[Mlir-commits] [mlir] [mlir] Add direct vectorization lowering for `tensor.pack` ops (PR #78660)

llvmlistbot at llvm.org llvmlistbot at llvm.org
Thu Jan 18 18:26:20 PST 2024


https://github.com/Max191 updated https://github.com/llvm/llvm-project/pull/78660

>From 55fadd51d1bddb5e28f88b14a657583ed494ed3e Mon Sep 17 00:00:00 2001
From: Max Dawkins <max.dawkins at gmail.com>
Date: Fri, 5 Jan 2024 13:50:50 -0500
Subject: [PATCH 1/4] [mlir] Add vectorization support for tensor.pack

---
 .../TransformOps/LinalgTransformOps.cpp       |   2 +-
 .../Linalg/Transforms/Vectorization.cpp       | 151 ++++++++++++++++++
 2 files changed, 152 insertions(+), 1 deletion(-)

diff --git a/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp b/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp
index 140bdd1f2db361..6f6abf56acfd96 100644
--- a/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp
+++ b/mlir/lib/Dialect/Linalg/TransformOps/LinalgTransformOps.cpp
@@ -3123,7 +3123,7 @@ DiagnosedSilenceableFailure transform::VectorizeOp::apply(
 
   // TODO: Check that the correct number of vectorSizes was provided.
   for (Operation *target : targets) {
-    if (!isa<linalg::LinalgOp, tensor::PadOp>(target)) {
+    if (!isa<linalg::LinalgOp, tensor::PadOp, tensor::PackOp>(target)) {
       return mlir::emitSilenceableFailure(target->getLoc())
              << "Unsupported Op, cannot vectorize";
     }
diff --git a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
index 0610f24ddaf471..1507eceac8f0b2 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
@@ -19,10 +19,14 @@
 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
 #include "mlir/Dialect/Linalg/Utils/Utils.h"
 #include "mlir/Dialect/Tensor/IR/Tensor.h"
+#include "mlir/Dialect/Utils/IndexingUtils.h"
 #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
 #include "mlir/Dialect/Vector/IR/VectorOps.h"
 #include "mlir/Dialect/Vector/Interfaces/MaskableOpInterface.h"
 #include "mlir/IR/AffineExpr.h"
+#include "mlir/IR/BuiltinTypeInterfaces.h"
+#include "mlir/IR/BuiltinTypes.h"
+#include "mlir/IR/OpDefinition.h"
 #include "mlir/IR/PatternMatch.h"
 #include "mlir/Support/LLVM.h"
 #include "mlir/Transforms/RegionUtils.h"
@@ -30,7 +34,9 @@
 #include "llvm/ADT/Sequence.h"
 #include "llvm/ADT/SmallVector.h"
 #include "llvm/ADT/TypeSwitch.h"
+#include "llvm/ADT/iterator_range.h"
 #include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
 #include "llvm/Support/raw_ostream.h"
 #include <optional>
 #include <type_traits>
@@ -1393,6 +1399,121 @@ vectorizeAsLinalgGeneric(RewriterBase &rewriter, VectorizationState &state,
   return success();
 }
 
+/// Given a tensor::PackOp, return the permutation from the "tiled"
+/// shape to the "packed" shape, defined as the following:
+/// The "packed" shape is the same as the `dest` shape of the pack op.
+/// The "tiled" shape is a permutation of the `dest` shape such that
+/// each outer dimension is in the original `source` order, and the
+/// inner_tile dimensions immediately follow their corresponding outer
+/// dimension.
+/// i.e. for the following tensor.pack:
+/// ```mlir
+/// %pack = tensor.pack %0 padding_value(%1) 
+///   outer_dims_perm = [0, 2, 1] 
+///   inner_dims_pos = [2, 1] 
+///   inner_tiles = [16, 2] 
+///   into %2 : tensor<32x8x16> -> tensor<32x1x4x16x2>
+/// ```
+/// The "packed" shape is `32x1x4x16x2`
+/// The "tiled" shape is `32x(4x2)x(1x16)`
+static SmallVector<int64_t> getTiledShapeToPackedShapePerm(tensor::PackOp packOp) {
+  auto innerTiles = packOp.getInnerTiles();
+  int64_t srcRank = packOp.getSourceRank();
+  auto innerDimsPos = packOp.getInnerDimsPos();
+  if (innerDimsPos.empty())
+    innerDimsPos = to_vector(llvm::seq<int64_t>(innerTiles.size()));
+  auto outerDimsPerm = packOp.getOuterDimsPerm();
+  if (outerDimsPerm.empty())
+    outerDimsPerm = to_vector(llvm::seq<int64_t>(srcRank));
+  auto packedIdxToTiledIdx = [&](int64_t idx) -> int64_t { 
+    int64_t srcIdx;
+    if (idx >= srcRank)
+      srcIdx = innerDimsPos[idx - srcRank];
+    else
+      srcIdx = outerDimsPerm[idx];
+    int64_t tiledIdx = srcIdx;
+    for (int64_t pos : innerDimsPos)
+      if (pos < srcIdx)
+        tiledIdx++;
+    if (idx >= srcRank)
+      tiledIdx++;
+    return tiledIdx;
+  };
+  SmallVector<int64_t> perm;
+  for (int i = 0; i < packOp.getDestRank(); i++) 
+    perm.push_back(packedIdxToTiledIdx(i));
+  return perm;
+}
+
+/// Given a tensor::PackOp, return the "tiled" `dest` shape as described
+/// above in `getTiledShapeToPackedShapePerm`.
+static SmallVector<int64_t> getTiledPackShape(tensor::PackOp packOp) {
+  auto perm = getTiledShapeToPackedShapePerm(packOp);
+  auto destShape = packOp.getDestType().getShape();
+  return applyPermutation(destShape, invertPermutationVector(perm));
+}
+
+/// 
+static LogicalResult
+vectorizeAsTensorPackOp(RewriterBase &rewriter, tensor::PackOp packOp,
+                       ArrayRef<int64_t> inputVectorSizes,
+                       SmallVectorImpl<Value> &newResults) {
+  auto padValue = packOp.getPaddingValue();
+  Location loc = packOp.getLoc();
+  int64_t inputRank = inputVectorSizes.size();
+  int64_t outputRank = packOp.getDestRank();
+  auto maskType = VectorType::get(inputVectorSizes, rewriter.getI1Type());
+  auto vectorType = VectorType::get(inputVectorSizes, padValue.getType());
+
+  OpBuilder::InsertionGuard g(rewriter);
+  rewriter.setInsertionPoint(packOp);
+
+  ReifiedRankedShapedTypeDims reifiedReturnShapes;
+  LogicalResult status =
+      cast<ReifyRankedShapedTypeOpInterface>(packOp.getOperation())
+          .reifyResultShapes(rewriter, reifiedReturnShapes);
+  (void)status; // prevent unused variable warning on non-assert builds
+  assert(succeeded(status) && "failed to reify result shapes");
+  auto emptyOp = rewriter.create<tensor::EmptyOp>(loc, reifiedReturnShapes[0],
+                                                  padValue.getType());
+  SmallVector<OpFoldResult> mixedSourceDims =
+      tensor::getMixedSizes(rewriter, loc, packOp.getSource());
+  Value mask =
+      rewriter.create<vector::CreateMaskOp>(loc, maskType, mixedSourceDims);
+  auto zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
+  auto transferReadOp = rewriter.create<vector::TransferReadOp>(
+      loc,
+      /*vectorType=*/vectorType,
+      /*source=*/packOp.getSource(),
+      /*indices=*/SmallVector<Value>(inputRank, zero),
+      /*padding=*/padValue,
+      /*inBounds=*/SmallVector<bool>(inputRank, true));
+  auto maskedOp = cast<vector::MaskOp>(
+      mlir::vector::maskOperation(rewriter, transferReadOp, mask));
+  // ShapeCast
+  auto tiledPackShape = getTiledPackShape(packOp);
+  auto tiledPackType = VectorType::get(tiledPackShape, packOp.getDestType().getElementType());
+  auto shapeCastOp = rewriter.create<vector::ShapeCastOp>(loc, tiledPackType, maskedOp->getResult(0));
+  auto tiledShapeToPackedShapePerm = getTiledShapeToPackedShapePerm(packOp);
+  auto transposeOp = rewriter.create<vector::TransposeOp>(loc, shapeCastOp->getResult(0), tiledShapeToPackedShapePerm);
+  Operation *write = rewriter.create<vector::TransferWriteOp>(
+      loc,
+      /*vector=*/transposeOp->getResult(0),
+      /*source=*/emptyOp,
+      /*indices=*/SmallVector<Value>(outputRank, zero),
+      /*inBounds=*/SmallVector<bool>(outputRank, true));
+  // bool needMaskForWrite = llvm::any_of(
+  //     llvm::zip_equal(inputVectorSizes, packOp.getResultType().getShape()),
+  //     [](auto it) { return std::get<0>(it) != std::get<1>(it); });
+  // if (needMaskForWrite) {
+  //   Value maskForWrite = rewriter.create<vector::CreateMaskOp>(
+  //       loc, maskType, reifiedReturnShapes[0]);
+  //   write = mlir::vector::maskOperation(rewriter, write, maskForWrite);
+  // }
+  newResults.push_back(write->getResult(0));
+  return success();
+}
+
 /// Vectorize a `padOp` with (1) static result type, (2) constant padding value
 /// and (3) all-zero lowPad to
 ///   `transfer_write_in_bounds(transfer_read_masked(pad_source, pad_value))`.
@@ -1585,6 +1706,30 @@ vectorizeLinalgOpPrecondition(LinalgOp linalgOp,
   return success();
 }
 
+static LogicalResult
+vectorizePackOpPrecondition(tensor::PackOp packOp,
+                           ArrayRef<int64_t> inputVectorSizes) {
+  auto padValue = packOp.getPaddingValue();
+  if (!padValue) {
+    LDBG("pad value is not constant: " << packOp << "\n");
+    return failure();
+  }
+
+  ArrayRef<int64_t> resultTensorShape = packOp.getSourceType().getShape();
+  if (failed(isValidMaskedInputVector(resultTensorShape, inputVectorSizes)))
+    return failure();
+
+  if (llvm::any_of(packOp.getInnerTiles(), [](OpFoldResult v) {
+        std::optional<int64_t> res = getConstantIntValue(v);
+        return !res.has_value();
+      })) {
+    LDBG("inner_tiles must be constant: " << packOp << "\n");
+    return failure();
+  }
+
+  return success();
+}
+
 static LogicalResult
 vectorizePadOpPrecondition(tensor::PadOp padOp,
                            ArrayRef<int64_t> inputVectorSizes) {
@@ -1644,6 +1789,9 @@ LogicalResult mlir::linalg::vectorizeOpPrecondition(
       .Case<tensor::PadOp>([&](auto padOp) {
         return vectorizePadOpPrecondition(padOp, inputVectorSizes);
       })
+      .Case<tensor::PackOp>([&](auto packOp) {
+        return vectorizePackOpPrecondition(packOp, inputVectorSizes);
+      })
       .Default([](auto) { return failure(); });
 }
 
@@ -1732,6 +1880,9 @@ LogicalResult mlir::linalg::vectorize(RewriterBase &rewriter, Operation *op,
             return vectorizeAsTensorPadOp(rewriter, padOp, inputVectorSizes,
                                           results);
           })
+          .Case<tensor::PackOp>([&](auto packOp) {
+            return vectorizeAsTensorPackOp(rewriter, packOp, inputVectorSizes, results);
+          })
           .Default([](auto) { return failure(); });
 
   if (failed(vectorizeResult)) {

>From 1ea5d0e88b04233695049d7492dafe2ef8a3cba2 Mon Sep 17 00:00:00 2001
From: Max Dawkins <max.dawkins at gmail.com>
Date: Thu, 18 Jan 2024 20:12:13 -0500
Subject: [PATCH 2/4] Support pack with no padding value

---
 .../Linalg/Transforms/Vectorization.cpp       | 22 ++++++++-----------
 1 file changed, 9 insertions(+), 13 deletions(-)

diff --git a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
index 1507eceac8f0b2..cc3ee8938c9a9f 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
@@ -1458,16 +1458,20 @@ static LogicalResult
 vectorizeAsTensorPackOp(RewriterBase &rewriter, tensor::PackOp packOp,
                        ArrayRef<int64_t> inputVectorSizes,
                        SmallVectorImpl<Value> &newResults) {
-  auto padValue = packOp.getPaddingValue();
+  OpBuilder::InsertionGuard g(rewriter);
+  rewriter.setInsertionPoint(packOp);
+
   Location loc = packOp.getLoc();
+  auto padValue = packOp.getPaddingValue();
+  if (!padValue) {
+    padValue = rewriter.create<arith::ConstantOp>(
+        loc, rewriter.getZeroAttr(packOp.getSourceType().getElementType()));
+  }
   int64_t inputRank = inputVectorSizes.size();
   int64_t outputRank = packOp.getDestRank();
   auto maskType = VectorType::get(inputVectorSizes, rewriter.getI1Type());
   auto vectorType = VectorType::get(inputVectorSizes, padValue.getType());
 
-  OpBuilder::InsertionGuard g(rewriter);
-  rewriter.setInsertionPoint(packOp);
-
   ReifiedRankedShapedTypeDims reifiedReturnShapes;
   LogicalResult status =
       cast<ReifyRankedShapedTypeOpInterface>(packOp.getOperation())
@@ -1502,14 +1506,6 @@ vectorizeAsTensorPackOp(RewriterBase &rewriter, tensor::PackOp packOp,
       /*source=*/emptyOp,
       /*indices=*/SmallVector<Value>(outputRank, zero),
       /*inBounds=*/SmallVector<bool>(outputRank, true));
-  // bool needMaskForWrite = llvm::any_of(
-  //     llvm::zip_equal(inputVectorSizes, packOp.getResultType().getShape()),
-  //     [](auto it) { return std::get<0>(it) != std::get<1>(it); });
-  // if (needMaskForWrite) {
-  //   Value maskForWrite = rewriter.create<vector::CreateMaskOp>(
-  //       loc, maskType, reifiedReturnShapes[0]);
-  //   write = mlir::vector::maskOperation(rewriter, write, maskForWrite);
-  // }
   newResults.push_back(write->getResult(0));
   return success();
 }
@@ -1710,7 +1706,7 @@ static LogicalResult
 vectorizePackOpPrecondition(tensor::PackOp packOp,
                            ArrayRef<int64_t> inputVectorSizes) {
   auto padValue = packOp.getPaddingValue();
-  if (!padValue) {
+  if (padValue && getConstantIntValue(padValue) != std::nullopt) {
     LDBG("pad value is not constant: " << packOp << "\n");
     return failure();
   }

>From 06f86da2219c52f5222e11553795c44ad057117a Mon Sep 17 00:00:00 2001
From: Max Dawkins <max.dawkins at gmail.com>
Date: Thu, 18 Jan 2024 21:11:49 -0500
Subject: [PATCH 3/4] add tests

---
 mlir/test/Dialect/Linalg/vectorization.mlir | 61 +++++++++++++++++++++
 1 file changed, 61 insertions(+)

diff --git a/mlir/test/Dialect/Linalg/vectorization.mlir b/mlir/test/Dialect/Linalg/vectorization.mlir
index d5fb0cbb9c723b..af1c1337224fa2 100644
--- a/mlir/test/Dialect/Linalg/vectorization.mlir
+++ b/mlir/test/Dialect/Linalg/vectorization.mlir
@@ -501,6 +501,67 @@ module attributes {transform.with_named_sequence} {
 
 // -----
 
+func.func @test_vectorize_dynamic_pack(%arg0: tensor<?x?xf32>, %arg1: tensor<4x1x16x2xf32>) -> tensor<4x1x16x2xf32> {
+  %pack = tensor.pack %arg0 inner_dims_pos = [1, 0] inner_tiles = [16, 2] into %arg1 : tensor<?x?xf32> -> tensor<4x1x16x2xf32>
+  return %pack : tensor<4x1x16x2xf32>
+}
+module attributes {transform.with_named_sequence} {
+  transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) {
+    %0 = transform.structured.match ops{["tensor.pack"]} in %arg0 : (!transform.any_op) -> !transform.any_op
+    transform.structured.vectorize %0 vector_sizes [8, 16] : !transform.any_op
+    transform.yield 
+  }
+}
+//  CHECK-DAG: %[[cst:.*]] = arith.constant 0.000000e+00 : f32
+//  CHECK-DAG: %[[c0:.*]] = arith.constant 0 : index
+//  CHECK-DAG: %[[c1:.*]] = arith.constant 1 : index
+//  CHECK-DAG: %[[d0:.*]] = tensor.dim {{.*}} %[[c0]] : tensor<?x?xf32>
+//  CHECK-DAG: %[[d1:.*]] = tensor.dim {{.*}} %[[c1]] : tensor<?x?xf32>
+//  CHECK-DAG: %[[empty:.*]] = tensor.empty() : tensor<4x1x16x2xf32>
+//      CHECK: %[[mask:.*]] = vector.create_mask %[[d0]], %[[d1]] : vector<8x16xi1>
+//  CHECK-DAG: %[[c0_2:.*]] = arith.constant 0 : index
+//      CHECK: %[[masked_read:.*]] = vector.mask %[[mask]] {
+// CHECK-SAME:   vector.transfer_read %{{.*}}[%[[c0_2]], %[[c0_2]]], %[[cst]]
+// CHECK-SAME:   {in_bounds = [true, true]} : tensor<?x?xf32>, vector<8x16xf32>
+// CHECK-SAME: } : vector<8x16xi1> -> vector<8x16xf32>
+//      CHECK: %[[shape_cast:.*]] = vector.shape_cast %[[masked_read]] : vector<8x16xf32> to vector<4x2x1x16xf32>
+//      CHECK: %[[transpose:.*]] = vector.transpose %[[shape_cast]], [0, 2, 3, 1] : vector<4x2x1x16xf32> to vector<4x1x16x2xf32>
+//      CHECK: %[[write:.*]] = vector.transfer_write %[[transpose]], %[[empty]][%[[c0_2]], %[[c0_2]], %[[c0_2]], %[[c0_2]]]
+// CHECK-SAME:   {in_bounds = [true, true, true, true]} : vector<4x1x16x2xf32>, tensor<4x1x16x2xf32>
+//      CHECK: return %[[write]] : tensor<4x1x16x2xf32>
+
+// -----
+
+func.func @test_vectorize_pack(%arg0: tensor<32x8x16xf32>, %arg1: tensor<32x4x1x16x2xf32>) -> tensor<32x4x1x16x2xf32> {
+  %pack = tensor.pack %arg0 inner_dims_pos = [2, 1] inner_tiles = [16, 2] into %arg1 : tensor<32x8x16xf32> -> tensor<32x4x1x16x2xf32>
+  return %pack : tensor<32x4x1x16x2xf32>
+}
+module attributes {transform.with_named_sequence} {
+  transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) {
+    %0 = transform.structured.match ops{["tensor.pack"]} in %arg0 : (!transform.any_op) -> !transform.any_op
+    transform.structured.vectorize %0 vector_sizes [32, 8, 16] : !transform.any_op
+    transform.yield 
+  }
+}
+//  CHECK-DAG: %[[cst:.*]] = arith.constant 0.000000e+00 : f32
+//  CHECK-DAG: %[[c32:.*]] = arith.constant 32 : index
+//  CHECK-DAG: %[[c8:.*]] = arith.constant 8 : index
+//  CHECK-DAG: %[[c16:.*]] = arith.constant 16 : index
+//  CHECK-DAG: %[[empty:.*]] = tensor.empty() : tensor<32x4x1x16x2xf32>
+//      CHECK: %[[mask:.*]] = vector.create_mask %[[c32]], %[[c8]], %[[c16]] : vector<32x8x16xi1>
+//  CHECK-DAG: %[[c0:.*]] = arith.constant 0 : index
+//      CHECK: %[[masked_read:.*]] = vector.mask %[[mask]] {
+// CHECK-SAME:   vector.transfer_read %{{.*}}[%[[c0]], %[[c0]], %[[c0]]], %[[cst]]
+// CHECK-SAME:   {in_bounds = [true, true, true]} : tensor<32x8x16xf32>, vector<32x8x16xf32>
+// CHECK-SAME: } : vector<32x8x16xi1> -> vector<32x8x16xf32>
+//      CHECK: %[[shape_cast:.*]] = vector.shape_cast %[[masked_read]] : vector<32x8x16xf32> to vector<32x4x2x1x16xf32>
+//      CHECK: %[[transpose:.*]] = vector.transpose %[[shape_cast]], [0, 1, 3, 4, 2] : vector<32x4x2x1x16xf32> to vector<32x4x1x16x2xf32>
+//      CHECK: %[[write:.*]] = vector.transfer_write %[[transpose]], %[[empty]][%[[c0]], %[[c0]], %[[c0]], %[[c0]], %[[c0]]]
+// CHECK-SAME:   {in_bounds = [true, true, true, true, true]} : vector<32x4x1x16x2xf32>, tensor<32x4x1x16x2xf32>
+//      CHECK: return %[[write]] : tensor<32x4x1x16x2xf32>
+
+// -----
+
 func.func @matmul(%A: memref<?x?xf32>, %B: memref<?x?xf32>, %C: memref<?x?xf32>) {
   linalg.matmul ins(%A, %B: memref<?x?xf32>, memref<?x?xf32>)
             outs(%C: memref<?x?xf32>)

>From e08bb0c7e39ea9df1c1d92b2ccd230073f6184fa Mon Sep 17 00:00:00 2001
From: Max Dawkins <max.dawkins at gmail.com>
Date: Thu, 18 Jan 2024 21:26:08 -0500
Subject: [PATCH 4/4] clang

---
 .../Linalg/Transforms/Vectorization.cpp       | 35 +++++++++++--------
 1 file changed, 20 insertions(+), 15 deletions(-)

diff --git a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
index cc3ee8938c9a9f..bcc38771ea5c47 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
@@ -1408,15 +1408,16 @@ vectorizeAsLinalgGeneric(RewriterBase &rewriter, VectorizationState &state,
 /// dimension.
 /// i.e. for the following tensor.pack:
 /// ```mlir
-/// %pack = tensor.pack %0 padding_value(%1) 
-///   outer_dims_perm = [0, 2, 1] 
-///   inner_dims_pos = [2, 1] 
-///   inner_tiles = [16, 2] 
+/// %pack = tensor.pack %0 padding_value(%1)
+///   outer_dims_perm = [0, 2, 1]
+///   inner_dims_pos = [2, 1]
+///   inner_tiles = [16, 2]
 ///   into %2 : tensor<32x8x16> -> tensor<32x1x4x16x2>
 /// ```
 /// The "packed" shape is `32x1x4x16x2`
 /// The "tiled" shape is `32x(4x2)x(1x16)`
-static SmallVector<int64_t> getTiledShapeToPackedShapePerm(tensor::PackOp packOp) {
+static SmallVector<int64_t>
+getTiledShapeToPackedShapePerm(tensor::PackOp packOp) {
   auto innerTiles = packOp.getInnerTiles();
   int64_t srcRank = packOp.getSourceRank();
   auto innerDimsPos = packOp.getInnerDimsPos();
@@ -1425,7 +1426,7 @@ static SmallVector<int64_t> getTiledShapeToPackedShapePerm(tensor::PackOp packOp
   auto outerDimsPerm = packOp.getOuterDimsPerm();
   if (outerDimsPerm.empty())
     outerDimsPerm = to_vector(llvm::seq<int64_t>(srcRank));
-  auto packedIdxToTiledIdx = [&](int64_t idx) -> int64_t { 
+  auto packedIdxToTiledIdx = [&](int64_t idx) -> int64_t {
     int64_t srcIdx;
     if (idx >= srcRank)
       srcIdx = innerDimsPos[idx - srcRank];
@@ -1440,7 +1441,7 @@ static SmallVector<int64_t> getTiledShapeToPackedShapePerm(tensor::PackOp packOp
     return tiledIdx;
   };
   SmallVector<int64_t> perm;
-  for (int i = 0; i < packOp.getDestRank(); i++) 
+  for (int i = 0; i < packOp.getDestRank(); i++)
     perm.push_back(packedIdxToTiledIdx(i));
   return perm;
 }
@@ -1453,11 +1454,11 @@ static SmallVector<int64_t> getTiledPackShape(tensor::PackOp packOp) {
   return applyPermutation(destShape, invertPermutationVector(perm));
 }
 
-/// 
+///
 static LogicalResult
 vectorizeAsTensorPackOp(RewriterBase &rewriter, tensor::PackOp packOp,
-                       ArrayRef<int64_t> inputVectorSizes,
-                       SmallVectorImpl<Value> &newResults) {
+                        ArrayRef<int64_t> inputVectorSizes,
+                        SmallVectorImpl<Value> &newResults) {
   OpBuilder::InsertionGuard g(rewriter);
   rewriter.setInsertionPoint(packOp);
 
@@ -1496,10 +1497,13 @@ vectorizeAsTensorPackOp(RewriterBase &rewriter, tensor::PackOp packOp,
       mlir::vector::maskOperation(rewriter, transferReadOp, mask));
   // ShapeCast
   auto tiledPackShape = getTiledPackShape(packOp);
-  auto tiledPackType = VectorType::get(tiledPackShape, packOp.getDestType().getElementType());
-  auto shapeCastOp = rewriter.create<vector::ShapeCastOp>(loc, tiledPackType, maskedOp->getResult(0));
+  auto tiledPackType =
+      VectorType::get(tiledPackShape, packOp.getDestType().getElementType());
+  auto shapeCastOp = rewriter.create<vector::ShapeCastOp>(
+      loc, tiledPackType, maskedOp->getResult(0));
   auto tiledShapeToPackedShapePerm = getTiledShapeToPackedShapePerm(packOp);
-  auto transposeOp = rewriter.create<vector::TransposeOp>(loc, shapeCastOp->getResult(0), tiledShapeToPackedShapePerm);
+  auto transposeOp = rewriter.create<vector::TransposeOp>(
+      loc, shapeCastOp->getResult(0), tiledShapeToPackedShapePerm);
   Operation *write = rewriter.create<vector::TransferWriteOp>(
       loc,
       /*vector=*/transposeOp->getResult(0),
@@ -1704,7 +1708,7 @@ vectorizeLinalgOpPrecondition(LinalgOp linalgOp,
 
 static LogicalResult
 vectorizePackOpPrecondition(tensor::PackOp packOp,
-                           ArrayRef<int64_t> inputVectorSizes) {
+                            ArrayRef<int64_t> inputVectorSizes) {
   auto padValue = packOp.getPaddingValue();
   if (padValue && getConstantIntValue(padValue) != std::nullopt) {
     LDBG("pad value is not constant: " << packOp << "\n");
@@ -1877,7 +1881,8 @@ LogicalResult mlir::linalg::vectorize(RewriterBase &rewriter, Operation *op,
                                           results);
           })
           .Case<tensor::PackOp>([&](auto packOp) {
-            return vectorizeAsTensorPackOp(rewriter, packOp, inputVectorSizes, results);
+            return vectorizeAsTensorPackOp(rewriter, packOp, inputVectorSizes,
+                                           results);
           })
           .Default([](auto) { return failure(); });
 



More information about the Mlir-commits mailing list