[Mlir-commits] [mlir] [MLIR][Vector] Generalize DropUnitDimFromElementwiseOps to non leading / trailing dimensions. (PR #98455)
llvmlistbot at llvm.org
llvmlistbot at llvm.org
Thu Jul 11 03:32:21 PDT 2024
llvmbot wrote:
<!--LLVM PR SUMMARY COMMENT-->
@llvm/pr-subscribers-mlir-vector
Author: Hugo Trachino (nujaa)
<details>
<summary>Changes</summary>
Generalizes DropUnitDimFromElementwiseOps to support inner unit dimensions.
This change stems from improving lowering of contractionOps for Arm SME. Where we end up with inner unit dimensions on MulOp, BroadcastOp and TransposeOp, preventing the generation of outerproducts.
discussed [here](https://discourse.llvm.org/t/on-improving-arm-sme-lowering-resilience-in-mlir/78543/17?u=nujaa).
Fix after : https://github.com/llvm/llvm-project/pull/97652 showed an unhandled edge case when all dimensions are one.
---
Full diff: https://github.com/llvm/llvm-project/pull/98455.diff
2 Files Affected:
- (modified) mlir/lib/Dialect/Vector/Transforms/VectorTransforms.cpp (+36-26)
- (modified) mlir/test/Dialect/Vector/vector-transfer-flatten.mlir (+51)
``````````diff
diff --git a/mlir/lib/Dialect/Vector/Transforms/VectorTransforms.cpp b/mlir/lib/Dialect/Vector/Transforms/VectorTransforms.cpp
index da5954b70a2ec..4edc85af9ee60 100644
--- a/mlir/lib/Dialect/Vector/Transforms/VectorTransforms.cpp
+++ b/mlir/lib/Dialect/Vector/Transforms/VectorTransforms.cpp
@@ -1622,7 +1622,34 @@ struct ChainedReduction final : OpRewritePattern<vector::ReductionOp> {
}
};
-/// For vectors with either leading or trailing unit dim, replaces:
+// Scalable unit dimensions are not supported. Folding such dimensions would
+// require "shifting" the scalable flag onto some other fixed-width dim (e.g.
+// vector<[1]x4xf32> -> vector<[4]xf32>). This could be implemented in the
+// future.
+static VectorType dropNonScalableUnitDimFromType(VectorType inVecTy) {
+ auto inVecShape = inVecTy.getShape();
+ auto inVecScalableDims = inVecTy.getScalableDims();
+ SmallVector<int64_t> newShape;
+ SmallVector<bool> newScalableDims;
+ if (llvm::all_of(inVecShape, [](int64_t dim) { return dim == 1; }) &&
+ llvm::none_of(inVecScalableDims,
+ [](bool isScalable) { return isScalable; })) {
+ newShape.push_back(1);
+ newScalableDims.push_back(false);
+ } else {
+ for (auto [dim, isScalable] :
+ llvm::zip_equal(inVecShape, inVecScalableDims)) {
+ if (dim == 1 && !isScalable)
+ continue;
+
+ newShape.push_back(dim);
+ newScalableDims.push_back(isScalable);
+ }
+ }
+ return VectorType::get(newShape, inVecTy.getElementType(), newScalableDims);
+}
+
+/// For vectors with at least an unit dim, replaces:
/// elementwise(a, b)
/// with:
/// sc_a = shape_cast(a)
@@ -1634,20 +1661,16 @@ struct ChainedReduction final : OpRewritePattern<vector::ReductionOp> {
/// required to be rank > 1.
///
/// Ex:
-/// ```
/// %mul = arith.mulf %B_row, %A_row : vector<1x[4]xf32>
/// %cast = vector.shape_cast %mul : vector<1x[4]xf32> to vector<[4]xf32>
-/// ```
///
/// gets converted to:
///
-/// ```
/// %B_row_sc = vector.shape_cast %B_row : vector<1x[4]xf32> to vector<[4]xf32>
/// %A_row_sc = vector.shape_cast %A_row : vector<1x[4]xf32> to vector<[4]xf32>
/// %mul = arith.mulf %B_row_sc, %A_row_sc : vector<[4]xf32>
/// %cast_new = vector.shape_cast %mul : vector<[4]xf32> to vector<1x[4]xf32>
/// %cast = vector.shape_cast %cast_new : vector<1x[4]xf32> to vector<[4]xf32>
-/// ```
///
/// Patterns for folding shape_casts should instantly eliminate `%cast_new` and
/// `%cast`.
@@ -1667,42 +1690,29 @@ struct DropUnitDimFromElementwiseOps final
// guaranteed to have identical shapes (with some exceptions such as
// `arith.select`) and it suffices to only check one of them.
auto sourceVectorType = dyn_cast<VectorType>(op->getOperand(0).getType());
- if (!sourceVectorType)
- return failure();
- if (sourceVectorType.getRank() < 2)
+ if (!sourceVectorType || sourceVectorType.getRank() < 2)
return failure();
- bool hasTrailingDimUnitFixed =
- ((sourceVectorType.getShape().back() == 1) &&
- (!sourceVectorType.getScalableDims().back()));
- bool hasLeadingDimUnitFixed =
- ((sourceVectorType.getShape().front() == 1) &&
- (!sourceVectorType.getScalableDims().front()));
- if (!hasLeadingDimUnitFixed && !hasTrailingDimUnitFixed)
- return failure();
-
- // Drop leading/trailing unit dim by applying vector.shape_cast to all
- // operands
- int64_t dim = hasLeadingDimUnitFixed ? 0 : sourceVectorType.getRank() - 1;
-
SmallVector<Value> newOperands;
auto loc = op->getLoc();
for (auto operand : op->getOperands()) {
auto opVectorType = cast<VectorType>(operand.getType());
- VectorType newVType = VectorType::Builder(opVectorType).dropDim(dim);
+ auto newVType = dropNonScalableUnitDimFromType(opVectorType);
+ if (newVType == opVectorType)
+ return rewriter.notifyMatchFailure(op, "No unit dimension to remove.");
+
auto opSC = rewriter.create<vector::ShapeCastOp>(loc, newVType, operand);
newOperands.push_back(opSC);
}
VectorType newResultVectorType =
- VectorType::Builder(resultVectorType).dropDim(dim);
- // Create an updated elementwise Op without leading/trailing unit dim
+ dropNonScalableUnitDimFromType(resultVectorType);
+ // Create an updated elementwise Op without unit dim.
Operation *elementwiseOp =
rewriter.create(loc, op->getName().getIdentifier(), newOperands,
newResultVectorType, op->getAttrs());
- // Restore the leading/trailing unit dim by applying vector.shape_cast
- // to the result
+ // Restore the unit dim by applying vector.shape_cast to the result.
rewriter.replaceOpWithNewOp<ShapeCastOp>(op, resultVectorType,
elementwiseOp->getResult(0));
diff --git a/mlir/test/Dialect/Vector/vector-transfer-flatten.mlir b/mlir/test/Dialect/Vector/vector-transfer-flatten.mlir
index 5fd3cbd54aa58..303f841e8a828 100644
--- a/mlir/test/Dialect/Vector/vector-transfer-flatten.mlir
+++ b/mlir/test/Dialect/Vector/vector-transfer-flatten.mlir
@@ -604,6 +604,57 @@ func.func @fold_unit_dims_entirely(%arg0 : vector<8xi32>,
// -----
+func.func @fold_inner_unit_dim(%arg0 : vector<8x1x3xf128>,
+ %arg1 : vector<1x8x3xf128>) -> vector<8x3xf128> {
+ %sc_arg1 = vector.shape_cast %arg1 : vector<1x8x3xf128> to vector<8x1x3xf128>
+ %mul = arith.mulf %arg0, %sc_arg1 : vector<8x1x3xf128>
+ %res = vector.shape_cast %mul : vector<8x1x3xf128> to vector<8x3xf128>
+ return %res : vector<8x3xf128>
+}
+
+// CHECK-LABEL: func.func @fold_inner_unit_dim(
+// CHECK-SAME: %[[VAL_0:.*]]: vector<8x1x3xf128>,
+// CHECK-SAME: %[[VAL_1:.*]]: vector<1x8x3xf128>) -> vector<8x3xf128> {
+// CHECK: %[[VAL_2:.*]] = vector.shape_cast %[[VAL_0]] : vector<8x1x3xf128> to vector<8x3xf128>
+// CHECK: %[[VAL_3:.*]] = vector.shape_cast %[[VAL_1]] : vector<1x8x3xf128> to vector<8x3xf128>
+// CHECK: %[[VAL_4:.*]] = arith.mulf %[[VAL_2]], %[[VAL_3]] : vector<8x3xf128>
+// CHECK: return %[[VAL_4]] : vector<8x3xf128>
+
+// -----
+
+func.func @fold_inner_unit_dim_scalable(%arg0 : vector<8x1x[1]x3xf128>,
+ %arg1 : vector<1x8x[1]x3xf128>) -> vector<8x[1]x3xf128> {
+ %sc_arg1 = vector.shape_cast %arg1 : vector<1x8x[1]x3xf128> to vector<8x1x[1]x3xf128>
+ %mul = arith.mulf %arg0, %sc_arg1 : vector<8x1x[1]x3xf128>
+ %res = vector.shape_cast %mul : vector<8x1x[1]x3xf128> to vector<8x[1]x3xf128>
+ return %res : vector<8x[1]x3xf128>
+}
+
+// CHECK-LABEL: func.func @fold_inner_unit_dim_scalable(
+// CHECK-SAME: %[[VAL_0:.*]]: vector<8x1x[1]x3xf128>,
+// CHECK-SAME: %[[VAL_1:.*]]: vector<1x8x[1]x3xf128>) -> vector<8x[1]x3xf128> {
+// CHECK: %[[VAL_2:.*]] = vector.shape_cast %[[VAL_0]] : vector<8x1x[1]x3xf128> to vector<8x[1]x3xf128>
+// CHECK: %[[VAL_3:.*]] = vector.shape_cast %[[VAL_1]] : vector<1x8x[1]x3xf128> to vector<8x[1]x3xf128>
+// CHECK: %[[VAL_4:.*]] = arith.mulf %[[VAL_2]], %[[VAL_3]] : vector<8x[1]x3xf128>
+// CHECK: return %[[VAL_4]] : vector<8x[1]x3xf128>
+
+// -----
+
+func.func @fold_all_unit_dims(%arg0: vector<1x1xf32>) -> vector<1xf32> {
+ %0 = arith.mulf %arg0, %arg0 : vector<1x1xf32>
+ %res = vector.shape_cast %0 : vector<1x1xf32> to vector<1xf32>
+ return %res : vector<1xf32>
+}
+
+// CHECK-LABEL: func.func @fold_all_unit_dims(
+// CHECK-SAME: %[[VAL_0:.*]]: vector<1x1xf32>) -> vector<1xf32>
+// CHECK: %[[VAL_1:.*]] = vector.shape_cast %[[VAL_0]] : vector<1x1xf32> to vector<1xf32>
+// CHECK: %[[VAL_2:.*]] = vector.shape_cast %[[VAL_0]] : vector<1x1xf32> to vector<1xf32>
+// CHECK: %[[VAL_3:.*]] = arith.mulf %[[VAL_1]], %[[VAL_2]] : vector<1xf32>
+// CHECK: return %[[VAL_3]] : vector<1xf32>
+
+// -----
+
func.func @negative_out_of_bound_transfer_read(
%arg : memref<?x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>>) -> vector<5x4x3x2xi8> {
%c0 = arith.constant 0 : index
``````````
</details>
https://github.com/llvm/llvm-project/pull/98455
More information about the Mlir-commits
mailing list