[Mlir-commits] [mlir] [MLIR][Presburger] Implement function to evaluate the number of terms in a generating function. (PR #78078)
Arjun P
llvmlistbot at llvm.org
Sat Jan 20 08:52:45 PST 2024
================
@@ -245,3 +245,270 @@ QuasiPolynomial mlir::presburger::detail::getCoefficientInRationalFunction(
}
return coefficients[power].simplify();
}
+
+static std::vector<Fraction> convolution(ArrayRef<Fraction> a,
+ ArrayRef<Fraction> b) {
+ // The length of the convolution is the sum of the lengths
+ // of the two sequences. We pad the shorter one with zeroes.
+ unsigned len = a.size() + b.size();
+
+ // We define accessors to avoid out-of-bounds errors.
+ std::function<Fraction(unsigned i)> aGetItem = [a](unsigned i) -> Fraction {
+ if (i < a.size())
+ return a[i];
+ else
+ return 0;
+ };
+ std::function<Fraction(unsigned i)> bGetItem = [b](unsigned i) -> Fraction {
+ if (i < b.size())
+ return b[i];
+ else
+ return 0;
+ };
+
+ std::vector<Fraction> convolution;
+ convolution.reserve(len);
+ for (unsigned k = 0; k < len; ++k) {
+ Fraction sum(0, 1);
+ for (unsigned l = 0; l <= k; ++l)
+ sum += aGetItem(l) * bGetItem(k - l);
+ convolution.push_back(sum);
+ }
+ return convolution;
+}
+
+/// Substitute x_i = t^μ_i in one term of a generating function,
+/// returning
+/// a quasipolynomial which represents the exponent of the numerator
+/// of the result, and
+/// a vector which represents the exponents of the denominator of the
+/// result.
+/// v represents the affine functions whose floors are multiplied by
+/// by the generators, and
+/// ds represents the list of generators.
+std::pair<QuasiPolynomial, std::vector<Fraction>>
+substituteMuInTerm(unsigned numParams, ParamPoint v, std::vector<Point> ds,
+ Point mu) {
+ unsigned numDims = mu.size();
+ for (const Point &d : ds)
+ assert(d.size() == numDims &&
+ "μ has to have the same number of dimensions as the generators!");
+
+ // First, the exponent in the numerator becomes
+ // - (μ • u_1) * (floor(first col of v))
+ // - (μ • u_2) * (floor(second col of v)) - ...
+ // - (μ • u_d) * (floor(d'th col of v))
+ // So we store the negation of the dot products.
+
+ // We have d terms, each of whose coefficient is the negative dot product,
+ SmallVector<Fraction> coefficients;
+ coefficients.reserve(numDims);
+ for (const Point &d : ds)
+ coefficients.push_back(-dotProduct(mu, d));
+
+ // Then, the affine function is a single floor expression, given by the
+ // corresponding column of v.
+ ParamPoint vTranspose = v.transpose();
+ std::vector<std::vector<SmallVector<Fraction>>> affine;
+ affine.reserve(numDims);
+ for (unsigned j = 0; j < numDims; ++j)
+ affine.push_back({SmallVector<Fraction>(vTranspose.getRow(j))});
+
+ QuasiPolynomial num(numParams, coefficients, affine);
+ num = num.simplify();
+
+ std::vector<Fraction> dens;
+ dens.reserve(ds.size());
+ // Similarly, each term in the denominator has exponent
+ // given by the dot product of μ with u_i.
+ for (const Point &d : ds) {
+ // This term in the denominator is
+ // (1 - t^dens.back())
+ dens.push_back(dotProduct(d, mu));
+ }
+
+ return {num, dens};
+}
+
+/// Normalize all denominator exponents `dens` to their absolute values
+/// by multiplying and dividing by the inverses.
+/// Also, take the factors (-s) out of each term of the product.
+void normalizeDenominatorExponents(int &sign, QuasiPolynomial &num,
+ std::vector<Fraction> &dens) {
+ // We track the number of exponents that are negative in the
+ // denominator, and convert them to their absolute values.
+ unsigned numNegExps = 0;
+ Fraction sumNegExps(0, 1);
+ for (unsigned j = 0, e = dens.size(); j < e; ++j) {
+ if (dens[j] < 0) {
+ numNegExps += 1;
+ sumNegExps += dens[j];
+ }
+ // All exponents will be made positive; then reduce
+ // (1 - (s+1)^x)
+ // to
+ // (-s)*(Σ_{x-1} (s+1)^j) because x > 0
+ dens[j] = abs(dens[j]) - 1;
+ }
+
+ // If we have (1 - (s+1)^-c) in the denominator,
+ // multiply and divide by (s+1)^c.
+ // We convert all negative-exponent terms at once; therefore
+ // we multiply and divide by (s+1)^sumNegExps.
+ // Then we get
+ // -(1 - (s+1)^c) in the denominator,
+ // increase the numerator by c, and
+ // flip the sign.
+ if (numNegExps % 2 == 1)
+ sign = -sign;
+ num = num - QuasiPolynomial(num.getNumInputs(), sumNegExps);
+
+ // Take all the (-s) out.
+ unsigned r = dens.size();
+ if (r % 2 == 1)
+ sign = -sign;
+}
+
+/// Compute the binomial coefficients nCi for 0 ≤ i ≤ r,
+/// where n is a QuasiPolynomial.
+std::vector<QuasiPolynomial> getBinomialCoefficients(QuasiPolynomial n,
+ unsigned r) {
+ unsigned numParams = n.getNumInputs();
+ std::vector<QuasiPolynomial> coefficients;
+ coefficients.reserve(r + 1);
+ coefficients.push_back(QuasiPolynomial(numParams, 1));
+ for (unsigned j = 1; j <= r; ++j)
+ // We use the recursive formula for binomial coefficients here and below.
+ coefficients.push_back(
+ (coefficients[j - 1] * (n - QuasiPolynomial(numParams, j - 1)) /
+ Fraction(j, 1))
+ .simplify());
+ return coefficients;
+}
+
+/// Compute the binomial coefficients nCi for 0 ≤ i ≤ r,
+/// where n is a QuasiPolynomial.
+std::vector<Fraction> getBinomialCoefficients(Fraction n, Fraction r) {
----------------
Superty wrote:
I think it makes more sense for r to be an integer here
https://github.com/llvm/llvm-project/pull/78078
More information about the Mlir-commits
mailing list