[Mlir-commits] [mlir] [MLIR][Linalg] Add aggregate ops decomposition pass and softmax decom… (PR #97582)
Oleksandr Alex Zinenko
llvmlistbot at llvm.org
Fri Jul 5 07:54:07 PDT 2024
================
@@ -2695,43 +2621,89 @@ static Value buildDivOp(OpBuilder &builder, Location loc, Value numerator,
/// 4. Divide z and l. This gives the N-dimensional softmax.
/// softmax = z / l
///
-FailureOr<SmallVector<Value>> SoftmaxOp::decomposeOperation(OpBuilder &b) {
+FailureOr<DecompositionResult> SoftmaxOp::decomposeOperation(OpBuilder &b) {
+ if (!hasPureTensorSemantics()) {
+ // The decomposition assumes ranked tensors as input
+ return failure();
+ }
+
OpBuilder::InsertionGuard guard(b);
b.setInsertionPoint(*this);
Location loc = getLoc();
Value input = getInput();
ShapedType inputType = getInputOperandType();
Type elementType = inputType.getElementType();
int64_t reductionDim = getDimension();
- SmallVector<OpFoldResult> dims = tensor::getMixedSizes(b, loc, input);
Value output = getOutput();
- dims.erase(dims.begin() + reductionDim);
+
+ SmallVector<int64_t> reduceShape;
+ SmallVector<Value> dynReduceDims;
+ for (unsigned i = 0; i < inputType.getRank(); i++) {
----------------
ftynse wrote:
```suggestion
for (unsigned i = 0, e = inputType.getRank(); i < e; i++) {
```
https://llvm.org/docs/CodingStandards.html#don-t-evaluate-end-every-time-through-a-loop
https://github.com/llvm/llvm-project/pull/97582
More information about the Mlir-commits
mailing list