[Mlir-commits] [mlir] 65066c0 - [mlir] Use `create` instead of `createOrFold` for ConstantOp as folding has no effect (NFC) (#80129)
llvmlistbot at llvm.org
llvmlistbot at llvm.org
Wed Jan 31 23:40:41 PST 2024
Author: Hugo Trachino
Date: 2024-01-31T23:40:37-08:00
New Revision: 65066c02770cc3da3b5154fbb7ed9df78ab94b93
URL: https://github.com/llvm/llvm-project/commit/65066c02770cc3da3b5154fbb7ed9df78ab94b93
DIFF: https://github.com/llvm/llvm-project/commit/65066c02770cc3da3b5154fbb7ed9df78ab94b93.diff
LOG: [mlir] Use `create` instead of `createOrFold` for ConstantOp as folding has no effect (NFC) (#80129)
This aims to clean-up confusing uses of
builder.createOrFold<ConstantOp> since folding of constants fails.
Added:
Modified:
mlir/lib/Conversion/AMDGPUToROCDL/AMDGPUToROCDL.cpp
mlir/lib/Conversion/ArithToAMDGPU/ArithToAMDGPU.cpp
mlir/lib/Conversion/GPUToROCDL/LowerGpuOpsToROCDLOps.cpp
mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp
mlir/lib/Dialect/Tensor/Transforms/ConcatOpPatterns.cpp
Removed:
################################################################################
diff --git a/mlir/lib/Conversion/AMDGPUToROCDL/AMDGPUToROCDL.cpp b/mlir/lib/Conversion/AMDGPUToROCDL/AMDGPUToROCDL.cpp
index cc97ee74d48b6..12d2462061dcf 100644
--- a/mlir/lib/Conversion/AMDGPUToROCDL/AMDGPUToROCDL.cpp
+++ b/mlir/lib/Conversion/AMDGPUToROCDL/AMDGPUToROCDL.cpp
@@ -38,7 +38,7 @@ static Value createI32Constant(ConversionPatternRewriter &rewriter,
static Value createI1Constant(ConversionPatternRewriter &rewriter, Location loc,
bool value) {
Type llvmI1 = rewriter.getI1Type();
- return rewriter.createOrFold<LLVM::ConstantOp>(loc, llvmI1, value);
+ return rewriter.create<LLVM::ConstantOp>(loc, llvmI1, value);
}
namespace {
@@ -163,7 +163,7 @@ struct RawBufferOpLowering : public ConvertOpToLLVMPattern<GpuOp> {
Value ptr = memrefDescriptor.alignedPtr(rewriter, loc);
// The stride value is always 0 for raw buffers. This also disables
// swizling.
- Value stride = rewriter.createOrFold<LLVM::ConstantOp>(
+ Value stride = rewriter.create<LLVM::ConstantOp>(
loc, llvmI16, rewriter.getI16IntegerAttr(0));
Value numRecords;
if (memrefType.hasStaticShape()) {
diff --git a/mlir/lib/Conversion/ArithToAMDGPU/ArithToAMDGPU.cpp b/mlir/lib/Conversion/ArithToAMDGPU/ArithToAMDGPU.cpp
index c625a302a3970..b51a13ae362e9 100644
--- a/mlir/lib/Conversion/ArithToAMDGPU/ArithToAMDGPU.cpp
+++ b/mlir/lib/Conversion/ArithToAMDGPU/ArithToAMDGPU.cpp
@@ -89,7 +89,7 @@ void ExtFOnFloat8RewritePattern::rewrite(arith::ExtFOp op,
}
VectorType inType = in.getType().cast<VectorType>();
int64_t numElements = inType.getNumElements();
- Value zero = rewriter.createOrFold<arith::ConstantOp>(
+ Value zero = rewriter.create<arith::ConstantOp>(
loc, outElemType, rewriter.getFloatAttr(outElemType, 0.0));
Value result =
rewriter.createOrFold<vector::SplatOp>(loc, op.getOut().getType(), zero);
@@ -209,7 +209,7 @@ void TruncFToFloat8RewritePattern::rewrite(arith::TruncFOp op,
}
VectorType outType = op.getOut().getType().cast<VectorType>();
int64_t numElements = outType.getNumElements();
- Value zero = rewriter.createOrFold<arith::ConstantOp>(
+ Value zero = rewriter.create<arith::ConstantOp>(
loc, outElemType, rewriter.getFloatAttr(outElemType, 0.0));
Value result = rewriter.createOrFold<vector::SplatOp>(loc, outType, zero);
if (outType.getShape().empty()) {
diff --git a/mlir/lib/Conversion/GPUToROCDL/LowerGpuOpsToROCDLOps.cpp b/mlir/lib/Conversion/GPUToROCDL/LowerGpuOpsToROCDLOps.cpp
index 599bb13190f12..363e6016113b1 100644
--- a/mlir/lib/Conversion/GPUToROCDL/LowerGpuOpsToROCDLOps.cpp
+++ b/mlir/lib/Conversion/GPUToROCDL/LowerGpuOpsToROCDLOps.cpp
@@ -67,8 +67,8 @@ static bool canBeCalledWithBarePointers(gpu::GPUFuncOp func) {
Value getLaneId(ConversionPatternRewriter &rewriter, Location loc,
const unsigned indexBitwidth) {
auto int32Type = IntegerType::get(rewriter.getContext(), 32);
- Value zero = rewriter.createOrFold<arith::ConstantIntOp>(loc, 0, 32);
- Value minus1 = rewriter.createOrFold<arith::ConstantIntOp>(loc, -1, 32);
+ Value zero = rewriter.create<arith::ConstantIntOp>(loc, 0, 32);
+ Value minus1 = rewriter.create<arith::ConstantIntOp>(loc, -1, 32);
Value mbcntLo = rewriter.create<ROCDL::MbcntLoOp>(loc, int32Type,
ValueRange{minus1, zero});
Value laneId = rewriter.create<ROCDL::MbcntHiOp>(loc, int32Type,
@@ -89,8 +89,8 @@ struct GPULaneIdOpToROCDL : ConvertOpToLLVMPattern<gpu::LaneIdOp> {
// followed by: %lid = call @llvm.amdgcn.mbcnt.hi(-1, %mlo)
Type intTy = IntegerType::get(context, 32);
- Value zero = rewriter.createOrFold<arith::ConstantIntOp>(loc, 0, 32);
- Value minus1 = rewriter.createOrFold<arith::ConstantIntOp>(loc, -1, 32);
+ Value zero = rewriter.create<arith::ConstantIntOp>(loc, 0, 32);
+ Value minus1 = rewriter.create<arith::ConstantIntOp>(loc, -1, 32);
Value mbcntLo =
rewriter.create<ROCDL::MbcntLoOp>(loc, intTy, ValueRange{minus1, zero});
Value laneId = rewriter.create<ROCDL::MbcntHiOp>(
diff --git a/mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp b/mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp
index 06ec53d19b1e9..505d85f211111 100644
--- a/mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp
+++ b/mlir/lib/Conversion/TosaToTensor/TosaToTensor.cpp
@@ -327,7 +327,7 @@ class PadConverter : public OpRewritePattern<tosa::PadOp> {
highValues.reserve(rank);
for (int i = 0; i < rank; i++) {
- Value inputIndex = rewriter.createOrFold<arith::ConstantIndexOp>(loc, i);
+ Value inputIndex = rewriter.create<arith::ConstantIndexOp>(loc, i);
Value lowVal = rewriter.createOrFold<tensor::ExtractOp>(
loc, padding, ValueRange({inputIndex, lowIndex}));
Value highVal = rewriter.createOrFold<tensor::ExtractOp>(
@@ -360,8 +360,8 @@ struct ConcatConverter : public OpConversionPattern<tosa::ConcatOp> {
Location loc = op.getLoc();
int axis = op.getAxis();
- Value axisValue = rewriter.createOrFold<arith::ConstantOp>(
- loc, rewriter.getIndexAttr(axis));
+ Value axisValue =
+ rewriter.create<arith::ConstantOp>(loc, rewriter.getIndexAttr(axis));
int64_t rank = resultType.getRank();
SmallVector<OpFoldResult> strides(rank, rewriter.getIndexAttr(1));
diff --git a/mlir/lib/Dialect/Tensor/Transforms/ConcatOpPatterns.cpp b/mlir/lib/Dialect/Tensor/Transforms/ConcatOpPatterns.cpp
index 2108fc591055a..7c8403c9609d8 100644
--- a/mlir/lib/Dialect/Tensor/Transforms/ConcatOpPatterns.cpp
+++ b/mlir/lib/Dialect/Tensor/Transforms/ConcatOpPatterns.cpp
@@ -44,8 +44,8 @@ struct DecomposeTensorConcatOp : public OpRewritePattern<ConcatOp> {
return failure();
int64_t dim = concatOp.getDim();
- Value dimValue = rewriter.createOrFold<arith::ConstantOp>(
- loc, rewriter.getIndexAttr(dim));
+ Value dimValue =
+ rewriter.create<arith::ConstantOp>(loc, rewriter.getIndexAttr(dim));
int64_t rank = concatOp.getResultType().getRank();
SmallVector<OpFoldResult> strides(rank, rewriter.getIndexAttr(1));
More information about the Mlir-commits
mailing list