[Mlir-commits] [mlir] [mlir][python] enable memref.subview (PR #79393)
Maksim Levental
llvmlistbot at llvm.org
Mon Jan 29 12:50:38 PST 2024
https://github.com/makslevental updated https://github.com/llvm/llvm-project/pull/79393
>From a192a09976827dc052a42caac3d144bd5542f1e4 Mon Sep 17 00:00:00 2001
From: max <maksim.levental at gmail.com>
Date: Wed, 24 Jan 2024 18:25:54 -0600
Subject: [PATCH 1/2] [mlir][python] enable memref.subview
---
mlir/include/mlir-c/BuiltinTypes.h | 7 ++
mlir/lib/Bindings/Python/IRTypes.cpp | 9 ++
mlir/lib/CAPI/IR/BuiltinTypes.cpp | 14 +++
mlir/python/mlir/dialects/memref.py | 121 +++++++++++++++++++
mlir/test/python/dialects/memref.py | 166 ++++++++++++++++++++++++++-
5 files changed, 315 insertions(+), 2 deletions(-)
diff --git a/mlir/include/mlir-c/BuiltinTypes.h b/mlir/include/mlir-c/BuiltinTypes.h
index 1fd5691f41eec35..2523bddc475d823 100644
--- a/mlir/include/mlir-c/BuiltinTypes.h
+++ b/mlir/include/mlir-c/BuiltinTypes.h
@@ -408,6 +408,13 @@ MLIR_CAPI_EXPORTED MlirAffineMap mlirMemRefTypeGetAffineMap(MlirType type);
/// Returns the memory space of the given MemRef type.
MLIR_CAPI_EXPORTED MlirAttribute mlirMemRefTypeGetMemorySpace(MlirType type);
+/// Returns the strides of the MemRef if the layout map is in strided form.
+/// Both strides and offset are out params. strides must point to pre-allocated
+/// memory of length equal to the rank of the memref.
+MLIR_CAPI_EXPORTED void mlirMemRefTypeGetStridesAndOffset(MlirType type,
+ int64_t *strides,
+ int64_t *offset);
+
/// Returns the memory spcae of the given Unranked MemRef type.
MLIR_CAPI_EXPORTED MlirAttribute
mlirUnrankedMemrefGetMemorySpace(MlirType type);
diff --git a/mlir/lib/Bindings/Python/IRTypes.cpp b/mlir/lib/Bindings/Python/IRTypes.cpp
index 56e895d3053796e..86f01a6381ae4e0 100644
--- a/mlir/lib/Bindings/Python/IRTypes.cpp
+++ b/mlir/lib/Bindings/Python/IRTypes.cpp
@@ -618,6 +618,15 @@ class PyMemRefType : public PyConcreteType<PyMemRefType, PyShapedType> {
return mlirMemRefTypeGetLayout(self);
},
"The layout of the MemRef type.")
+ .def_property_readonly(
+ "strides_and_offset",
+ [](PyMemRefType &self) -> std::pair<std::vector<int64_t>, int64_t> {
+ std::vector<int64_t> strides(mlirShapedTypeGetRank(self));
+ int64_t offset;
+ mlirMemRefTypeGetStridesAndOffset(self, strides.data(), &offset);
+ return {strides, offset};
+ },
+ "The strides and offset of the MemRef type.")
.def_property_readonly(
"affine_map",
[](PyMemRefType &self) -> PyAffineMap {
diff --git a/mlir/lib/CAPI/IR/BuiltinTypes.cpp b/mlir/lib/CAPI/IR/BuiltinTypes.cpp
index 6e645188dac8616..6a3653d8baf304a 100644
--- a/mlir/lib/CAPI/IR/BuiltinTypes.cpp
+++ b/mlir/lib/CAPI/IR/BuiltinTypes.cpp
@@ -16,6 +16,8 @@
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Types.h"
+#include <algorithm>
+
using namespace mlir;
//===----------------------------------------------------------------------===//
@@ -426,6 +428,18 @@ MlirAttribute mlirMemRefTypeGetMemorySpace(MlirType type) {
return wrap(llvm::cast<MemRefType>(unwrap(type)).getMemorySpace());
}
+void mlirMemRefTypeGetStridesAndOffset(MlirType type, int64_t *strides,
+ int64_t *offset) {
+ MemRefType memrefType = llvm::cast<MemRefType>(unwrap(type));
+ std::pair<SmallVector<int64_t>, int64_t> stridesOffsets =
+ getStridesAndOffset(memrefType);
+ assert(stridesOffsets.first.size() == memrefType.getRank() &&
+ "Strides and rank don't match for memref");
+ (void)std::copy(stridesOffsets.first.begin(), stridesOffsets.first.end(),
+ strides);
+ *offset = stridesOffsets.second;
+}
+
MlirTypeID mlirUnrankedMemRefTypeGetTypeID() {
return wrap(UnrankedMemRefType::getTypeID());
}
diff --git a/mlir/python/mlir/dialects/memref.py b/mlir/python/mlir/dialects/memref.py
index 3afb6a70cb9e0db..6ab6e0602e7a95d 100644
--- a/mlir/python/mlir/dialects/memref.py
+++ b/mlir/python/mlir/dialects/memref.py
@@ -1,5 +1,126 @@
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+import operator
+from itertools import accumulate
+from typing import Optional
from ._memref_ops_gen import *
+from .arith import ConstantOp
+from .transform.structured import _dispatch_mixed_values, MixedValues
+from ..ir import Value, MemRefType, StridedLayoutAttr, ShapedType
+
+
+def _is_constant(i):
+ return isinstance(i, Value) and isinstance(i.owner.opview, ConstantOp)
+
+
+def _is_static(i):
+ return (isinstance(i, int) and not ShapedType.is_dynamic_size(i)) or _is_constant(i)
+
+
+def _infer_memref_subview_result_type(
+ source_memref_type, offsets, static_sizes, static_strides
+):
+ source_strides, source_offset = source_memref_type.strides_and_offset
+ # "canonicalize" from tuple|list -> list
+ offsets, static_sizes, static_strides, source_strides = map(
+ list, (offsets, static_sizes, static_strides, source_strides)
+ )
+
+ assert all(
+ all(_is_static(i) for i in s)
+ for s in [
+ static_sizes,
+ static_strides,
+ source_strides,
+ ]
+ ), f"Only inferring from python or mlir integer constant is supported"
+
+ for s in [offsets, static_sizes, static_strides]:
+ for idx, i in enumerate(s):
+ if _is_constant(i):
+ s[idx] = i.owner.opview.literal_value
+
+ if any(not _is_static(i) for i in offsets + [source_offset]):
+ target_offset = ShapedType.get_dynamic_size()
+ else:
+ target_offset = source_offset
+ for offset, target_stride in zip(offsets, source_strides):
+ target_offset += offset * target_stride
+
+ target_strides = []
+ for source_stride, static_stride in zip(source_strides, static_strides):
+ target_strides.append(source_stride * static_stride)
+
+ # If default striding then no need to complicate things for downstream ops (e.g., expand_shape).
+ default_strides = list(accumulate(static_sizes[1:][::-1], operator.mul))[::-1] + [1]
+ if target_strides == default_strides and target_offset == 0:
+ layout = None
+ else:
+ layout = StridedLayoutAttr.get(target_offset, target_strides)
+ return (
+ offsets,
+ static_sizes,
+ static_strides,
+ MemRefType.get(
+ static_sizes,
+ source_memref_type.element_type,
+ layout,
+ source_memref_type.memory_space,
+ ),
+ )
+
+
+_generated_subview = subview
+
+
+def subview(
+ source: Value,
+ offsets: MixedValues,
+ sizes: MixedValues,
+ strides: MixedValues,
+ *,
+ result_type: Optional[MemRefType] = None,
+ loc=None,
+ ip=None,
+):
+ if offsets is None:
+ offsets = []
+ if sizes is None:
+ sizes = []
+ if strides is None:
+ strides = []
+ source_strides, source_offset = source.type.strides_and_offset
+ if result_type is None and all(
+ all(_is_static(i) for i in s) for s in [sizes, strides, source_strides]
+ ):
+ # If any are arith.constant results then this will canonicalize to python int
+ # (which can then be used to fully specific the subview).
+ (
+ offsets,
+ sizes,
+ strides,
+ result_type,
+ ) = _infer_memref_subview_result_type(source.type, offsets, sizes, strides)
+ else:
+ assert (
+ result_type is not None
+ ), "mixed static/dynamic offset/sizes/strides requires explicit result type"
+
+ offsets, _packed_offsets, static_offsets = _dispatch_mixed_values(offsets)
+ sizes, _packed_sizes, static_sizes = _dispatch_mixed_values(sizes)
+ strides, _packed_strides, static_strides = _dispatch_mixed_values(strides)
+
+ return _generated_subview(
+ result_type,
+ source,
+ offsets,
+ sizes,
+ strides,
+ static_offsets,
+ static_sizes,
+ static_strides,
+ loc=loc,
+ ip=ip,
+ )
diff --git a/mlir/test/python/dialects/memref.py b/mlir/test/python/dialects/memref.py
index 0c8a7ee282fe161..0cf2fe15384fbd1 100644
--- a/mlir/test/python/dialects/memref.py
+++ b/mlir/test/python/dialects/memref.py
@@ -1,9 +1,10 @@
# RUN: %PYTHON %s | FileCheck %s
-from mlir.ir import *
-import mlir.dialects.func as func
+import mlir.dialects.arith as arith
import mlir.dialects.memref as memref
import mlir.extras.types as T
+from mlir.dialects.memref import _infer_memref_subview_result_type
+from mlir.ir import *
def run(f):
@@ -88,3 +89,164 @@ def testMemRefAttr():
memref.global_("objFifo_in0", T.memref(16, T.i32()))
# CHECK: memref.global @objFifo_in0 : memref<16xi32>
print(module)
+
+
+# CHECK-LABEL: TEST: testSubViewOpInferReturnTypeSemantics
+ at run
+def testSubViewOpInferReturnTypeSemantics():
+ with Context() as ctx, Location.unknown(ctx):
+ module = Module.create()
+ with InsertionPoint(module.body):
+ x = memref.alloc(T.memref(10, 10, T.i32()), [], [])
+ # CHECK: %[[ALLOC:.*]] = memref.alloc() : memref<10x10xi32>
+ print(x.owner)
+
+ y = memref.subview(x, [1, 1], [3, 3], [1, 1])
+ assert y.owner.verify()
+ # CHECK: %{{.*}} = memref.subview %[[ALLOC]][1, 1] [3, 3] [1, 1] : memref<10x10xi32> to memref<3x3xi32, strided<[10, 1], offset: 11>>
+ print(y.owner)
+
+ z = memref.subview(
+ x,
+ [arith.constant(T.index(), 1), 1],
+ [3, 3],
+ [1, 1],
+ )
+ # CHECK: %{{.*}} = memref.subview %[[ALLOC]][1, 1] [3, 3] [1, 1] : memref<10x10xi32> to memref<3x3xi32, strided<[10, 1], offset: 11>>
+ print(z.owner)
+
+ z = memref.subview(
+ x,
+ [arith.constant(T.index(), 3), arith.constant(T.index(), 4)],
+ [3, 3],
+ [1, 1],
+ )
+ # CHECK: %{{.*}} = memref.subview %[[ALLOC]][3, 4] [3, 3] [1, 1] : memref<10x10xi32> to memref<3x3xi32, strided<[10, 1], offset: 34>>
+ print(z.owner)
+
+ s = arith.addi(arith.constant(T.index(), 3), arith.constant(T.index(), 4))
+ z = memref.subview(
+ x,
+ [s, 0],
+ [3, 3],
+ [1, 1],
+ )
+ # CHECK: {{.*}} = memref.subview %[[ALLOC]][%0, 0] [3, 3] [1, 1] : memref<10x10xi32> to memref<3x3xi32, strided<[10, 1], offset: ?>>
+ print(z)
+
+ try:
+ _infer_memref_subview_result_type(
+ x.type,
+ [arith.constant(T.index(), 3), arith.constant(T.index(), 4)],
+ [ShapedType.get_dynamic_size(), 3],
+ [1, 1],
+ )
+ except AssertionError as e:
+ # CHECK: Only inferring from python or mlir integer constant is supported
+ print(e)
+
+ try:
+ memref.subview(
+ x,
+ [arith.constant(T.index(), 3), arith.constant(T.index(), 4)],
+ [ShapedType.get_dynamic_size(), 3],
+ [1, 1],
+ )
+ except AssertionError as e:
+ # CHECK: mixed static/dynamic offset/sizes/strides requires explicit result type
+ print(e)
+
+ layout = StridedLayoutAttr.get(ShapedType.get_dynamic_size(), [10, 1])
+ x = memref.alloc(
+ T.memref(
+ 10,
+ 10,
+ T.i32(),
+ layout=layout,
+ ),
+ [],
+ [arith.constant(T.index(), 42)],
+ )
+ # CHECK: %[[DYNAMICALLOC:.*]] = memref.alloc()[%c42] : memref<10x10xi32, strided<[10, 1], offset: ?>>
+ print(x.owner)
+ y = memref.subview(
+ x,
+ [1, 1],
+ [3, 3],
+ [1, 1],
+ result_type=T.memref(3, 3, T.i32(), layout=layout),
+ )
+ # CHECK: %{{.*}} = memref.subview %[[DYNAMICALLOC]][1, 1] [3, 3] [1, 1] : memref<10x10xi32, strided<[10, 1], offset: ?>> to memref<3x3xi32, strided<[10, 1], offset: ?>>
+ print(y.owner)
+
+
+# CHECK-LABEL: TEST: testSubViewOpInferReturnTypeExtensiveSlicing
+ at run
+def testSubViewOpInferReturnTypeExtensiveSlicing():
+ def check_strides_offset(memref, np_view):
+ layout = memref.type.layout
+ dtype_size_in_bytes = np_view.dtype.itemsize
+ golden_strides = (np.array(np_view.strides) // dtype_size_in_bytes).tolist()
+ golden_offset = (
+ np_view.ctypes.data - np_view.base.ctypes.data
+ ) // dtype_size_in_bytes
+
+ assert (layout.strides, layout.offset) == (golden_strides, golden_offset)
+
+ with Context() as ctx, Location.unknown(ctx):
+ module = Module.create()
+ with InsertionPoint(module.body):
+ shape = (10, 22, 333, 4444)
+ golden_mem = np.zeros(shape, dtype=np.int32)
+ mem1 = memref.alloc(T.memref(*shape, T.i32()), [], [])
+
+ # fmt: off
+ check_strides_offset(memref.subview(mem1, (1, 0, 0, 0), (1, 22, 333, 4444), (1, 1, 1, 1)), golden_mem[1:2, ...])
+ check_strides_offset(memref.subview(mem1, (0, 1, 0, 0), (10, 1, 333, 4444), (1, 1, 1, 1)), golden_mem[:, 1:2])
+ check_strides_offset(memref.subview(mem1, (0, 0, 1, 0), (10, 22, 1, 4444), (1, 1, 1, 1)), golden_mem[:, :, 1:2])
+ check_strides_offset(memref.subview(mem1, (0, 0, 0, 1), (10, 22, 333, 1), (1, 1, 1, 1)), golden_mem[:, :, :, 1:2])
+ check_strides_offset(memref.subview(mem1, (0, 1, 0, 1), (10, 1, 333, 1), (1, 1, 1, 1)), golden_mem[:, 1:2, :, 1:2])
+ check_strides_offset(memref.subview(mem1, (1, 0, 0, 1), (1, 22, 333, 1), (1, 1, 1, 1)), golden_mem[1:2, :, :, 1:2])
+ check_strides_offset(memref.subview(mem1, (1, 1, 0, 0), (1, 1, 333, 4444), (1, 1, 1, 1)), golden_mem[1:2, 1:2, :, :])
+ check_strides_offset(memref.subview(mem1, (0, 0, 1, 1), (10, 22, 1, 1), (1, 1, 1, 1)), golden_mem[:, :, 1:2, 1:2])
+ check_strides_offset(memref.subview(mem1, (0, 1, 1, 0), (10, 1, 1, 4444), (1, 1, 1, 1)), golden_mem[:, 1:2, 1:2, :])
+ check_strides_offset(memref.subview(mem1, (1, 0, 1, 0), (1, 22, 1, 4444), (1, 1, 1, 1)), golden_mem[1:2, :, 1:2, :])
+ check_strides_offset(memref.subview(mem1, (1, 1, 0, 1), (1, 1, 333, 1), (1, 1, 1, 1)), golden_mem[1:2, 1:2, :, 1:2])
+ check_strides_offset(memref.subview(mem1, (1, 0, 1, 1), (1, 22, 1, 1), (1, 1, 1, 1)), golden_mem[1:2, :, 1:2, 1:2])
+ check_strides_offset(memref.subview(mem1, (0, 1, 1, 1), (10, 1, 1, 1), (1, 1, 1, 1)), golden_mem[:, 1:2, 1:2, 1:2])
+ check_strides_offset(memref.subview(mem1, (1, 1, 1, 0), (1, 1, 1, 4444), (1, 1, 1, 1)), golden_mem[1:2, 1:2, 1:2, :])
+ # fmt: on
+
+ # default strides and offset means no stridedlayout attribute means affinemap layout
+ assert memref.subview(
+ mem1, (0, 0, 0, 0), (10, 22, 333, 4444), (1, 1, 1, 1)
+ ).type.layout == AffineMapAttr.get(
+ AffineMap.get(
+ 4,
+ 0,
+ [
+ AffineDimExpr.get(0),
+ AffineDimExpr.get(1),
+ AffineDimExpr.get(2),
+ AffineDimExpr.get(3),
+ ],
+ )
+ )
+
+ shape = (7, 22, 333, 4444)
+ golden_mem = np.zeros(shape, dtype=np.int32)
+ mem2 = memref.alloc(T.memref(*shape, T.i32()), [], [])
+ # fmt: off
+ check_strides_offset(memref.subview(mem2, (0, 0, 0, 0), (7, 11, 333, 4444), (1, 2, 1, 1)), golden_mem[:, 0:22:2])
+ check_strides_offset(memref.subview(mem2, (0, 0, 0, 0), (7, 11, 11, 4444), (1, 2, 30, 1)), golden_mem[:, 0:22:2, 0:330:30])
+ check_strides_offset(memref.subview(mem2, (0, 0, 0, 0), (7, 11, 11, 11), (1, 2, 30, 400)), golden_mem[:, 0:22:2, 0:330:30, 0:4400:400])
+ check_strides_offset(memref.subview(mem2, (0, 0, 100, 1000), (7, 22, 20, 20), (1, 1, 5, 50)), golden_mem[:, :, 100:200:5, 1000:2000:50])
+ # fmt: on
+
+ shape = (8, 8)
+ golden_mem = np.zeros(shape, dtype=np.int32)
+ # fmt: off
+ mem3 = memref.alloc(T.memref(*shape, T.i32()), [], [])
+ check_strides_offset(memref.subview(mem3, (0, 0), (4, 4), (1, 1)), golden_mem[0:4, 0:4])
+ check_strides_offset(memref.subview(mem3, (4, 4), (4, 4), (1, 1)), golden_mem[4:8, 4:8])
+ # fmt: on
>From d8565f93b51a9e3b426bb09839c7677acb9b4c0c Mon Sep 17 00:00:00 2001
From: max <maksim.levental at gmail.com>
Date: Mon, 29 Jan 2024 13:40:07 -0600
Subject: [PATCH 2/2] incorporate comments
---
mlir/include/mlir-c/BuiltinTypes.h | 5 +-
mlir/lib/Bindings/Python/IRTypes.cpp | 11 +-
mlir/lib/CAPI/IR/BuiltinTypes.cpp | 20 +-
mlir/python/mlir/dialects/_ods_common.py | 174 +++++++++++++++++-
mlir/python/mlir/dialects/memref.py | 47 +++--
.../mlir/dialects/transform/structured.py | 169 ++---------------
mlir/test/python/dialects/memref.py | 4 +-
7 files changed, 237 insertions(+), 193 deletions(-)
diff --git a/mlir/include/mlir-c/BuiltinTypes.h b/mlir/include/mlir-c/BuiltinTypes.h
index 2523bddc475d823..881b6dad2b84d77 100644
--- a/mlir/include/mlir-c/BuiltinTypes.h
+++ b/mlir/include/mlir-c/BuiltinTypes.h
@@ -411,9 +411,8 @@ MLIR_CAPI_EXPORTED MlirAttribute mlirMemRefTypeGetMemorySpace(MlirType type);
/// Returns the strides of the MemRef if the layout map is in strided form.
/// Both strides and offset are out params. strides must point to pre-allocated
/// memory of length equal to the rank of the memref.
-MLIR_CAPI_EXPORTED void mlirMemRefTypeGetStridesAndOffset(MlirType type,
- int64_t *strides,
- int64_t *offset);
+MLIR_CAPI_EXPORTED MlirLogicalResult mlirMemRefTypeGetStridesAndOffset(
+ MlirType type, int64_t *strides, int64_t *offset);
/// Returns the memory spcae of the given Unranked MemRef type.
MLIR_CAPI_EXPORTED MlirAttribute
diff --git a/mlir/lib/Bindings/Python/IRTypes.cpp b/mlir/lib/Bindings/Python/IRTypes.cpp
index 86f01a6381ae4e0..c87f791e93fb84d 100644
--- a/mlir/lib/Bindings/Python/IRTypes.cpp
+++ b/mlir/lib/Bindings/Python/IRTypes.cpp
@@ -12,6 +12,8 @@
#include "mlir-c/BuiltinAttributes.h"
#include "mlir-c/BuiltinTypes.h"
+#include "mlir-c/Support.h"
+
#include <optional>
namespace py = pybind11;
@@ -618,12 +620,15 @@ class PyMemRefType : public PyConcreteType<PyMemRefType, PyShapedType> {
return mlirMemRefTypeGetLayout(self);
},
"The layout of the MemRef type.")
- .def_property_readonly(
- "strides_and_offset",
+ .def(
+ "get_strides_and_offset",
[](PyMemRefType &self) -> std::pair<std::vector<int64_t>, int64_t> {
std::vector<int64_t> strides(mlirShapedTypeGetRank(self));
int64_t offset;
- mlirMemRefTypeGetStridesAndOffset(self, strides.data(), &offset);
+ if (mlirLogicalResultIsFailure(mlirMemRefTypeGetStridesAndOffset(
+ self, strides.data(), &offset)))
+ throw std::runtime_error(
+ "failed to extract strides and offset from memref");
return {strides, offset};
},
"The strides and offset of the MemRef type.")
diff --git a/mlir/lib/CAPI/IR/BuiltinTypes.cpp b/mlir/lib/CAPI/IR/BuiltinTypes.cpp
index 6a3653d8baf304a..18c9414c5d0f344 100644
--- a/mlir/lib/CAPI/IR/BuiltinTypes.cpp
+++ b/mlir/lib/CAPI/IR/BuiltinTypes.cpp
@@ -9,12 +9,14 @@
#include "mlir-c/BuiltinTypes.h"
#include "mlir-c/AffineMap.h"
#include "mlir-c/IR.h"
+#include "mlir-c/Support.h"
#include "mlir/CAPI/AffineMap.h"
#include "mlir/CAPI/IR.h"
#include "mlir/CAPI/Support.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Types.h"
+#include "mlir/Support/LogicalResult.h"
#include <algorithm>
@@ -428,16 +430,16 @@ MlirAttribute mlirMemRefTypeGetMemorySpace(MlirType type) {
return wrap(llvm::cast<MemRefType>(unwrap(type)).getMemorySpace());
}
-void mlirMemRefTypeGetStridesAndOffset(MlirType type, int64_t *strides,
- int64_t *offset) {
+MlirLogicalResult mlirMemRefTypeGetStridesAndOffset(MlirType type,
+ int64_t *strides,
+ int64_t *offset) {
MemRefType memrefType = llvm::cast<MemRefType>(unwrap(type));
- std::pair<SmallVector<int64_t>, int64_t> stridesOffsets =
- getStridesAndOffset(memrefType);
- assert(stridesOffsets.first.size() == memrefType.getRank() &&
- "Strides and rank don't match for memref");
- (void)std::copy(stridesOffsets.first.begin(), stridesOffsets.first.end(),
- strides);
- *offset = stridesOffsets.second;
+ SmallVector<int64_t> strides_;
+ if (failed(getStridesAndOffset(memrefType, strides_, *offset)))
+ return mlirLogicalResultFailure();
+
+ (void)std::copy(strides_.begin(), strides_.end(), strides);
+ return mlirLogicalResultSuccess();
}
MlirTypeID mlirUnrankedMemRefTypeGetTypeID() {
diff --git a/mlir/python/mlir/dialects/_ods_common.py b/mlir/python/mlir/dialects/_ods_common.py
index 1685124fbccdc9f..3af3b5ce73bc60a 100644
--- a/mlir/python/mlir/dialects/_ods_common.py
+++ b/mlir/python/mlir/dialects/_ods_common.py
@@ -2,16 +2,30 @@
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-# Provide a convenient name for sub-packages to resolve the main C-extension
-# with a relative import.
-from .._mlir_libs import _mlir as _cext
from typing import (
+ List as _List,
+ Optional as _Optional,
Sequence as _Sequence,
+ Tuple as _Tuple,
Type as _Type,
TypeVar as _TypeVar,
Union as _Union,
)
+from .._mlir_libs import _mlir as _cext
+from ..ir import (
+ ArrayAttr,
+ Attribute,
+ BoolAttr,
+ DenseI64ArrayAttr,
+ IntegerAttr,
+ IntegerType,
+ OpView,
+ Operation,
+ ShapedType,
+ Value,
+)
+
__all__ = [
"equally_sized_accessor",
"get_default_loc_context",
@@ -138,3 +152,157 @@ def get_op_result_or_op_results(
ResultValueTypeTuple = _cext.ir.Operation, _cext.ir.OpView, _cext.ir.Value
ResultValueT = _Union[ResultValueTypeTuple]
VariadicResultValueT = _Union[ResultValueT, _Sequence[ResultValueT]]
+
+StaticIntLike = _Union[int, IntegerAttr]
+ValueLike = _Union[Operation, OpView, Value]
+MixedInt = _Union[StaticIntLike, ValueLike]
+
+IntOrAttrList = _Sequence[_Union[IntegerAttr, int]]
+OptionalIntList = _Optional[_Union[ArrayAttr, IntOrAttrList]]
+
+BoolOrAttrList = _Sequence[_Union[BoolAttr, bool]]
+OptionalBoolList = _Optional[_Union[ArrayAttr, BoolOrAttrList]]
+
+MixedValues = _Union[_Sequence[_Union[StaticIntLike, ValueLike]], ArrayAttr, ValueLike]
+
+DynamicIndexList = _Sequence[_Union[MixedInt, _Sequence[MixedInt]]]
+
+
+def _dispatch_dynamic_index_list(
+ indices: _Union[DynamicIndexList, ArrayAttr],
+) -> _Tuple[_List[ValueLike], _Union[_List[int], ArrayAttr], _List[bool]]:
+ """Dispatches a list of indices to the appropriate form.
+
+ This is similar to the custom `DynamicIndexList` directive upstream:
+ provided indices may be in the form of dynamic SSA values or static values,
+ and they may be scalable (i.e., as a singleton list) or not. This function
+ dispatches each index into its respective form. It also extracts the SSA
+ values and static indices from various similar structures, respectively.
+ """
+ dynamic_indices = []
+ static_indices = [ShapedType.get_dynamic_size()] * len(indices)
+ scalable_indices = [False] * len(indices)
+
+ # ArrayAttr: Extract index values.
+ if isinstance(indices, ArrayAttr):
+ indices = [idx for idx in indices]
+
+ def process_nonscalable_index(i, index):
+ """Processes any form of non-scalable index.
+
+ Returns False if the given index was scalable and thus remains
+ unprocessed; True otherwise.
+ """
+ if isinstance(index, int):
+ static_indices[i] = index
+ elif isinstance(index, IntegerAttr):
+ static_indices[i] = index.value # pytype: disable=attribute-error
+ elif isinstance(index, (Operation, Value, OpView)):
+ dynamic_indices.append(index)
+ else:
+ return False
+ return True
+
+ # Process each index at a time.
+ for i, index in enumerate(indices):
+ if not process_nonscalable_index(i, index):
+ # If it wasn't processed, it must be a scalable index, which is
+ # provided as a _Sequence of one value, so extract and process that.
+ scalable_indices[i] = True
+ assert len(index) == 1
+ ret = process_nonscalable_index(i, index[0])
+ assert ret
+
+ return dynamic_indices, static_indices, scalable_indices
+
+
+# Dispatches `MixedValues` that all represents integers in various forms into
+# the following three categories:
+# - `dynamic_values`: a list of `Value`s, potentially from op results;
+# - `packed_values`: a value handle, potentially from an op result, associated
+# to one or more payload operations of integer type;
+# - `static_values`: an `ArrayAttr` of `i64`s with static values, from Python
+# `int`s, from `IntegerAttr`s, or from an `ArrayAttr`.
+# The input is in the form for `packed_values`, only that result is set and the
+# other two are empty. Otherwise, the input can be a mix of the other two forms,
+# and for each dynamic value, a special value is added to the `static_values`.
+def _dispatch_mixed_values(
+ values: MixedValues,
+) -> _Tuple[_List[Value], _Union[Operation, Value, OpView], DenseI64ArrayAttr]:
+ dynamic_values = []
+ packed_values = None
+ static_values = None
+ if isinstance(values, ArrayAttr):
+ static_values = values
+ elif isinstance(values, (Operation, Value, OpView)):
+ packed_values = values
+ else:
+ static_values = []
+ for size in values or []:
+ if isinstance(size, int):
+ static_values.append(size)
+ else:
+ static_values.append(ShapedType.get_dynamic_size())
+ dynamic_values.append(size)
+ static_values = DenseI64ArrayAttr.get(static_values)
+
+ return (dynamic_values, packed_values, static_values)
+
+
+def _get_value_or_attribute_value(
+ value_or_attr: _Union[any, Attribute, ArrayAttr]
+) -> any:
+ if isinstance(value_or_attr, Attribute) and hasattr(value_or_attr, "value"):
+ return value_or_attr.value
+ if isinstance(value_or_attr, ArrayAttr):
+ return _get_value_list(value_or_attr)
+ return value_or_attr
+
+
+def _get_value_list(
+ sequence_or_array_attr: _Union[_Sequence[any], ArrayAttr]
+) -> _Sequence[any]:
+ return [_get_value_or_attribute_value(v) for v in sequence_or_array_attr]
+
+
+def _get_int_array_attr(
+ values: _Optional[_Union[ArrayAttr, IntOrAttrList]]
+) -> ArrayAttr:
+ if values is None:
+ return None
+
+ # Turn into a Python list of Python ints.
+ values = _get_value_list(values)
+
+ # Make an ArrayAttr of IntegerAttrs out of it.
+ return ArrayAttr.get(
+ [IntegerAttr.get(IntegerType.get_signless(64), v) for v in values]
+ )
+
+
+def _get_int_array_array_attr(
+ values: _Optional[_Union[ArrayAttr, _Sequence[_Union[ArrayAttr, IntOrAttrList]]]]
+) -> ArrayAttr:
+ """Creates an ArrayAttr of ArrayAttrs of IntegerAttrs.
+
+ The input has to be a collection of a collection of integers, where any
+ Python _Sequence and ArrayAttr are admissible collections and Python ints and
+ any IntegerAttr are admissible integers. Both levels of collections are
+ turned into ArrayAttr; the inner level is turned into IntegerAttrs of i64s.
+ If the input is None, an empty ArrayAttr is returned.
+ """
+ if values is None:
+ return None
+
+ # Make sure the outer level is a list.
+ values = _get_value_list(values)
+
+ # The inner level is now either invalid or a mixed sequence of ArrayAttrs and
+ # Sequences. Make sure the nested values are all lists.
+ values = [_get_value_list(nested) for nested in values]
+
+ # Turn each nested list into an ArrayAttr.
+ values = [_get_int_array_attr(nested) for nested in values]
+
+ # Turn the outer list into an ArrayAttr.
+ return ArrayAttr.get(values)
diff --git a/mlir/python/mlir/dialects/memref.py b/mlir/python/mlir/dialects/memref.py
index 6ab6e0602e7a95d..a3d783415855e11 100644
--- a/mlir/python/mlir/dialects/memref.py
+++ b/mlir/python/mlir/dialects/memref.py
@@ -6,43 +6,52 @@
from typing import Optional
from ._memref_ops_gen import *
-from .arith import ConstantOp
-from .transform.structured import _dispatch_mixed_values, MixedValues
+from ._ods_common import _dispatch_mixed_values, MixedValues
+from .arith import ConstantOp, _is_integer_like_type
from ..ir import Value, MemRefType, StridedLayoutAttr, ShapedType
-def _is_constant(i):
- return isinstance(i, Value) and isinstance(i.owner.opview, ConstantOp)
+def _is_constant_int_like(i):
+ return (
+ isinstance(i, Value)
+ and isinstance(i.owner.opview, ConstantOp)
+ and _is_integer_like_type(i.type)
+ )
-def _is_static(i):
- return (isinstance(i, int) and not ShapedType.is_dynamic_size(i)) or _is_constant(i)
+def _is_static_int_like(i):
+ return (
+ isinstance(i, int) and not ShapedType.is_dynamic_size(i)
+ ) or _is_constant_int_like(i)
def _infer_memref_subview_result_type(
source_memref_type, offsets, static_sizes, static_strides
):
- source_strides, source_offset = source_memref_type.strides_and_offset
+ source_strides, source_offset = source_memref_type.get_strides_and_offset()
# "canonicalize" from tuple|list -> list
offsets, static_sizes, static_strides, source_strides = map(
list, (offsets, static_sizes, static_strides, source_strides)
)
- assert all(
- all(_is_static(i) for i in s)
+ if not all(
+ all(_is_static_int_like(i) for i in s)
for s in [
static_sizes,
static_strides,
source_strides,
]
- ), f"Only inferring from python or mlir integer constant is supported"
+ ):
+ raise ValueError(
+ "Only inferring from python or mlir integer constant is supported."
+ )
for s in [offsets, static_sizes, static_strides]:
for idx, i in enumerate(s):
- if _is_constant(i):
+ if _is_constant_int_like(i):
s[idx] = i.owner.opview.literal_value
- if any(not _is_static(i) for i in offsets + [source_offset]):
+ if any(not _is_static_int_like(i) for i in offsets + [source_offset]):
target_offset = ShapedType.get_dynamic_size()
else:
target_offset = source_offset
@@ -91,22 +100,22 @@ def subview(
sizes = []
if strides is None:
strides = []
- source_strides, source_offset = source.type.strides_and_offset
+ source_strides, source_offset = source.type.get_strides_and_offset()
if result_type is None and all(
- all(_is_static(i) for i in s) for s in [sizes, strides, source_strides]
+ all(_is_static_int_like(i) for i in s) for s in [sizes, strides, source_strides]
):
# If any are arith.constant results then this will canonicalize to python int
- # (which can then be used to fully specific the subview).
+ # (which can then be used to fully specify the subview).
(
offsets,
sizes,
strides,
result_type,
) = _infer_memref_subview_result_type(source.type, offsets, sizes, strides)
- else:
- assert (
- result_type is not None
- ), "mixed static/dynamic offset/sizes/strides requires explicit result type"
+ elif result_type is None:
+ raise ValueError(
+ "mixed static/dynamic offset/sizes/strides requires explicit result type."
+ )
offsets, _packed_offsets, static_offsets = _dispatch_mixed_values(offsets)
sizes, _packed_sizes, static_sizes = _dispatch_mixed_values(sizes)
diff --git a/mlir/python/mlir/dialects/transform/structured.py b/mlir/python/mlir/dialects/transform/structured.py
index 284c93823acbd34..d7b41c0bd2207d1 100644
--- a/mlir/python/mlir/dialects/transform/structured.py
+++ b/mlir/python/mlir/dialects/transform/structured.py
@@ -9,163 +9,24 @@
try:
from ...ir import *
from ...dialects import transform
- from .._ods_common import _cext as _ods_cext
+ from .._ods_common import (
+ DynamicIndexList,
+ IntOrAttrList,
+ MixedValues,
+ OptionalBoolList,
+ OptionalIntList,
+ _cext as _ods_cext,
+ _dispatch_dynamic_index_list,
+ _dispatch_mixed_values,
+ _get_int_array_array_attr,
+ _get_int_array_attr,
+ _get_value_list,
+ _get_value_or_attribute_value,
+ )
except ImportError as e:
raise RuntimeError("Error loading imports from extension module") from e
-from typing import List, Optional, Sequence, Tuple, Union, overload
-
-StaticIntLike = Union[int, IntegerAttr]
-ValueLike = Union[Operation, OpView, Value]
-MixedInt = Union[StaticIntLike, ValueLike]
-
-IntOrAttrList = Sequence[Union[IntegerAttr, int]]
-OptionalIntList = Optional[Union[ArrayAttr, IntOrAttrList]]
-
-BoolOrAttrList = Sequence[Union[BoolAttr, bool]]
-OptionalBoolList = Optional[Union[ArrayAttr, BoolOrAttrList]]
-
-MixedValues = Union[Sequence[Union[StaticIntLike, ValueLike]], ArrayAttr, ValueLike]
-
-DynamicIndexList = Sequence[Union[MixedInt, Sequence[MixedInt]]]
-
-
-def _dispatch_dynamic_index_list(
- indices: Union[DynamicIndexList, ArrayAttr],
-) -> Tuple[List[ValueLike], Union[List[int], ArrayAttr], List[bool]]:
- """Dispatches a list of indices to the appropriate form.
-
- This is similar to the custom `DynamicIndexList` directive upstream:
- provided indices may be in the form of dynamic SSA values or static values,
- and they may be scalable (i.e., as a singleton list) or not. This function
- dispatches each index into its respective form. It also extracts the SSA
- values and static indices from various similar structures, respectively.
- """
- dynamic_indices = []
- static_indices = [ShapedType.get_dynamic_size()] * len(indices)
- scalable_indices = [False] * len(indices)
-
- # ArrayAttr: Extract index values.
- if isinstance(indices, ArrayAttr):
- indices = [idx for idx in indices]
-
- def process_nonscalable_index(i, index):
- """Processes any form of non-scalable index.
-
- Returns False if the given index was scalable and thus remains
- unprocessed; True otherwise.
- """
- if isinstance(index, int):
- static_indices[i] = index
- elif isinstance(index, IntegerAttr):
- static_indices[i] = index.value # pytype: disable=attribute-error
- elif isinstance(index, (Operation, Value, OpView)):
- dynamic_indices.append(index)
- else:
- return False
- return True
-
- # Process each index at a time.
- for i, index in enumerate(indices):
- if not process_nonscalable_index(i, index):
- # If it wasn't processed, it must be a scalable index, which is
- # provided as a Sequence of one value, so extract and process that.
- scalable_indices[i] = True
- assert len(index) == 1
- ret = process_nonscalable_index(i, index[0])
- assert ret
-
- return dynamic_indices, static_indices, scalable_indices
-
-
-# Dispatches `MixedValues` that all represents integers in various forms into
-# the following three categories:
-# - `dynamic_values`: a list of `Value`s, potentially from op results;
-# - `packed_values`: a value handle, potentially from an op result, associated
-# to one or more payload operations of integer type;
-# - `static_values`: an `ArrayAttr` of `i64`s with static values, from Python
-# `int`s, from `IntegerAttr`s, or from an `ArrayAttr`.
-# The input is in the form for `packed_values`, only that result is set and the
-# other two are empty. Otherwise, the input can be a mix of the other two forms,
-# and for each dynamic value, a special value is added to the `static_values`.
-def _dispatch_mixed_values(
- values: MixedValues,
-) -> Tuple[List[Value], Union[Operation, Value, OpView], DenseI64ArrayAttr]:
- dynamic_values = []
- packed_values = None
- static_values = None
- if isinstance(values, ArrayAttr):
- static_values = values
- elif isinstance(values, (Operation, Value, OpView)):
- packed_values = values
- else:
- static_values = []
- for size in values or []:
- if isinstance(size, int):
- static_values.append(size)
- else:
- static_values.append(ShapedType.get_dynamic_size())
- dynamic_values.append(size)
- static_values = DenseI64ArrayAttr.get(static_values)
-
- return (dynamic_values, packed_values, static_values)
-
-
-def _get_value_or_attribute_value(
- value_or_attr: Union[any, Attribute, ArrayAttr]
-) -> any:
- if isinstance(value_or_attr, Attribute) and hasattr(value_or_attr, "value"):
- return value_or_attr.value
- if isinstance(value_or_attr, ArrayAttr):
- return _get_value_list(value_or_attr)
- return value_or_attr
-
-
-def _get_value_list(
- sequence_or_array_attr: Union[Sequence[any], ArrayAttr]
-) -> Sequence[any]:
- return [_get_value_or_attribute_value(v) for v in sequence_or_array_attr]
-
-
-def _get_int_array_attr(values: Optional[Union[ArrayAttr, IntOrAttrList]]) -> ArrayAttr:
- if values is None:
- return None
-
- # Turn into a Python list of Python ints.
- values = _get_value_list(values)
-
- # Make an ArrayAttr of IntegerAttrs out of it.
- return ArrayAttr.get(
- [IntegerAttr.get(IntegerType.get_signless(64), v) for v in values]
- )
-
-
-def _get_int_array_array_attr(
- values: Optional[Union[ArrayAttr, Sequence[Union[ArrayAttr, IntOrAttrList]]]]
-) -> ArrayAttr:
- """Creates an ArrayAttr of ArrayAttrs of IntegerAttrs.
-
- The input has to be a collection of collection of integers, where any
- Python Sequence and ArrayAttr are admissible collections and Python ints and
- any IntegerAttr are admissible integers. Both levels of collections are
- turned into ArrayAttr; the inner level is turned into IntegerAttrs of i64s.
- If the input is None, an empty ArrayAttr is returned.
- """
- if values is None:
- return None
-
- # Make sure the outer level is a list.
- values = _get_value_list(values)
-
- # The inner level is now either invalid or a mixed sequence of ArrayAttrs and
- # Sequences. Make sure the nested values are all lists.
- values = [_get_value_list(nested) for nested in values]
-
- # Turn each nested list into an ArrayAttr.
- values = [_get_int_array_attr(nested) for nested in values]
-
- # Turn the outer list into an ArrayAttr.
- return ArrayAttr.get(values)
+from typing import List, Optional, Sequence, Union, overload
@_ods_cext.register_operation(_Dialect, replace=True)
diff --git a/mlir/test/python/dialects/memref.py b/mlir/test/python/dialects/memref.py
index 0cf2fe15384fbd1..162c22aedbdc863 100644
--- a/mlir/test/python/dialects/memref.py
+++ b/mlir/test/python/dialects/memref.py
@@ -141,7 +141,7 @@ def testSubViewOpInferReturnTypeSemantics():
[ShapedType.get_dynamic_size(), 3],
[1, 1],
)
- except AssertionError as e:
+ except ValueError as e:
# CHECK: Only inferring from python or mlir integer constant is supported
print(e)
@@ -152,7 +152,7 @@ def testSubViewOpInferReturnTypeSemantics():
[ShapedType.get_dynamic_size(), 3],
[1, 1],
)
- except AssertionError as e:
+ except ValueError as e:
# CHECK: mixed static/dynamic offset/sizes/strides requires explicit result type
print(e)
More information about the Mlir-commits
mailing list