[Mlir-commits] [mlir] [MLIR][Presburger] Implement vertex enumeration and chamber decomposition for polytope generating function computation. (PR #78987)
Arjun P
llvmlistbot at llvm.org
Thu Jan 25 15:49:17 PST 2024
================
@@ -147,6 +149,314 @@ GeneratingFunction mlir::presburger::detail::unimodularConeGeneratingFunction(
std::vector({denominator}));
}
+/// We use Gaussian elimination to find the solution to a set of d equations
+/// of the form
+/// a_1 x_1 + ... + a_d x_d + b_1 m_1 + ... + b_p m_p + c = 0
+/// where x_i are variables,
+/// m_i are parameters and
+/// a_i, b_i, c are rational coefficients.
+/// The solution expresses each x_i as an affine function of the m_i, and is
+/// therefore represented as a matrix of size d x (p+1).
+/// If there is no solution, we return null.
+std::optional<ParamPoint>
+mlir::presburger::detail::solveParametricEquations(FracMatrix equations) {
+ // equations is a d x (d + p + 1) matrix.
+ // Each row represents an equation.
+ unsigned d = equations.getNumRows();
+ unsigned numCols = equations.getNumColumns();
+
+ // If the determinant is zero, there is no unique solution.
+ // Thus we return null.
+ if (FracMatrix(equations.getSubMatrix(/*fromRow=*/0, /*toRow=*/d - 1,
+ /*fromColumn=*/0,
+ /*toColumn=*/d - 1))
+ .determinant() == 0)
+ return std::nullopt;
+
+ // Perform row operations to make each column all zeros except for the
+ // diagonal element, which is made to be one.
+ for (unsigned i = 0; i < d; ++i) {
+ // First ensure that the diagonal element is nonzero, by swapping
+ // it with a row that is non-zero at column i.
+ if (equations(i, i) != 0)
+ continue;
+ for (unsigned j = i + 1; j < d; ++j) {
+ if (equations(j, i) == 0)
+ continue;
+ equations.swapRows(j, i);
+ break;
+ }
+
+ Fraction diagElement = equations(i, i);
+
+ // Apply row operations to make all elements except the diagonal to zero.
+ for (unsigned j = 0; j < d; ++j) {
+ if (i == j)
+ continue;
+ if (equations(j, i) == 0)
+ continue;
+ // Apply row operations to make element (j, i) zero by subtracting the
+ // ith row, appropriately scaled.
+ Fraction currentElement = equations(j, i);
+ equations.addToRow(/*sourceRow=*/i, /*targetRow=*/j,
+ /*scale=*/-currentElement / diagElement);
+ }
+ }
+
+ // Rescale diagonal elements to 1.
+ for (unsigned i = 0; i < d; ++i)
+ equations.scaleRow(i, 1 / equations(i, i));
+
+ // Now we have reduced the equations to the form
+ // x_i + b_1' m_1 + ... + b_p' m_p + c' = 0
+ // i.e. each variable appears exactly once in the system, and has coefficient
+ // one.
+ // Thus we have
+ // x_i = - b_1' m_1 - ... - b_p' m_p - c
+ // and so we return the negation of the last p + 1 columns of the matrix.
+ // We copy these columns and return them.
+ ParamPoint vertex =
+ equations.getSubMatrix(/*fromRow=*/0, /*toRow=*/d - 1,
+ /*fromColumn=*/d, /*toColumn=*/numCols - 1);
+ vertex.negateMatrix();
+ return vertex;
+}
+
+/// This is an implementation of the Clauss-Loechner algorithm for chamber
+/// decomposition.
+/// We maintain a list of pairwise disjoint chambers and their generating
+/// functions. We iterate over the list of regions, each time adding the
+/// generating function to the chambers where the corresponding vertex is
+/// active and separating the chambers where it is not.
+///
+/// Given the region each vertex is active in, for each subset of vertices,
+/// the region that precisely this subset is in, is the intersection of the
+/// regions that these are active in, intersected with the complements of the
+/// remaining regions. The generating function for this region is the sum of
+/// generating functions for the vertices' tangent cones.
+std::vector<std::pair<PresburgerSet, GeneratingFunction>>
+mlir::presburger::detail::computeChamberDecomposition(
+ unsigned numSymbols, ArrayRef<std::pair<PresburgerSet, GeneratingFunction>>
+ regionsAndGeneratingFunctions) {
+ assert(regionsAndGeneratingFunctions.size() > 0 &&
+ "there must be at least one chamber!");
+ // We maintain a list of regions and their associated generating function
+ // initialized with the universe and the empty generating function.
+ std::vector<std::pair<PresburgerSet, GeneratingFunction>> chambers = {
+ {PresburgerSet::getUniverse(
+ PresburgerSpace::getRelationSpace(0, numSymbols, 0, 0)),
+ GeneratingFunction(numSymbols, {}, {}, {})}};
+
+ // We iterate over the region list.
+ // For each activity region R_j (corresponding to a vertex v_j, whose
+ // generating function is gf_j),
+ // we examine all the current chambers R_i.
+ // If R_j has a full-dimensional intersection with an existing chamber R_i,
+ // then that chamber is replaced by two new ones:
+ // 1. the intersection R_i \cap R_j, where the generating function is
+ // gf_i + gf_j.
+ // 2. the difference R_i - R_j, where v_j is inactive and the generating
+ // function is gf_i.
+
+ // At each step, we define a new chamber list after considering vertex v_j,
+ // and its generating function, replacing and appending chambers as
+ // discussed above.
+ // The loop has the invariant that the union over all the chambers gives the
+ // universe at every step (modulo lower-dimensional spaces).
+ for (const auto &[region, generatingFunction] :
+ regionsAndGeneratingFunctions) {
+ std::vector<std::pair<PresburgerSet, GeneratingFunction>> newChambers;
+
+ for (auto [currentRegion, currentGeneratingFunction] : chambers) {
----------------
Superty wrote:
const auto &[...] will avoid the copy, same as above.
https://github.com/llvm/llvm-project/pull/78987
More information about the Mlir-commits
mailing list