[Mlir-commits] [mlir] 8011a23 - [mlir][linalg] Support scalable vectorization of linalg.index operations (#96778)

llvmlistbot at llvm.org llvmlistbot at llvm.org
Tue Jul 9 01:07:01 PDT 2024


Author: Cullen Rhodes
Date: 2024-07-09T09:06:58+01:00
New Revision: 8011a23948cb18a6771b5acb8c73a7d6bae7e40d

URL: https://github.com/llvm/llvm-project/commit/8011a23948cb18a6771b5acb8c73a7d6bae7e40d
DIFF: https://github.com/llvm/llvm-project/commit/8011a23948cb18a6771b5acb8c73a7d6bae7e40d.diff

LOG: [mlir][linalg] Support scalable vectorization of linalg.index operations (#96778)

The vectorization of linalg.index operations doesn't support scalable
vectors when computing the index vector. This patch fixes this with the
vector.step operation.

Depends on #96776

Added: 
    

Modified: 
    mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
    mlir/test/Dialect/Linalg/vectorization-scalable.mlir
    mlir/test/Dialect/Linalg/vectorize-tensor-extract-masked.mlir

Removed: 
    


################################################################################
diff  --git a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
index 3a75d2ac08157..a4c0508d0d8fa 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
@@ -195,6 +195,10 @@ struct VectorizationState {
   /// Returns the canonical vector shape used to vectorize the iteration space.
   ArrayRef<int64_t> getCanonicalVecShape() const { return canonicalVecShape; }
 
+  /// Returns the vector dimensions that are scalable in the canonical vector
+  /// shape.
+  ArrayRef<bool> getScalableVecDims() const { return scalableVecDims; }
+
   /// Returns a vector type of the provided `elementType` with the canonical
   /// vector shape and the corresponding fixed/scalable dimensions bit. If
   /// `dimPermutation` is provided, the canonical vector dimensions are permuted
@@ -694,23 +698,24 @@ static VectorizationResult vectorizeLinalgIndex(RewriterBase &rewriter,
     return VectorizationResult{VectorizationStatus::Failure, nullptr};
   auto loc = indexOp.getLoc();
   // Compute the static loop sizes of the index op.
-  auto targetShape = state.getCanonicalVecShape();
+  ArrayRef<int64_t> targetShape = state.getCanonicalVecShape();
+  auto dim = indexOp.getDim();
   // Compute a one-dimensional index vector for the index op dimension.
-  auto constantSeq =
-      llvm::to_vector(llvm::seq<int64_t>(0, targetShape[indexOp.getDim()]));
-  auto indexSteps = rewriter.create<arith::ConstantOp>(
-      loc, rewriter.getIndexVectorAttr(constantSeq));
+  auto indexVectorType =
+      VectorType::get({targetShape[dim]}, rewriter.getIndexType(),
+                      state.getScalableVecDims()[dim]);
+  auto indexSteps = rewriter.create<vector::StepOp>(loc, indexVectorType);
   // Return the one-dimensional index vector if it lives in the trailing
   // dimension of the iteration space since the vectorization algorithm in this
   // case can handle the broadcast.
-  if (indexOp.getDim() == targetShape.size() - 1)
+  if (dim == targetShape.size() - 1)
     return VectorizationResult{VectorizationStatus::NewOp, indexSteps};
   // Otherwise permute the targetShape to move the index dimension last,
   // broadcast the one-dimensional index vector to the permuted shape, and
   // finally transpose the broadcasted index vector to undo the permutation.
   auto permPattern =
       llvm::to_vector(llvm::seq<unsigned>(0, targetShape.size()));
-  std::swap(permPattern[indexOp.getDim()], permPattern.back());
+  std::swap(permPattern[dim], permPattern.back());
   auto permMap =
       AffineMap::getPermutationMap(permPattern, linalgOp.getContext());
 
@@ -719,7 +724,7 @@ static VectorizationResult vectorizeLinalgIndex(RewriterBase &rewriter,
       indexSteps);
   SmallVector<int64_t> transposition =
       llvm::to_vector<16>(llvm::seq<int64_t>(0, linalgOp.getNumLoops()));
-  std::swap(transposition.back(), transposition[indexOp.getDim()]);
+  std::swap(transposition.back(), transposition[dim]);
   auto transposeOp =
       rewriter.create<vector::TransposeOp>(loc, broadCastOp, transposition);
   return VectorizationResult{VectorizationStatus::NewOp, transposeOp};

diff  --git a/mlir/test/Dialect/Linalg/vectorization-scalable.mlir b/mlir/test/Dialect/Linalg/vectorization-scalable.mlir
index d6f8d78358370..4423ee6ea6a51 100644
--- a/mlir/test/Dialect/Linalg/vectorization-scalable.mlir
+++ b/mlir/test/Dialect/Linalg/vectorization-scalable.mlir
@@ -142,3 +142,50 @@ module attributes {transform.with_named_sequence} {
   }
 }
 
+// -----
+
+#map = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
+func.func @vectorize_linalg_index(%arg0: tensor<3x3x?xf32>, %arg1: tensor<1x1x?xf32>) -> tensor<1x1x?xf32> {
+  %0 = linalg.generic {
+    indexing_maps = [#map],
+    iterator_types = ["parallel", "parallel", "parallel"]
+  } outs(%arg1 : tensor<1x1x?xf32>) {
+  ^bb0(%in: f32):
+    %1 = linalg.index 0 : index
+    %2 = linalg.index 1 : index
+    %3 = linalg.index 2 : index
+    %4 = tensor.extract %arg0[%1, %2, %3] : tensor<3x3x?xf32>
+    linalg.yield %4 : f32
+  } -> tensor<1x1x?xf32>
+  return %0 : tensor<1x1x?xf32>
+}
+
+// CHECK-LABEL: @vectorize_linalg_index
+// CHECK-SAME: %[[SRC:.*]]: tensor<3x3x?xf32>, %[[DST:.*]]: tensor<1x1x?xf32>
+// CHECK-DAG:    %[[PASSTHRU:.*]] = arith.constant dense<0.000000e+00> : vector<1x1x[4]xf32>
+// CHECK-DAG:        %[[MASK:.*]] = arith.constant dense<true> : vector<1x1x[4]xi1>
+// CHECK-DAG:          %[[C0:.*]] = arith.constant 0 : index
+// CHECK-DAG:          %[[C1:.*]] = arith.constant 1 : index
+// CHECK-DAG:          %[[C2:.*]] = arith.constant 2 : index
+// CHECK:        %[[DST_DIM2:.*]] = tensor.dim %[[DST]], %[[C2]] : tensor<1x1x?xf32>
+// CHECK:        %[[DST_MASK:.*]] = vector.create_mask %[[C1]], %[[C1]], %[[DST_DIM2]] : vector<1x1x[4]xi1>
+// CHECK:       %[[INDEX_VEC:.*]] = vector.step : vector<[4]xindex>
+// CHECK: %[[INDEX_VEC_BCAST:.*]] = vector.broadcast %[[INDEX_VEC]] : vector<[4]xindex> to vector<1x1x[4]xindex>
+// CHECK:          %[[GATHER:.*]] = vector.mask %[[DST_MASK]] { vector.gather %[[SRC]]{{\[}}%[[C0]], %[[C0]], %[[C0]]] {{\[}}%[[INDEX_VEC_BCAST]]], %[[MASK]], %[[PASSTHRU]] : tensor<3x3x?xf32>, vector<1x1x[4]xindex>, vector<1x1x[4]xi1>, vector<1x1x[4]xf32> into vector<1x1x[4]xf32> } : vector<1x1x[4]xi1> -> vector<1x1x[4]xf32>
+// CHECK:             %[[OUT:.*]] = vector.mask %[[DST_MASK]] { vector.transfer_write %[[GATHER]], %[[DST]]{{\[}}%[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true, true, true]} : vector<1x1x[4]xf32>, tensor<1x1x?xf32> } : vector<1x1x[4]xi1> -> tensor<1x1x?xf32>
+// CHECK:           return %[[OUT]] : tensor<1x1x?xf32>
+
+module attributes {transform.with_named_sequence} {
+  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
+    %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
+    transform.structured.vectorize %0 vector_sizes [1, 1, [4]] {vectorize_nd_extract} : !transform.any_op
+
+    %func = transform.structured.match ops{["func.func"]} in %arg1
+      : (!transform.any_op) -> !transform.any_op
+    transform.apply_patterns to %func {
+      transform.apply_patterns.canonicalization
+      transform.apply_patterns.linalg.tiling_canonicalization
+    } : !transform.any_op
+    transform.yield
+  }
+}

diff  --git a/mlir/test/Dialect/Linalg/vectorize-tensor-extract-masked.mlir b/mlir/test/Dialect/Linalg/vectorize-tensor-extract-masked.mlir
index e68d297dc41f2..f042753780013 100644
--- a/mlir/test/Dialect/Linalg/vectorize-tensor-extract-masked.mlir
+++ b/mlir/test/Dialect/Linalg/vectorize-tensor-extract-masked.mlir
@@ -63,7 +63,7 @@ func.func @masked_dynamic_vectorize_nd_tensor_extract_with_affine_apply_contiguo
 // CHECK-DAG:       %[[VAL_9:.*]] = arith.constant 0.000000e+00 : f32
 // CHECK:           %[[VAL_10:.*]] = vector.create_mask %[[VAL_5]], %[[VAL_7]] : vector<1x4xi1>
 // CHECK:           %[[VAL_11:.*]] = vector.mask %[[VAL_10]] { vector.transfer_read %[[VAL_2]]{{\[}}%[[VAL_8]], %[[VAL_8]]], %[[VAL_9]] {in_bounds = [true, true]} : tensor<?x?xf32>, vector<1x4xf32> } : vector<1x4xi1> -> vector<1x4xf32>
-// CHECK:           %[[VAL_12:.*]] = arith.constant dense<[0, 1, 2, 3]> : vector<4xindex>
+// CHECK:           %[[VAL_12:.*]] = vector.step : vector<4xindex>
 // CHECK:           %[[VAL_13:.*]] = vector.broadcast %[[VAL_1]] : index to vector<4xindex>
 // CHECK:           %[[VAL_14:.*]] = arith.addi %[[VAL_12]], %[[VAL_13]] : vector<4xindex>
 // CHECK-DAG:       %[[VAL_15:.*]] = arith.constant dense<true> : vector<1x4xi1>
@@ -160,7 +160,7 @@ func.func @masked_dynamic_vectorize_nd_tensor_extract_with_affine_apply_gather(%
 // CHECK:           %[[VAL_9:.*]] = arith.constant 0.000000e+00 : f32
 // CHECK:           %[[VAL_10:.*]] = vector.create_mask %[[VAL_5]], %[[VAL_7]] : vector<1x4xi1>
 // CHECK:           %[[VAL_11:.*]] = vector.mask %[[VAL_10]] { vector.transfer_read %[[VAL_2]]{{\[}}%[[VAL_8]], %[[VAL_8]]], %[[VAL_9]] {in_bounds = [true, true]} : tensor<?x?xf32>, vector<1x4xf32> } : vector<1x4xi1> -> vector<1x4xf32>
-// CHECK:           %[[VAL_12:.*]] = arith.constant dense<[0, 1, 2, 3]> : vector<4xindex>
+// CHECK:           %[[VAL_12:.*]] = vector.step : vector<4xindex>
 // CHECK:           %[[VAL_13:.*]] = vector.broadcast %[[VAL_1]] : index to vector<4xindex>
 // CHECK:           %[[VAL_14:.*]] = arith.addi %[[VAL_12]], %[[VAL_13]] : vector<4xindex>
 // CHECK:           %[[VAL_15:.*]] = arith.constant dense<true> : vector<1x4xi1>


        


More information about the Mlir-commits mailing list