[Mlir-commits] [mlir] c41bb11 - Revert "[mlir][complex] Prevent underflow in complex.abs" (#79722)
llvmlistbot at llvm.org
llvmlistbot at llvm.org
Sat Jan 27 19:25:04 PST 2024
Author: Mehdi Amini
Date: 2024-01-27T19:25:01-08:00
New Revision: c41bb1120f6628f94119229ad2e7b93062a3e443
URL: https://github.com/llvm/llvm-project/commit/c41bb1120f6628f94119229ad2e7b93062a3e443
DIFF: https://github.com/llvm/llvm-project/commit/c41bb1120f6628f94119229ad2e7b93062a3e443.diff
LOG: Revert "[mlir][complex] Prevent underflow in complex.abs" (#79722)
Reverts llvm/llvm-project#76316
Buildbot test is broken.
Added:
Modified:
mlir/lib/Conversion/ComplexToStandard/ComplexToStandard.cpp
mlir/test/Conversion/ComplexToStandard/convert-to-standard.mlir
mlir/test/Conversion/ComplexToStandard/full-conversion.mlir
mlir/test/Integration/Dialect/Complex/CPU/correctness.mlir
Removed:
################################################################################
diff --git a/mlir/lib/Conversion/ComplexToStandard/ComplexToStandard.cpp b/mlir/lib/Conversion/ComplexToStandard/ComplexToStandard.cpp
index 81601ce51f431c..4c9dad9e2c1731 100644
--- a/mlir/lib/Conversion/ComplexToStandard/ComplexToStandard.cpp
+++ b/mlir/lib/Conversion/ComplexToStandard/ComplexToStandard.cpp
@@ -26,57 +26,29 @@ namespace mlir {
using namespace mlir;
namespace {
-// The algorithm is listed in https://dl.acm.org/doi/pdf/10.1145/363717.363780.
struct AbsOpConversion : public OpConversionPattern<complex::AbsOp> {
using OpConversionPattern<complex::AbsOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(complex::AbsOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
- mlir::ImplicitLocOpBuilder b(op.getLoc(), rewriter);
+ auto loc = op.getLoc();
+ auto type = op.getType();
arith::FastMathFlagsAttr fmf = op.getFastMathFlagsAttr();
- Type elementType = op.getType();
- Value arg = adaptor.getComplex();
-
- Value zero =
- b.create<arith::ConstantOp>(elementType, b.getZeroAttr(elementType));
- Value one = b.create<arith::ConstantOp>(elementType,
- b.getFloatAttr(elementType, 1.0));
-
- Value real = b.create<complex::ReOp>(elementType, arg);
- Value imag = b.create<complex::ImOp>(elementType, arg);
-
- Value realIsZero =
- b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, real, zero);
- Value imagIsZero =
- b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, imag, zero);
-
- // Real > Imag
- Value imagDivReal = b.create<arith::DivFOp>(imag, real, fmf.getValue());
- Value imagSq =
- b.create<arith::MulFOp>(imagDivReal, imagDivReal, fmf.getValue());
- Value imagSqPlusOne = b.create<arith::AddFOp>(imagSq, one, fmf.getValue());
- Value imagSqrt = b.create<math::SqrtOp>(imagSqPlusOne, fmf.getValue());
- Value absImag = b.create<arith::MulFOp>(imagSqrt, real, fmf.getValue());
-
- // Real <= Imag
- Value realDivImag = b.create<arith::DivFOp>(real, imag, fmf.getValue());
- Value realSq =
- b.create<arith::MulFOp>(realDivImag, realDivImag, fmf.getValue());
- Value realSqPlusOne = b.create<arith::AddFOp>(realSq, one, fmf.getValue());
- Value realSqrt = b.create<math::SqrtOp>(realSqPlusOne, fmf.getValue());
- Value absReal = b.create<arith::MulFOp>(realSqrt, imag, fmf.getValue());
-
- rewriter.replaceOpWithNewOp<arith::SelectOp>(
- op, realIsZero, imag,
- b.create<arith::SelectOp>(
- imagIsZero, real,
- b.create<arith::SelectOp>(
- b.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, real, imag),
- absImag, absReal)));
-
+ Value real =
+ rewriter.create<complex::ReOp>(loc, type, adaptor.getComplex());
+ Value imag =
+ rewriter.create<complex::ImOp>(loc, type, adaptor.getComplex());
+ Value realSqr =
+ rewriter.create<arith::MulFOp>(loc, real, real, fmf.getValue());
+ Value imagSqr =
+ rewriter.create<arith::MulFOp>(loc, imag, imag, fmf.getValue());
+ Value sqNorm =
+ rewriter.create<arith::AddFOp>(loc, realSqr, imagSqr, fmf.getValue());
+
+ rewriter.replaceOpWithNewOp<math::SqrtOp>(op, sqNorm);
return success();
}
};
diff --git a/mlir/test/Conversion/ComplexToStandard/convert-to-standard.mlir b/mlir/test/Conversion/ComplexToStandard/convert-to-standard.mlir
index d5f83e0af4184e..8fa29ea43854a4 100644
--- a/mlir/test/Conversion/ComplexToStandard/convert-to-standard.mlir
+++ b/mlir/test/Conversion/ComplexToStandard/convert-to-standard.mlir
@@ -7,28 +7,13 @@ func.func @complex_abs(%arg: complex<f32>) -> f32 {
%abs = complex.abs %arg: complex<f32>
return %abs : f32
}
-
-// CHECK: %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32
-// CHECK: %[[ONE:.*]] = arith.constant 1.000000e+00 : f32
// CHECK: %[[REAL:.*]] = complex.re %[[ARG]] : complex<f32>
// CHECK: %[[IMAG:.*]] = complex.im %[[ARG]] : complex<f32>
-// CHECK: %[[IS_REAL_ZERO:.*]] = arith.cmpf oeq, %[[REAL]], %[[ZERO]] : f32
-// CHECK: %[[IS_IMAG_ZERO:.*]] = arith.cmpf oeq, %[[IMAG]], %[[ZERO]] : f32
-// CHECK: %[[IMAG_DIV_REAL:.*]] = arith.divf %[[IMAG]], %[[REAL]] : f32
-// CHECK: %[[IMAG_SQ:.*]] = arith.mulf %[[IMAG_DIV_REAL]], %[[IMAG_DIV_REAL]] : f32
-// CHECK: %[[IMAG_SQ_PLUS_ONE:.*]] = arith.addf %[[IMAG_SQ]], %[[ONE]] : f32
-// CHECK: %[[IMAG_SQRT:.*]] = math.sqrt %[[IMAG_SQ_PLUS_ONE]] : f32
-// CHECK: %[[ABS_IMAG:.*]] = arith.mulf %[[IMAG_SQRT]], %[[REAL]] : f32
-// CHECK: %[[REAL_DIV_IMAG:.*]] = arith.divf %[[REAL]], %[[IMAG]] : f32
-// CHECK: %[[REAL_SQ:.*]] = arith.mulf %[[REAL_DIV_IMAG]], %[[REAL_DIV_IMAG]] : f32
-// CHECK: %[[REAL_SQ_PLUS_ONE:.*]] = arith.addf %[[REAL_SQ]], %[[ONE]] : f32
-// CHECK: %[[REAL_SQRT:.*]] = math.sqrt %[[REAL_SQ_PLUS_ONE]] : f32
-// CHECK: %[[ABS_REAL:.*]] = arith.mulf %[[REAL_SQRT]], %[[IMAG]] : f32
-// CHECK: %[[REAL_GT_IMAG:.*]] = arith.cmpf ogt, %[[REAL]], %[[IMAG]] : f32
-// CHECK: %[[ABS1:.*]] = arith.select %[[REAL_GT_IMAG]], %[[ABS_IMAG]], %[[ABS_REAL]] : f32
-// CHECK: %[[ABS2:.*]] = arith.select %[[IS_IMAG_ZERO]], %[[REAL]], %[[ABS1]] : f32
-// CHECK: %[[ABS3:.*]] = arith.select %[[IS_REAL_ZERO]], %[[IMAG]], %[[ABS2]] : f32
-// CHECK: return %[[ABS3]] : f32
+// CHECK-DAG: %[[REAL_SQ:.*]] = arith.mulf %[[REAL]], %[[REAL]] : f32
+// CHECK-DAG: %[[IMAG_SQ:.*]] = arith.mulf %[[IMAG]], %[[IMAG]] : f32
+// CHECK: %[[SQ_NORM:.*]] = arith.addf %[[REAL_SQ]], %[[IMAG_SQ]] : f32
+// CHECK: %[[NORM:.*]] = math.sqrt %[[SQ_NORM]] : f32
+// CHECK: return %[[NORM]] : f32
// -----
@@ -256,26 +241,12 @@ func.func @complex_log(%arg: complex<f32>) -> complex<f32> {
%log = complex.log %arg: complex<f32>
return %log : complex<f32>
}
-// CHECK: %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32
-// CHECK: %[[ONE:.*]] = arith.constant 1.000000e+00 : f32
// CHECK: %[[REAL:.*]] = complex.re %[[ARG]] : complex<f32>
// CHECK: %[[IMAG:.*]] = complex.im %[[ARG]] : complex<f32>
-// CHECK: %[[IS_REAL_ZERO:.*]] = arith.cmpf oeq, %[[REAL]], %[[ZERO]] : f32
-// CHECK: %[[IS_IMAG_ZERO:.*]] = arith.cmpf oeq, %[[IMAG]], %[[ZERO]] : f32
-// CHECK: %[[IMAG_DIV_REAL:.*]] = arith.divf %[[IMAG]], %[[REAL]] : f32
-// CHECK: %[[IMAG_SQ:.*]] = arith.mulf %[[IMAG_DIV_REAL]], %[[IMAG_DIV_REAL]] : f32
-// CHECK: %[[IMAG_SQ_PLUS_ONE:.*]] = arith.addf %[[IMAG_SQ]], %[[ONE]] : f32
-// CHECK: %[[IMAG_SQRT:.*]] = math.sqrt %[[IMAG_SQ_PLUS_ONE]] : f32
-// CHECK: %[[ABS_IMAG:.*]] = arith.mulf %[[IMAG_SQRT]], %[[REAL]] : f32
-// CHECK: %[[REAL_DIV_IMAG:.*]] = arith.divf %[[REAL]], %[[IMAG]] : f32
-// CHECK: %[[REAL_SQ:.*]] = arith.mulf %[[REAL_DIV_IMAG]], %[[REAL_DIV_IMAG]] : f32
-// CHECK: %[[REAL_SQ_PLUS_ONE:.*]] = arith.addf %[[REAL_SQ]], %[[ONE]] : f32
-// CHECK: %[[REAL_SQRT:.*]] = math.sqrt %[[REAL_SQ_PLUS_ONE]] : f32
-// CHECK: %[[ABS_REAL:.*]] = arith.mulf %[[REAL_SQRT]], %[[IMAG]] : f32
-// CHECK: %[[REAL_GT_IMAG:.*]] = arith.cmpf ogt, %[[REAL]], %[[IMAG]] : f32
-// CHECK: %[[ABS1:.*]] = arith.select %[[REAL_GT_IMAG]], %[[ABS_IMAG]], %[[ABS_REAL]] : f32
-// CHECK: %[[ABS2:.*]] = arith.select %[[IS_IMAG_ZERO]], %[[REAL]], %[[ABS1]] : f32
-// CHECK: %[[NORM:.*]] = arith.select %[[IS_REAL_ZERO]], %[[IMAG]], %[[ABS2]] : f32
+// CHECK: %[[SQR_REAL:.*]] = arith.mulf %[[REAL]], %[[REAL]] : f32
+// CHECK: %[[SQR_IMAG:.*]] = arith.mulf %[[IMAG]], %[[IMAG]] : f32
+// CHECK: %[[SQ_NORM:.*]] = arith.addf %[[SQR_REAL]], %[[SQR_IMAG]] : f32
+// CHECK: %[[NORM:.*]] = math.sqrt %[[SQ_NORM]] : f32
// CHECK: %[[RESULT_REAL:.*]] = math.log %[[NORM]] : f32
// CHECK: %[[REAL2:.*]] = complex.re %[[ARG]] : complex<f32>
// CHECK: %[[IMAG2:.*]] = complex.im %[[ARG]] : complex<f32>
@@ -498,26 +469,12 @@ func.func @complex_sign(%arg: complex<f32>) -> complex<f32> {
// CHECK: %[[REAL_IS_ZERO:.*]] = arith.cmpf oeq, %[[REAL]], %[[ZERO]] : f32
// CHECK: %[[IMAG_IS_ZERO:.*]] = arith.cmpf oeq, %[[IMAG]], %[[ZERO]] : f32
// CHECK: %[[IS_ZERO:.*]] = arith.andi %[[REAL_IS_ZERO]], %[[IMAG_IS_ZERO]] : i1
-// CHECK: %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32
-// CHECK: %[[ONE:.*]] = arith.constant 1.000000e+00 : f32
// CHECK: %[[REAL2:.*]] = complex.re %[[ARG]] : complex<f32>
// CHECK: %[[IMAG2:.*]] = complex.im %[[ARG]] : complex<f32>
-// CHECK: %[[IS_REAL_ZERO:.*]] = arith.cmpf oeq, %[[REAL2]], %[[ZERO]] : f32
-// CHECK: %[[IS_IMAG_ZERO:.*]] = arith.cmpf oeq, %[[IMAG2]], %[[ZERO]] : f32
-// CHECK: %[[IMAG_DIV_REAL:.*]] = arith.divf %[[IMAG2]], %[[REAL2]] : f32
-// CHECK: %[[IMAG_SQ:.*]] = arith.mulf %[[IMAG_DIV_REAL]], %[[IMAG_DIV_REAL]] : f32
-// CHECK: %[[IMAG_SQ_PLUS_ONE:.*]] = arith.addf %[[IMAG_SQ]], %[[ONE]] : f32
-// CHECK: %[[IMAG_SQRT:.*]] = math.sqrt %[[IMAG_SQ_PLUS_ONE]] : f32
-// CHECK: %[[ABS_IMAG:.*]] = arith.mulf %[[IMAG_SQRT]], %[[REAL2]] : f32
-// CHECK: %[[REAL_DIV_IMAG:.*]] = arith.divf %[[REAL2]], %[[IMAG2]] : f32
-// CHECK: %[[REAL_SQ:.*]] = arith.mulf %[[REAL_DIV_IMAG]], %[[REAL_DIV_IMAG]] : f32
-// CHECK: %[[REAL_SQ_PLUS_ONE:.*]] = arith.addf %[[REAL_SQ]], %[[ONE]] : f32
-// CHECK: %[[REAL_SQRT:.*]] = math.sqrt %[[REAL_SQ_PLUS_ONE]] : f32
-// CHECK: %[[ABS_REAL:.*]] = arith.mulf %[[REAL_SQRT]], %[[IMAG2]] : f32
-// CHECK: %[[REAL_GT_IMAG:.*]] = arith.cmpf ogt, %[[REAL2]], %[[IMAG2]] : f32
-// CHECK: %[[ABS1:.*]] = arith.select %[[REAL_GT_IMAG]], %[[ABS_IMAG]], %[[ABS_REAL]] : f32
-// CHECK: %[[ABS2:.*]] = arith.select %[[IS_IMAG_ZERO]], %[[REAL2]], %[[ABS1]] : f32
-// CHECK: %[[NORM:.*]] = arith.select %[[IS_REAL_ZERO]], %[[IMAG2]], %[[ABS2]] : f32
+// CHECK: %[[SQR_REAL:.*]] = arith.mulf %[[REAL2]], %[[REAL2]] : f32
+// CHECK: %[[SQR_IMAG:.*]] = arith.mulf %[[IMAG2]], %[[IMAG2]] : f32
+// CHECK: %[[SQ_NORM:.*]] = arith.addf %[[SQR_REAL]], %[[SQR_IMAG]] : f32
+// CHECK: %[[NORM:.*]] = math.sqrt %[[SQ_NORM]] : f32
// CHECK: %[[REAL_SIGN:.*]] = arith.divf %[[REAL]], %[[NORM]] : f32
// CHECK: %[[IMAG_SIGN:.*]] = arith.divf %[[IMAG]], %[[NORM]] : f32
// CHECK: %[[SIGN:.*]] = complex.create %[[REAL_SIGN]], %[[IMAG_SIGN]] : complex<f32>
@@ -759,27 +716,13 @@ func.func @complex_abs_with_fmf(%arg: complex<f32>) -> f32 {
%abs = complex.abs %arg fastmath<nnan,contract> : complex<f32>
return %abs : f32
}
-// CHECK: %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32
-// CHECK: %[[ONE:.*]] = arith.constant 1.000000e+00 : f32
// CHECK: %[[REAL:.*]] = complex.re %[[ARG]] : complex<f32>
// CHECK: %[[IMAG:.*]] = complex.im %[[ARG]] : complex<f32>
-// CHECK: %[[IS_REAL_ZERO:.*]] = arith.cmpf oeq, %[[REAL]], %[[ZERO]] : f32
-// CHECK: %[[IS_IMAG_ZERO:.*]] = arith.cmpf oeq, %[[IMAG]], %[[ZERO]] : f32
-// CHECK: %[[IMAG_DIV_REAL:.*]] = arith.divf %[[IMAG]], %[[REAL]] fastmath<nnan,contract> : f32
-// CHECK: %[[IMAG_SQ:.*]] = arith.mulf %[[IMAG_DIV_REAL]], %[[IMAG_DIV_REAL]] fastmath<nnan,contract> : f32
-// CHECK: %[[IMAG_SQ_PLUS_ONE:.*]] = arith.addf %[[IMAG_SQ]], %[[ONE]] fastmath<nnan,contract> : f32
-// CHECK: %[[IMAG_SQRT:.*]] = math.sqrt %[[IMAG_SQ_PLUS_ONE]] fastmath<nnan,contract> : f32
-// CHECK: %[[ABS_IMAG:.*]] = arith.mulf %[[IMAG_SQRT]], %[[REAL]] fastmath<nnan,contract> : f32
-// CHECK: %[[REAL_DIV_IMAG:.*]] = arith.divf %[[REAL]], %[[IMAG]] fastmath<nnan,contract> : f32
-// CHECK: %[[REAL_SQ:.*]] = arith.mulf %[[REAL_DIV_IMAG]], %[[REAL_DIV_IMAG]] fastmath<nnan,contract> : f32
-// CHECK: %[[REAL_SQ_PLUS_ONE:.*]] = arith.addf %[[REAL_SQ]], %[[ONE]] fastmath<nnan,contract> : f32
-// CHECK: %[[REAL_SQRT:.*]] = math.sqrt %[[REAL_SQ_PLUS_ONE]] fastmath<nnan,contract> : f32
-// CHECK: %[[ABS_REAL:.*]] = arith.mulf %[[REAL_SQRT]], %[[IMAG]] fastmath<nnan,contract> : f32
-// CHECK: %[[REAL_GT_IMAG:.*]] = arith.cmpf ogt, %[[REAL]], %[[IMAG]] : f32
-// CHECK: %[[ABS1:.*]] = arith.select %[[REAL_GT_IMAG]], %[[ABS_IMAG]], %[[ABS_REAL]] : f32
-// CHECK: %[[ABS2:.*]] = arith.select %[[IS_IMAG_ZERO]], %[[REAL]], %[[ABS1]] : f32
-// CHECK: %[[ABS3:.*]] = arith.select %[[IS_REAL_ZERO]], %[[IMAG]], %[[ABS2]] : f32
-// CHECK: return %[[ABS3]] : f32
+// CHECK-DAG: %[[REAL_SQ:.*]] = arith.mulf %[[REAL]], %[[REAL]] fastmath<nnan,contract> : f32
+// CHECK-DAG: %[[IMAG_SQ:.*]] = arith.mulf %[[IMAG]], %[[IMAG]] fastmath<nnan,contract> : f32
+// CHECK: %[[SQ_NORM:.*]] = arith.addf %[[REAL_SQ]], %[[IMAG_SQ]] fastmath<nnan,contract> : f32
+// CHECK: %[[NORM:.*]] = math.sqrt %[[SQ_NORM]] : f32
+// CHECK: return %[[NORM]] : f32
// -----
@@ -864,26 +807,12 @@ func.func @complex_log_with_fmf(%arg: complex<f32>) -> complex<f32> {
%log = complex.log %arg fastmath<nnan,contract> : complex<f32>
return %log : complex<f32>
}
-// CHECK: %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32
-// CHECK: %[[ONE:.*]] = arith.constant 1.000000e+00 : f32
// CHECK: %[[REAL:.*]] = complex.re %[[ARG]] : complex<f32>
// CHECK: %[[IMAG:.*]] = complex.im %[[ARG]] : complex<f32>
-// CHECK: %[[IS_REAL_ZERO:.*]] = arith.cmpf oeq, %[[REAL]], %[[ZERO]] : f32
-// CHECK: %[[IS_IMAG_ZERO:.*]] = arith.cmpf oeq, %[[IMAG]], %[[ZERO]] : f32
-// CHECK: %[[IMAG_DIV_REAL:.*]] = arith.divf %[[IMAG]], %[[REAL]] fastmath<nnan,contract> : f32
-// CHECK: %[[IMAG_SQ:.*]] = arith.mulf %[[IMAG_DIV_REAL]], %[[IMAG_DIV_REAL]] fastmath<nnan,contract> : f32
-// CHECK: %[[IMAG_SQ_PLUS_ONE:.*]] = arith.addf %[[IMAG_SQ]], %[[ONE]] fastmath<nnan,contract> : f32
-// CHECK: %[[IMAG_SQRT:.*]] = math.sqrt %[[IMAG_SQ_PLUS_ONE]] fastmath<nnan,contract> : f32
-// CHECK: %[[ABS_IMAG:.*]] = arith.mulf %[[IMAG_SQRT]], %[[REAL]] fastmath<nnan,contract> : f32
-// CHECK: %[[REAL_DIV_IMAG:.*]] = arith.divf %[[REAL]], %[[IMAG]] fastmath<nnan,contract> : f32
-// CHECK: %[[REAL_SQ:.*]] = arith.mulf %[[REAL_DIV_IMAG]], %[[REAL_DIV_IMAG]] fastmath<nnan,contract> : f32
-// CHECK: %[[REAL_SQ_PLUS_ONE:.*]] = arith.addf %[[REAL_SQ]], %[[ONE]] fastmath<nnan,contract> : f32
-// CHECK: %[[REAL_SQRT:.*]] = math.sqrt %[[REAL_SQ_PLUS_ONE]] fastmath<nnan,contract> : f32
-// CHECK: %[[ABS_REAL:.*]] = arith.mulf %[[REAL_SQRT]], %[[IMAG]] fastmath<nnan,contract> : f32
-// CHECK: %[[REAL_GT_IMAG:.*]] = arith.cmpf ogt, %[[REAL]], %[[IMAG]] : f32
-// CHECK: %[[ABS1:.*]] = arith.select %[[REAL_GT_IMAG]], %[[ABS_IMAG]], %[[ABS_REAL]] : f32
-// CHECK: %[[ABS2:.*]] = arith.select %[[IS_IMAG_ZERO]], %[[REAL]], %[[ABS1]] : f32
-// CHECK: %[[NORM:.*]] = arith.select %[[IS_REAL_ZERO]], %[[IMAG]], %[[ABS2]] : f32
+// CHECK: %[[SQR_REAL:.*]] = arith.mulf %[[REAL]], %[[REAL]] fastmath<nnan,contract> : f32
+// CHECK: %[[SQR_IMAG:.*]] = arith.mulf %[[IMAG]], %[[IMAG]] fastmath<nnan,contract> : f32
+// CHECK: %[[SQ_NORM:.*]] = arith.addf %[[SQR_REAL]], %[[SQR_IMAG]] fastmath<nnan,contract> : f32
+// CHECK: %[[NORM:.*]] = math.sqrt %[[SQ_NORM]] : f32
// CHECK: %[[RESULT_REAL:.*]] = math.log %[[NORM]] fastmath<nnan,contract> : f32
// CHECK: %[[REAL2:.*]] = complex.re %[[ARG]] : complex<f32>
// CHECK: %[[IMAG2:.*]] = complex.im %[[ARG]] : complex<f32>
diff --git a/mlir/test/Conversion/ComplexToStandard/full-conversion.mlir b/mlir/test/Conversion/ComplexToStandard/full-conversion.mlir
index d710dc8e1adeb7..9983dd46f09433 100644
--- a/mlir/test/Conversion/ComplexToStandard/full-conversion.mlir
+++ b/mlir/test/Conversion/ComplexToStandard/full-conversion.mlir
@@ -6,29 +6,12 @@ func.func @complex_abs(%arg: complex<f32>) -> f32 {
%abs = complex.abs %arg: complex<f32>
return %abs : f32
}
-// CHECK: %[[ZERO:.*]] = llvm.mlir.constant(0.000000e+00 : f32) : f32
-// CHECK: %[[ONE:.*]] = llvm.mlir.constant(1.000000e+00 : f32) : f32
// CHECK: %[[REAL:.*]] = llvm.extractvalue %[[ARG]][0] : ![[C_TY]]
// CHECK: %[[IMAG:.*]] = llvm.extractvalue %[[ARG]][1] : ![[C_TY]]
-// CHECK: %[[REAL_IS_ZERO:.*]] = llvm.fcmp "oeq" %[[REAL]], %[[ZERO]] : f32
-// CHECK: %[[IMAG_IS_ZERO:.*]] = llvm.fcmp "oeq" %[[IMAG]], %[[ZERO]] : f32
-
-// CHECK: %[[IMAG_DIV_REAL:.*]] = llvm.fdiv %[[IMAG]], %[[REAL]] : f32
-// CHECK: %[[IMAG_SQ:.*]] = llvm.fmul %[[IMAG_DIV_REAL]], %[[IMAG_DIV_REAL]] : f32
-// CHECK: %[[IMAG_SQ_PLUS_ONE:.*]] = llvm.fadd %[[IMAG_SQ]], %[[ONE]] : f32
-// CHECK: %[[IMAG_SQRT:.*]] = llvm.intr.sqrt(%[[IMAG_SQ_PLUS_ONE]]) : (f32) -> f32
-// CHECK: %[[ABS_IMAG:.*]] = llvm.fmul %[[IMAG_SQRT]], %[[REAL]] : f32
-
-// CHECK: %[[REAL_DIV_IMAG:.*]] = llvm.fdiv %[[REAL]], %[[IMAG]] : f32
-// CHECK: %[[REAL_SQ:.*]] = llvm.fmul %[[REAL_DIV_IMAG]], %[[REAL_DIV_IMAG]] : f32
-// CHECK: %[[REAL_SQ_PLUS_ONE:.*]] = llvm.fadd %[[REAL_SQ]], %[[ONE]] : f32
-// CHECK: %[[REAL_SQRT:.*]] = llvm.intr.sqrt(%[[REAL_SQ_PLUS_ONE]]) : (f32) -> f32
-// CHECK: %[[ABS_REAL:.*]] = llvm.fmul %[[REAL_SQRT]], %[[IMAG]] : f32
-
-// CHECK: %[[REAL_GT_IMAG:.*]] = llvm.fcmp "ogt" %[[REAL]], %[[IMAG]] : f32
-// CHECK: %[[ABS1:.*]] = llvm.select %[[REAL_GT_IMAG]], %[[ABS_IMAG]], %[[ABS_REAL]] : i1, f32
-// CHECK: %[[ABS2:.*]] = llvm.select %[[IMAG_IS_ZERO]], %[[REAL]], %[[ABS1]] : i1, f32
-// CHECK: %[[NORM:.*]] = llvm.select %[[REAL_IS_ZERO]], %[[IMAG]], %[[ABS2]] : i1, f32
+// CHECK-DAG: %[[REAL_SQ:.*]] = llvm.fmul %[[REAL]], %[[REAL]] : f32
+// CHECK-DAG: %[[IMAG_SQ:.*]] = llvm.fmul %[[IMAG]], %[[IMAG]] : f32
+// CHECK: %[[SQ_NORM:.*]] = llvm.fadd %[[REAL_SQ]], %[[IMAG_SQ]] : f32
+// CHECK: %[[NORM:.*]] = llvm.intr.sqrt(%[[SQ_NORM]]) : (f32) -> f32
// CHECK: llvm.return %[[NORM]] : f32
// CHECK-LABEL: llvm.func @complex_eq
diff --git a/mlir/test/Integration/Dialect/Complex/CPU/correctness.mlir b/mlir/test/Integration/Dialect/Complex/CPU/correctness.mlir
index c8327e94def8ab..349b92a7aefa2e 100644
--- a/mlir/test/Integration/Dialect/Complex/CPU/correctness.mlir
+++ b/mlir/test/Integration/Dialect/Complex/CPU/correctness.mlir
@@ -106,27 +106,6 @@ func.func @angle(%arg: complex<f32>) -> f32 {
func.return %angle : f32
}
-func.func @test_element_f64(%input: tensor<?xcomplex<f64>>,
- %func: (complex<f64>) -> f64) {
- %c0 = arith.constant 0 : index
- %c1 = arith.constant 1 : index
- %size = tensor.dim %input, %c0: tensor<?xcomplex<f64>>
-
- scf.for %i = %c0 to %size step %c1 {
- %elem = tensor.extract %input[%i]: tensor<?xcomplex<f64>>
-
- %val = func.call_indirect %func(%elem) : (complex<f64>) -> f64
- vector.print %val : f64
- scf.yield
- }
- func.return
-}
-
-func.func @abs(%arg: complex<f64>) -> f64 {
- %abs = complex.abs %arg : complex<f64>
- func.return %abs : f64
-}
-
func.func @entry() {
// complex.sqrt test
%sqrt_test = arith.constant dense<[
@@ -321,28 +300,5 @@ func.func @entry() {
call @test_element(%angle_test_cast, %angle_func)
: (tensor<?xcomplex<f32>>, (complex<f32>) -> f32) -> ()
- // complex.abs test
- %abs_test = arith.constant dense<[
- (1.0, 1.0),
- // CHECK: 1.414
- (1.0e300, 1.0e300),
- // CHECK-NEXT: 1.41421e+300
- (1.0e-300, 1.0e-300),
- // CHECK-NEXT: 1.41421e-300
- (5.0, 0.0),
- // CHECK-NEXT: 5
- (0.0, 6.0),
- // CHECK-NEXT: 6
- (7.0, 8.0)
- // CHECK-NEXT: 10.6301
- ]> : tensor<6xcomplex<f64>>
- %abs_test_cast = tensor.cast %abs_test
- : tensor<6xcomplex<f64>> to tensor<?xcomplex<f64>>
-
- %abs_func = func.constant @abs : (complex<f64>) -> f64
-
- call @test_element_f64(%abs_test_cast, %abs_func)
- : (tensor<?xcomplex<f64>>, (complex<f64>) -> f64) -> ()
-
func.return
}
More information about the Mlir-commits
mailing list