[Mlir-commits] [mlir] [MLIR][Linalg] Scalable Vectorization of Reduction (PR #97788)
Zhaoshi Zheng
llvmlistbot at llvm.org
Thu Jul 4 22:37:36 PDT 2024
================
@@ -1942,13 +1951,30 @@ vectorizeScalableVectorPrecondition(Operation *op,
if (inputVectorSizes.empty())
return success();
+ auto linalgOp = dyn_cast<LinalgOp>(op);
+ if (linalgOp && isLinalgReduction(linalgOp)) {
+ LDBG("Checking reduce op dims for scalable vectorization\n");
+ auto iteratorTypes = linalgOp.getIteratorTypesArray();
+ assert(iteratorTypes.size() == inputScalableVecDims.size() &&
+ "Number of iterator types and input scalable dims mismatch");
+ // For now, only support scalable vectorization of a reduction on the
+ // trailing dim.
+ for (size_t i = 0; i < inputScalableVecDims.size() - 1; ++i) {
+ if (inputScalableVecDims[i] && isReductionIterator(iteratorTypes[i])) {
+ LDBG("Non-trailing reduction dim requested for scalable "
+ "vectorization\n");
+ return failure();
+ }
+ }
+ return success();
+ }
+
bool isScalable = inputScalableVecDims.back();
----------------
zhaoshiz wrote:
this seems to be missed by 5f6c03636d22029550c8ab94388827e728a0c5fe, lifting the restriction that only the trailing dimension can be scalably vectorized.
@banach-space, maybe we can remove these lines?
https://github.com/llvm/llvm-project/pull/97788
More information about the Mlir-commits
mailing list