[Mlir-commits] [mlir] [mlir][vector] add tensor.concat, bitcast, expand_shape, collapse_shape vectorization support (PR #97297)

Oleksandr Alex Zinenko llvmlistbot at llvm.org
Tue Jul 9 02:11:44 PDT 2024


================
@@ -1931,6 +2134,108 @@ vectorizePadOpPrecondition(tensor::PadOp padOp,
   return success();
 }
 
+static LogicalResult
+lowerExpandOpPrecondition(tensor::ExpandShapeOp expandOp,
+                          ArrayRef<int64_t> inputVectorSizes) {
+  auto resultType = expandOp->getResultTypes()[0];
+  auto resultShape = mlir::dyn_cast<ShapedType>(resultType);
+  // check reassociation
+  llvm::SmallVector<int64_t> associateIndices;
+  for (auto &attr : expandOp.getReassociation()) {
+    for (auto &indice : mlir::dyn_cast<ArrayAttr>(attr)) {
+      associateIndices.push_back(mlir::dyn_cast<IntegerAttr>(indice).getInt());
+    }
+  }
+
+  if (llvm::any_of(associateIndices,
+                   [](int64_t x) { return x == ShapedType::kDynamic; })) {
+    LDBG("Reassociation must be static: " << expandOp << "\n");
+    return failure();
+  }
+  // check input and output shape
+  if (!resultShape.hasStaticShape() ||
+      !expandOp.getSrcType().hasStaticShape()) {
+    LDBG("Input and output shape must be static: " << expandOp << "\n");
+    return failure();
+  }
+  if (!inputVectorSizes.empty() &&
+      failed(vector::isValidMaskedInputVector(resultShape.getShape(),
+                                              inputVectorSizes)))
+    return failure();
+
+  return success();
+}
+
+static LogicalResult
+lowerBitcastOpPrecondition(tensor::BitcastOp bitCastOp,
+                           ArrayRef<int64_t> inputVectorSizes) {
+  auto resultType = bitCastOp->getResultTypes()[0];
+  auto resultShapeType = mlir::dyn_cast<ShapedType>(resultType);
+  auto srcType = bitCastOp.getSource().getType();
+  auto srcShapeType = mlir::dyn_cast<ShapedType>(srcType);
+
+  bool isStaticInputOutput =
+      resultShapeType.hasStaticShape() && srcShapeType.hasStaticShape();
+  if (!isStaticInputOutput) {
+    LDBG("Input and output shape must be static: " << bitCastOp << "\n");
+    return failure();
+  }
+
+  if (!inputVectorSizes.empty() &&
+      failed(vector::isValidMaskedInputVector(resultShapeType.getShape(),
+                                              inputVectorSizes)))
+    return failure();
+  return success();
+}
+
+static LogicalResult
+lowerCollapseShapeOpPrecondition(tensor::CollapseShapeOp collapseOp,
+                                 ArrayRef<int64_t> inputVectorSizes) {
+  auto resultType = collapseOp->getResultTypes()[0];
+  auto resultShapeType = mlir::dyn_cast<ShapedType>(resultType);
+  auto srcShapeType = collapseOp.getSrcType();
+
+  bool isStaticInputOutput =
+      resultShapeType.hasStaticShape() && srcShapeType.hasStaticShape();
+  if (!isStaticInputOutput) {
+    LDBG("Input and output shape must be static: " << collapseOp << "\n");
+    return failure();
+  }
+
+  if (!inputVectorSizes.empty() &&
+      failed(vector::isValidMaskedInputVector(resultShapeType.getShape(),
+                                              inputVectorSizes)))
+    return failure();
+  return success();
+}
+
+static LogicalResult
+lowerConcatOpPrecondition(tensor::ConcatOp concatOp,
+                          ArrayRef<int64_t> inputVectorSizes) {
+  if (!inputVectorSizes.empty()) {
+    LDBG("Concat operation do not support specify inputVectorSizes: "
----------------
ftynse wrote:

```suggestion
    LDBG("Concat operation does not support specify inputVectorSizes: "
```

https://github.com/llvm/llvm-project/pull/97297


More information about the Mlir-commits mailing list