[Mlir-commits] [mlir] [mlir][linalg] Restrict scalable vectorisation (PR #98639)

Diego Caballero llvmlistbot at llvm.org
Fri Jul 12 16:01:22 PDT 2024


================
@@ -1936,26 +1936,79 @@ vectorizePadOpPrecondition(tensor::PadOp padOp,
   return success();
 }
 
-/// Preconditions for scalable vectors.
+/// Preconditions for scalable vectors. This is quite restrictive - it models
+/// the fact that in practice we would only make selected dimensions scalable.
 static LogicalResult
 vectorizeScalableVectorPrecondition(Operation *op,
                                     ArrayRef<int64_t> inputVectorSizes,
                                     ArrayRef<bool> inputScalableVecDims) {
   assert(inputVectorSizes.size() == inputScalableVecDims.size() &&
          "Number of input vector sizes and scalable dims doesn't match");
 
-  if (inputVectorSizes.empty())
-    return success();
+  size_t numOfScalableDims =
+      llvm::count_if(inputScalableVecDims, [](bool flag) { return flag; });
 
-  bool isScalable = inputScalableVecDims.back();
-  if (!isScalable)
+  if (numOfScalableDims == 0)
     return success();
 
-  // Only element-wise and 1d depthwise conv ops supported in the presence of
-  // scalable dims.
   auto linalgOp = dyn_cast<LinalgOp>(op);
-  return success(linalgOp && (isElementwise(linalgOp) ||
-                              isa<linalg::DepthwiseConv1DNwcWcOp>(op)));
+
+  // Cond 1: There's been no need for scalable vectorisation of
+  // non-linalg Ops so far
+  if (!linalgOp)
+    return failure();
+
+  // Cond 2: There's been no need for more than 2 scalable dims so far
+  if (numOfScalableDims > 2)
+    return failure();
+
+  // Cond 3: Look at the configuration in `inputScalableVecDims` and verify that
+  // it matches one of the supported cases:
+  //  1. exactly 1 dim is scalable and that's the _last_ parallel dim
----------------
dcaballe wrote:

This feels like a strong limitations. Using split reduction, we should be able to vectorize the K dimension in a matmul, right? And any arbitrary generic op. What is the main concern here? It should be ok as long as we have a single scalable dimension, isn't it?

https://github.com/llvm/llvm-project/pull/98639


More information about the Mlir-commits mailing list