[Mlir-commits] [mlir] [MLIR][Presburger] Implement vertex enumeration and chamber decomposition for polytope generating function computation. (PR #78987)

Arjun P llvmlistbot at llvm.org
Thu Jan 25 15:49:17 PST 2024


================
@@ -147,6 +149,314 @@ GeneratingFunction mlir::presburger::detail::unimodularConeGeneratingFunction(
                             std::vector({denominator}));
 }
 
+/// We use Gaussian elimination to find the solution to a set of d equations
+/// of the form
+/// a_1 x_1 + ... + a_d x_d + b_1 m_1 + ... + b_p m_p + c = 0
+/// where x_i are variables,
+/// m_i are parameters and
+/// a_i, b_i, c are rational coefficients.
+/// The solution expresses each x_i as an affine function of the m_i, and is
+/// therefore represented as a matrix of size d x (p+1).
+/// If there is no solution, we return null.
+std::optional<ParamPoint>
+mlir::presburger::detail::solveParametricEquations(FracMatrix equations) {
+  // equations is a d x (d + p + 1) matrix.
+  // Each row represents an equation.
+  unsigned d = equations.getNumRows();
+  unsigned numCols = equations.getNumColumns();
+
+  // If the determinant is zero, there is no unique solution.
+  // Thus we return null.
+  if (FracMatrix(equations.getSubMatrix(/*fromRow=*/0, /*toRow=*/d - 1,
+                                        /*fromColumn=*/0,
+                                        /*toColumn=*/d - 1))
+          .determinant() == 0)
+    return std::nullopt;
+
+  // Perform row operations to make each column all zeros except for the
+  // diagonal element, which is made to be one.
+  for (unsigned i = 0; i < d; ++i) {
+    // First ensure that the diagonal element is nonzero, by swapping
+    // it with a row that is non-zero at column i.
+    if (equations(i, i) != 0)
+      continue;
+    for (unsigned j = i + 1; j < d; ++j) {
+      if (equations(j, i) == 0)
+        continue;
+      equations.swapRows(j, i);
+      break;
+    }
+
+    Fraction diagElement = equations(i, i);
+
+    // Apply row operations to make all elements except the diagonal to zero.
+    for (unsigned j = 0; j < d; ++j) {
+      if (i == j)
+        continue;
+      if (equations(j, i) == 0)
+        continue;
+      // Apply row operations to make element (j, i) zero by subtracting the
+      // ith row, appropriately scaled.
+      Fraction currentElement = equations(j, i);
+      equations.addToRow(/*sourceRow=*/i, /*targetRow=*/j,
+                         /*scale=*/-currentElement / diagElement);
+    }
+  }
+
+  // Rescale diagonal elements to 1.
+  for (unsigned i = 0; i < d; ++i)
+    equations.scaleRow(i, 1 / equations(i, i));
+
+  // Now we have reduced the equations to the form
+  // x_i + b_1' m_1 + ... + b_p' m_p + c' = 0
+  // i.e. each variable appears exactly once in the system, and has coefficient
+  // one.
+  // Thus we have
+  // x_i = - b_1' m_1 - ... - b_p' m_p - c
+  // and so we return the negation of the last p + 1 columns of the matrix.
+  // We copy these columns and return them.
+  ParamPoint vertex =
+      equations.getSubMatrix(/*fromRow=*/0, /*toRow=*/d - 1,
+                             /*fromColumn=*/d, /*toColumn=*/numCols - 1);
+  vertex.negateMatrix();
+  return vertex;
+}
+
+/// This is an implementation of the Clauss-Loechner algorithm for chamber
+/// decomposition.
+/// We maintain a list of pairwise disjoint chambers and their generating
+/// functions. We iterate over the list of regions, each time adding the
+/// generating function to the chambers where the corresponding vertex is
+/// active and separating the chambers where it is not.
+///
+/// Given the region each vertex is active in, for each subset of vertices,
+/// the region that precisely this subset is in, is the intersection of the
+/// regions that these are active in, intersected with the complements of the
+/// remaining regions. The generating function for this region is the sum of
+/// generating functions for the vertices' tangent cones.
+std::vector<std::pair<PresburgerSet, GeneratingFunction>>
+mlir::presburger::detail::computeChamberDecomposition(
+    unsigned numSymbols, ArrayRef<std::pair<PresburgerSet, GeneratingFunction>>
+                             regionsAndGeneratingFunctions) {
+  assert(regionsAndGeneratingFunctions.size() > 0 &&
+         "there must be at least one chamber!");
+  // We maintain a list of regions and their associated generating function
+  // initialized with the universe and the empty generating function.
+  std::vector<std::pair<PresburgerSet, GeneratingFunction>> chambers = {
+      {PresburgerSet::getUniverse(
+           PresburgerSpace::getRelationSpace(0, numSymbols, 0, 0)),
+       GeneratingFunction(numSymbols, {}, {}, {})}};
+
+  // We iterate over the region list.
+  // For each activity region R_j (corresponding to a vertex v_j, whose
+  // generating function is gf_j),
+  // we examine all the current chambers R_i.
+  // If R_j has a full-dimensional intersection with an existing chamber R_i,
+  // then that chamber is replaced by two new ones:
+  // 1. the intersection R_i \cap R_j, where the generating function is
+  //    gf_i + gf_j.
+  // 2. the difference R_i - R_j, where v_j is inactive and the generating
+  //    function is gf_i.
+
+  // At each step, we define a new chamber list after considering vertex v_j,
+  // and its generating function, replacing and appending chambers as
+  // discussed above.
+  // The loop has the invariant that the union over all the chambers gives the
+  // universe at every step (modulo lower-dimensional spaces).
+  for (const auto &[region, generatingFunction] :
+       regionsAndGeneratingFunctions) {
+    std::vector<std::pair<PresburgerSet, GeneratingFunction>> newChambers;
+
+    for (auto [currentRegion, currentGeneratingFunction] : chambers) {
+      // First, we check if the intersection of R_j and R_i.
+      PresburgerSet intersection = currentRegion.intersect(region);
+
+      // If the intersection is not full-dimensional, we do not modify
+      // the chamber list.
+      if (!intersection.isFullDim()) {
+        newChambers.emplace_back(currentRegion, currentGeneratingFunction);
+        continue;
+      }
+
+      // If it is, we add the intersection as a chamber where this vertex is
+      // active.
+      newChambers.emplace_back(intersection,
+                               currentGeneratingFunction + generatingFunction);
+
+      // We also add the difference if it is full-dimensional.
+      PresburgerSet difference = currentRegion.subtract(region);
+      if (difference.isFullDim())
+        newChambers.emplace_back(difference, currentGeneratingFunction);
+    }
+    chambers = std::move(newChambers);
+  }
+
+  return chambers;
+}
+
+/// For a polytope expressed as a set of inequalities, compute the generating
+/// function corresponding to the number of lattice points present. This
+/// algorithm has three main steps:
+/// 1. Enumerate the vertices, by iterating over subsets of inequalities and
+///    checking for satisfiability.
+/// 2. For each vertex, identify the tangent cone and compute the generating
+///    function corresponding to it. The sum of these GFs is the GF of the
+///    polytope.
+/// 3. [Clauss-Loechner decomposition] Identify the regions in parameter space
+///    (chambers) where each vertex is active, and accordingly compute the
+///    GF of the polytope in each chamber.
+///
+/// Verdoolaege, Sven, et al. "Counting integer points in parametric
+/// polytopes using Barvinok's rational functions." Algorithmica 48 (2007):
+/// 37-66.
+std::vector<std::pair<PresburgerSet, GeneratingFunction>>
+mlir::presburger::detail::computePolytopeGeneratingFunction(PolyhedronH poly) {
+  unsigned numVars = poly.getNumRangeVars();
+  unsigned numSymbols = poly.getNumSymbolVars();
+  unsigned numIneqs = poly.getNumInequalities();
+
+  // These vectors store lists of
+  // subsets of inequalities,
+  // the vertices corresponding to them,
+  // the active regions of the vertices, and the generating functions of
+  // the tangent cones of the vertices, in order.
+  // std::vector<IntMatrix> subsets;
+  std::vector<ParamPoint> vertices;
+  std::vector<std::pair<PresburgerSet, GeneratingFunction>>
+      regionsAndGeneratingFunctions;
+
+  FracMatrix a2(numIneqs - numVars, numVars);
+  FracMatrix b2c2(numIneqs - numVars, numSymbols + 1);
+
+  // We iterate over all subsets of inequalities with cardinality numVars,
+  // using bitsets of numIneqs bits to enumerate.
+  // For a given set of numIneqs bits, we consider a subset which contains
+  // the i'th inequality if the i'th bit in the bitset is set.
+  // The largest possible bitset that corresponds to such a subset can be
+  // written as numVar 1's followed by (numIneqs - numVars) 0's.
+  // We start with this and count downwards (in binary), considering only
+  // those numbers whose binary representation has numVars 1's and the
+  // rest 0's.
+  unsigned upperBound = ((1ul << numVars) - 1ul) << (numIneqs - numVars);
+  for (std::bitset<16> indicator(upperBound);
+       indicator.to_ulong() <= upperBound;
+       indicator = std::bitset<16>(indicator.to_ulong() - 1)) {
+
+    if (indicator.count() != numVars)
+      continue;
+
+    // Collect the inequalities corresponding to the bits which are set
+    // and the remaining ones.
+    auto [subset, remainder] = poly.getInequalities().splitByBitset(indicator);
+    // All other inequalities are stored in a2 and b2c2.
+    // These are column-wise splits of the inequalities;
+    // a2 stores the coefficients of the variables, and
+    // b2c2 stores the coefficients of the parameters and the constant term.
+    a2 = FracMatrix(
+        remainder.getSubMatrix(0, numIneqs - numVars - 1, 0, numVars - 1));
+    b2c2 = FracMatrix(remainder.getSubMatrix(0, numIneqs - numVars - 1, numVars,
+                                             numVars + numSymbols));
+
+    // Find the vertex, if any, corresponding to the current subset of
+    // inequalities.
+    std::optional<ParamPoint> vertex =
+        solveParametricEquations(FracMatrix(subset)); // d x (p+1)
+
+    if (!vertex)
+      continue;
+    // If this subset corresponds to a vertex, store it.
+    vertices.push_back(*vertex);
+    // subsets.push_back(subset);
+
+    // Let the current vertex be [X | y], where
+    // X represents the coefficients of the parameters and
+    // y represents the constant term.
+
+    // The region (in parameter space) where this vertex is active is given
+    // by substituting the vertex into the *remaining* inequalities of the
+    // polytope (those which were not collected into `subset`), i.e.,
+    // [A2 | B2 | c2].
+    // Thus, the coefficients of the parameters after substitution become
+    // (A2 • X + B2)
+    // and the constant terms become
+    // (A2 • y + c2).
+    // The region is therefore given by
+    // (A2 • X + B2) p + (A2 • y + c2) ≥ 0
+    // This is equivalent to A2 • [X | y] + [B2 | c2]
+    // Thus we premultiply [X | y] with each row of A2
+    // and add each row of [B2 | c2].
+    FracMatrix activeRegion(numIneqs - numVars, numSymbols + 1);
+    for (unsigned i = 0; i < numIneqs - numVars; i++) {
+      activeRegion.setRow(i, vertex->preMultiplyWithRow(a2.getRow(i)));
+      activeRegion.addToRow(i, b2c2.getRow(i), 1);
+    }
+
+    // If any row of activeRegion is all-zero, that means that the
+    // corresponding inequality in `remaining` is *also* satisfied by the
+    // vertex for any values of the parameters. Thus we remove it from
+    // activeRegion and add that inequality to `subset`.
+    // Note that if the row is not all-zero, it is still possible for the
+    // inequality to be satisfied by the corresponding vertex *in some subset of
+    // the parameter space*. However, since this subset is defined by an
+    // equality, it is not full-dimensional and we can therefore ignore it.
+    for (int i = activeRegion.getNumRows() - 1; i >= 0; --i) {
+      if (llvm::any_of(activeRegion.getRow(i),
+                       [&](Fraction f) { return f != 0; }))
+        continue;
+      subset.appendExtraRow(remainder.getRow(i));
+      activeRegion.removeRow(i);
+    }
+
+    // We convert the representation of the active region to an integers-only
+    // form so as to store it as a PresburgerSet.
+    IntMatrix activeRegionNorm = activeRegion.normalizeRows();
+    IntegerPolyhedron activeRegionRel = IntegerPolyhedron(
+        PresburgerSpace::getRelationSpace(0, numSymbols, 0, 0));
+    for (unsigned i = 0, e = activeRegion.getNumRows(); i < e; ++i)
+      activeRegionRel.addInequality(activeRegionNorm.getRow(i));
+
+    // Now, we compute the generating function at this vertex.
+    // We collect the inequalities corresponding to each vertex to compute
+    // the tangent cone at that vertex.
+    SmallVector<MPInt> ineq(numVars + 1);
+
+    // We only need the coefficients of the variables (NOT the parameters)
+    // as the generating function only depends on these.
+    // We translate the cones to be pointed at the origin by making the
+    // constant terms zero.
+    ConeH tangentCone = defineHRep(numVars);
+    for (unsigned j = 0, e = subset.getNumRows(); j < e; ++j) {
+      for (unsigned k = 0; k < numVars; ++k)
+        ineq[k] = subset(j, k);
----------------
Superty wrote:

by this point I don't remember what the variable name `subset` refers to, please use a name like activeIneqs, supportingIneqs, tightIneqs, definingIneqs, or whatever

https://github.com/llvm/llvm-project/pull/78987


More information about the Mlir-commits mailing list