[Mlir-commits] [mlir] [MLIR][Linalg] Add aggregate ops decomposition pass and softmax decom… (PR #97582)
llvmlistbot at llvm.org
llvmlistbot at llvm.org
Mon Jul 8 16:47:35 PDT 2024
================
@@ -2695,43 +2621,88 @@ static Value buildDivOp(OpBuilder &builder, Location loc, Value numerator,
/// 4. Divide z and l. This gives the N-dimensional softmax.
/// softmax = z / l
///
-FailureOr<SmallVector<Value>> SoftmaxOp::decomposeOperation(OpBuilder &b) {
+FailureOr<DecompositionResult> SoftmaxOp::decomposeOperation(OpBuilder &b) {
+ if (!hasPureTensorSemantics()) {
+ // The decomposition assumes ranked tensors as input.
+ return failure();
+ }
+
OpBuilder::InsertionGuard guard(b);
b.setInsertionPoint(*this);
Location loc = getLoc();
Value input = getInput();
ShapedType inputType = getInputOperandType();
Type elementType = inputType.getElementType();
int64_t reductionDim = getDimension();
- SmallVector<OpFoldResult> dims = tensor::getMixedSizes(b, loc, input);
Value output = getOutput();
- dims.erase(dims.begin() + reductionDim);
+
+ SmallVector<int64_t> reduceShape;
----------------
MaheshRavishankar wrote:
Not sure why you are splitting this out to use `int64_t` and `Value` instead of keeping it as `OpFoldResult`. This seems to be equivalent to what was there, so not sure why change it?
https://github.com/llvm/llvm-project/pull/97582
More information about the Mlir-commits
mailing list