHECK: tensor.extract_slice
+
+// -----
+
+module attributes {transform.with_named_sequence} {
+ transform.named_sequence @__transform_main(%root : !transform.any_op {transform.readonly}) {
+ %func_op = transform.structured.match ops{["func.func"]} in %root : (!transform.any_op) -> !transform.op<"func.func">
+ transform.apply_patterns to %func_op {
+ transform.apply_patterns.tensor.fold_tensor_empty
+ } : !transform.op<"func.func">
+ transform.yield
+ }
+}
+
+func.func @concats_of_empty(
+ %arg0 : index, %arg1 : index, %arg2 : index, %arg3 : index)
+ -> tensor<5x?x?xf32>
+{
+ %0 = tensor.empty(%arg0, %arg1) : tensor<5x?x?xf32>
+ %1 = tensor.empty(%arg2, %arg3) : tensor<5x?x?xf32>
+ %2 = tensor.concat dim(1) %0, %1 : (tensor<5x?x?xf32>, tensor<5x?x?xf32>) -> tensor<5x?x?xf32>
+ return %2 : tensor<5x?x?xf32>
+}
+// CHECK: #[[MAP:.+]] = affine_map<()[s0, s1] -> (s0 + s1)>
+// CHECK: func @concats_of_empty(
+// CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: index,
+// CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: index,
+// CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]: index,
+// CHECK-SAME: %[[ARG3:[a-zA-Z0-9]+]]: index)
+// CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index
+// CHECK-DAG: %[[C2:.+]] = arith.constant 2 : index
+// CHECK-DAG: %[[EMPTY0:.+]] = tensor.empty(%[[ARG0]], %[[ARG1]])
+// CHECK-DAG: %[[EMPTY1:.+]] = tensor.empty(%[[ARG2]], %[[ARG3]])
+// CHECK: %[[D2:.+]] = tensor.dim %[[EMPTY0]], %[[C2]]
+// CHECK-DAG: %[[D0_1:.+]] = tensor.dim %[[EMPTY0]], %[[C1]]
+// CHECK-DAG: %[[D1_1:.+]] = tensor.dim %[[EMPTY1]], %[[C1]]
+// CHECK-DAG: %[[SUM:.+]] = affine.apply #[[MAP]]()[%[[D0_1]], %[[D1_1]]]
+// CHECK: %[[NEW_EMPTY:.+]] = tensor.empty(%[[SUM]], %[[D2]])
+// CHECK: return %[[NEW_EMPTY]]
``````````
</details>
https://github.com/llvm/llvm-project/pull/98994
More information about the Mlir-commits
mailing list