[Mlir-commits] [mlir] [MLIR] Add XeGPU dialect for Intel GPU (PR #78483)

Chao Chen llvmlistbot at llvm.org
Thu Jan 18 08:15:43 PST 2024


https://github.com/chencha3 updated https://github.com/llvm/llvm-project/pull/78483

>From 35440b9b0751dec934049aed9257ae2bbcfabe13 Mon Sep 17 00:00:00 2001
From: Chao Chen <chao.chen at intel.com>
Date: Wed, 17 Jan 2024 17:45:24 +0000
Subject: [PATCH 1/2] add XeGPU dialect definition

---
 mlir/include/mlir/Dialect/CMakeLists.txt      |    1 +
 .../include/mlir/Dialect/XeGPU/CMakeLists.txt |    1 +
 .../mlir/Dialect/XeGPU/IR/CMakeLists.txt      |   14 +
 mlir/include/mlir/Dialect/XeGPU/IR/XeGPU.h    |   52 +
 mlir/include/mlir/Dialect/XeGPU/IR/XeGPU.td   |   14 +
 .../mlir/Dialect/XeGPU/IR/XeGPUAttrs.td       |  150 ++
 .../mlir/Dialect/XeGPU/IR/XeGPUDialect.td     |   46 +
 .../include/mlir/Dialect/XeGPU/IR/XeGPUOps.td |  505 +++++
 .../mlir/Dialect/XeGPU/IR/XeGPUTypes.td       |  170 ++
 mlir/include/mlir/InitAllDialects.h           |    4 +-
 mlir/lib/Dialect/CMakeLists.txt               |    1 +
 mlir/lib/Dialect/XeGPU/CMakeLists.txt         |    1 +
 mlir/lib/Dialect/XeGPU/IR/CMakeLists.txt      |   15 +
 mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp    |  385 ++++
 mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp        | 1929 +++++++++++++++++
 mlir/test/Dialect/XeGPU/IR/XeGPUOps.mlir      |  110 +
 mlir/test/Dialect/XeGPU/IR/atomic_rmw.mlir    |   43 +
 mlir/test/Dialect/XeGPU/IR/atomic_rmw_vc.mlir |   38 +
 mlir/test/Dialect/XeGPU/IR/barrier_ops.mlir   |   54 +
 .../Dialect/XeGPU/IR/create_nd_tdesc.mlir     |  111 +
 .../Dialect/XeGPU/IR/create_nd_tdesc_vc.mlir  |  115 +
 mlir/test/Dialect/XeGPU/IR/create_tdesc.mlir  |   11 +
 .../Dialect/XeGPU/IR/create_tdesc_vc.mlir     |   51 +
 mlir/test/Dialect/XeGPU/IR/invalid_vc.mlir    |   70 +
 .../test/Dialect/XeGPU/IR/load_gather_vc.mlir |   50 +
 mlir/test/Dialect/XeGPU/IR/load_nd.mlir       |  164 ++
 mlir/test/Dialect/XeGPU/IR/load_nd_vc.mlir    |   69 +
 .../test/Dialect/XeGPU/IR/prefetch_nd_vc.mlir |   62 +
 mlir/test/Dialect/XeGPU/IR/simple_gemm.mlir   |   71 +
 .../test/Dialect/XeGPU/IR/simple_gemm_vc.mlir |   65 +
 mlir/test/Dialect/XeGPU/IR/store_nd_vc.mlir   |   83 +
 mlir/test/Dialect/XeGPU/IR/store_scatter.mlir |   29 +
 .../Dialect/XeGPU/IR/store_scatter_vc.mlir    |   29 +
 .../Dialect/XeGPU/IR/update_nd_offset.mlir    |   27 +
 .../Dialect/XeGPU/IR/update_offset_vc.mlir    |   29 +
 35 files changed, 4568 insertions(+), 1 deletion(-)
 create mode 100644 mlir/include/mlir/Dialect/XeGPU/CMakeLists.txt
 create mode 100644 mlir/include/mlir/Dialect/XeGPU/IR/CMakeLists.txt
 create mode 100644 mlir/include/mlir/Dialect/XeGPU/IR/XeGPU.h
 create mode 100644 mlir/include/mlir/Dialect/XeGPU/IR/XeGPU.td
 create mode 100644 mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td
 create mode 100644 mlir/include/mlir/Dialect/XeGPU/IR/XeGPUDialect.td
 create mode 100644 mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
 create mode 100644 mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td
 create mode 100644 mlir/lib/Dialect/XeGPU/CMakeLists.txt
 create mode 100644 mlir/lib/Dialect/XeGPU/IR/CMakeLists.txt
 create mode 100644 mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp
 create mode 100644 mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp
 create mode 100644 mlir/test/Dialect/XeGPU/IR/XeGPUOps.mlir
 create mode 100644 mlir/test/Dialect/XeGPU/IR/atomic_rmw.mlir
 create mode 100644 mlir/test/Dialect/XeGPU/IR/atomic_rmw_vc.mlir
 create mode 100644 mlir/test/Dialect/XeGPU/IR/barrier_ops.mlir
 create mode 100644 mlir/test/Dialect/XeGPU/IR/create_nd_tdesc.mlir
 create mode 100644 mlir/test/Dialect/XeGPU/IR/create_nd_tdesc_vc.mlir
 create mode 100644 mlir/test/Dialect/XeGPU/IR/create_tdesc.mlir
 create mode 100644 mlir/test/Dialect/XeGPU/IR/create_tdesc_vc.mlir
 create mode 100644 mlir/test/Dialect/XeGPU/IR/invalid_vc.mlir
 create mode 100644 mlir/test/Dialect/XeGPU/IR/load_gather_vc.mlir
 create mode 100644 mlir/test/Dialect/XeGPU/IR/load_nd.mlir
 create mode 100644 mlir/test/Dialect/XeGPU/IR/load_nd_vc.mlir
 create mode 100644 mlir/test/Dialect/XeGPU/IR/prefetch_nd_vc.mlir
 create mode 100644 mlir/test/Dialect/XeGPU/IR/simple_gemm.mlir
 create mode 100644 mlir/test/Dialect/XeGPU/IR/simple_gemm_vc.mlir
 create mode 100644 mlir/test/Dialect/XeGPU/IR/store_nd_vc.mlir
 create mode 100644 mlir/test/Dialect/XeGPU/IR/store_scatter.mlir
 create mode 100644 mlir/test/Dialect/XeGPU/IR/store_scatter_vc.mlir
 create mode 100644 mlir/test/Dialect/XeGPU/IR/update_nd_offset.mlir
 create mode 100644 mlir/test/Dialect/XeGPU/IR/update_offset_vc.mlir

diff --git a/mlir/include/mlir/Dialect/CMakeLists.txt b/mlir/include/mlir/Dialect/CMakeLists.txt
index 1c4569ecfa5848..e0eb421291ded7 100644
--- a/mlir/include/mlir/Dialect/CMakeLists.txt
+++ b/mlir/include/mlir/Dialect/CMakeLists.txt
@@ -39,3 +39,4 @@ add_subdirectory(UB)
 add_subdirectory(Utils)
 add_subdirectory(Vector)
 add_subdirectory(X86Vector)
+add_subdirectory(XeGPU)
diff --git a/mlir/include/mlir/Dialect/XeGPU/CMakeLists.txt b/mlir/include/mlir/Dialect/XeGPU/CMakeLists.txt
new file mode 100644
index 00000000000000..f33061b2d87cff
--- /dev/null
+++ b/mlir/include/mlir/Dialect/XeGPU/CMakeLists.txt
@@ -0,0 +1 @@
+add_subdirectory(IR)
diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/CMakeLists.txt b/mlir/include/mlir/Dialect/XeGPU/IR/CMakeLists.txt
new file mode 100644
index 00000000000000..f1740e9ed929a6
--- /dev/null
+++ b/mlir/include/mlir/Dialect/XeGPU/IR/CMakeLists.txt
@@ -0,0 +1,14 @@
+add_mlir_dialect(XeGPU xegpu)
+add_mlir_doc(XeGPU XeGPU Dialects/ -gen-dialect-doc -dialect=xegpu)
+
+set(LLVM_TARGET_DEFINITIONS XeGPU.td)
+mlir_tablegen(XeGPUAttrs.h.inc -gen-attrdef-decls)
+mlir_tablegen(XeGPUAttrs.cpp.inc -gen-attrdef-defs)
+add_public_tablegen_target(MLIRXeGPUAttrsIncGen)
+add_dependencies(mlir-headers MLIRXeGPUAttrsIncGen)
+
+set(LLVM_TARGET_DEFINITIONS XeGPU.td)
+mlir_tablegen(XeGPUEnums.h.inc -gen-enum-decls)
+mlir_tablegen(XeGPUEnums.cpp.inc -gen-enum-defs)
+add_public_tablegen_target(MLIRXeGPUEnumsIncGen)
+add_dependencies(mlir-headers MLIRXeGPUEnumsIncGen)
diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPU.h b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPU.h
new file mode 100644
index 00000000000000..a05e046a0e0c0b
--- /dev/null
+++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPU.h
@@ -0,0 +1,52 @@
+//===- XeGPU.h - MLIR dialect for XeGPU -------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MLIR_DIALECT_XEGPU_IR_XEGPU_H
+#define MLIR_DIALECT_XEGPU_IR_XEGPU_H
+
+#include <mlir/IR/BuiltinTypes.h>
+#include <mlir/IR/Dialect.h>
+#include <mlir/IR/OpDefinition.h>
+#include <mlir/IR/Region.h>
+#include <mlir/IR/Types.h>
+#include <mlir/Interfaces/CastInterfaces.h>
+#include <mlir/Interfaces/ControlFlowInterfaces.h>
+#include <mlir/Interfaces/CopyOpInterface.h>
+#include <mlir/Interfaces/InferTypeOpInterface.h>
+#include <mlir/Interfaces/ShapedOpInterfaces.h>
+#include <mlir/Interfaces/SideEffectInterfaces.h>
+#include <mlir/Interfaces/ViewLikeInterface.h>
+
+namespace mlir {
+
+/// Return the list of Range (i.e. offset, size, stride). Each Range
+/// entry contains either the dynamic value or a ConstantIndexOp constructed
+/// with `b` at location `loc`.
+SmallVector<Range, 8> getOrCreateRanges(OffsetSizeAndStrideOpInterface op,
+                                        OpBuilder &b, Location loc);
+
+} // namespace mlir
+
+namespace mlir {
+namespace xegpu {
+
+class TensorDescType;
+
+} // namespace xegpu
+} // namespace mlir
+
+#include <mlir/Dialect/XeGPU/IR/XeGPUDialect.h.inc>
+#include <mlir/Dialect/XeGPU/IR/XeGPUEnums.h.inc>
+#define GET_ATTRDEF_CLASSES
+#include <mlir/Dialect/XeGPU/IR/XeGPUAttrs.h.inc>
+#define GET_TYPEDEF_CLASSES
+#include <mlir/Dialect/XeGPU/IR/XeGPUTypes.h.inc>
+#define GET_OP_CLASSES
+#include <mlir/Dialect/XeGPU/IR/XeGPU.h.inc>
+
+#endif // MLIR_DIALECT_XEGPU_IR_XEGPU_H
diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPU.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPU.td
new file mode 100644
index 00000000000000..232e962870716c
--- /dev/null
+++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPU.td
@@ -0,0 +1,14 @@
+//===- XeGPU.td - XeGPU dialect definition ------------------*- tablegen -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MLIR_DIALECT_XEGPU_IR_XEGPU_TD
+#define MLIR_DIALECT_XEGPU_IR_XEGPU_TD
+
+include "mlir/Dialect/XeGPU/IR/XeGPUOps.td"
+
+#endif // MLIR_DIALECT_XEGPU_IR_XEGPU_TD
diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td
new file mode 100644
index 00000000000000..ed3d9bbc772567
--- /dev/null
+++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUAttrs.td
@@ -0,0 +1,150 @@
+//===- XeGPUAttrs.td - XeGPU dialect attributes definition --*- tablegen -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MLIR_DIALECT_XEGPU_IR_XEGPUATTRS_TD
+#define MLIR_DIALECT_XEGPU_IR_XEGPUATTRS_TD
+
+include "mlir/Dialect/XeGPU/IR/XeGPUDialect.td"
+include "mlir/IR/EnumAttr.td"
+
+class XeGPUAttr<string name, string attrMnemonic, list<Trait> traits = [],
+                string baseCppClass = "::mlir::Attribute">
+    : AttrDef<XeGPU_Dialect, name, traits, baseCppClass> {
+  let mnemonic = attrMnemonic;
+}
+
+def XeGPU_ScatteredAttr : XeGPUAttr<"Scattered", "scattered"> {
+  let summary = "Scattered attribute for scattered read and write operation.";
+  let description = [{An attribute represent scattered read and write operation.
+    It does not (need to) have meaningful input values. The existence of itself
+    implies scattered read/write.}];
+
+  let assemblyFormat = "";
+}
+
+def XeGPU_SgMapAttr: XeGPUAttr<"SubGroupMap", "sg_map"> {
+  let parameters = (ins
+        "mlir::DenseI32ArrayAttr":$wi_layout,
+        "mlir::DenseI32ArrayAttr":$wi_data
+      );
+
+  // In format of #xegpu.sg_map<{mma_block_size = [2, 4], wi_layout = [2, 4], wi_data = [2, 4]}>
+  let assemblyFormat = "`<` struct(params) `>`";
+
+  let genVerifyDecl = true;
+
+  let builders = [
+    AttrBuilder<(ins
+      "llvm::ArrayRef<int32_t>":$wiLayout,
+      "llvm::ArrayRef<int32_t>":$wiData
+    )>
+  ];
+}
+
+def XeGPU_TensorDescAttr: XeGPUAttr<"TensorDesc", "tdesc_attr"> {
+  let parameters = (ins
+        DefaultValuedParameter<"xegpu::MemoryScopeKind", "xegpu::MemoryScopeKind::GLOBAL">: $memory_scope,
+        DefaultValuedParameter<"int", "1">: $array_length,
+        DefaultValuedParameter<"bool", "true">: $boundary_check,
+        OptionalParameter<"xegpu::ScatteredAttr">: $scattered,
+        OptionalParameter<"xegpu::SubGroupMapAttr"> : $map
+      );
+
+  let builders = [
+    AttrBuilder<(ins
+      CArg<"xegpu::MemoryScopeKind", "xegpu::MemoryScopeKind::GLOBAL">:$memory_scope,
+      CArg<"int", "1">:$array_length,
+      CArg<"xegpu::ScatteredAttr", "{}">:$scattered,
+      CArg<"xegpu::SubGroupMapAttr", "{}">:$map
+    )>
+  ];
+
+  let extraClassDeclaration = [{
+    bool hasNonDefaultAttrs();
+  }];
+
+  let hasCustomAssemblyFormat = true;
+}
+
+def ARG_TYPE_VECTOR : I32EnumAttrCase<"VECTOR", 0, "vector">; 
+def ARG_TYPE_SCALAR : I32EnumAttrCase<"SCALAR", 1, "scalar">; 
+def XeGPU_ArgTypeKind : I32EnumAttr<"ArgTypeKind", 
+               "Argument type for Invoke_SIMD op", 
+  [ARG_TYPE_VECTOR, ARG_TYPE_SCALAR]> {
+  let genSpecializedAttr = 0;
+  let cppNamespace = "::mlir::xegpu";
+}
+
+def MODE_SIMT : I32EnumAttrCase<"SIMT", 0, "simt">;
+def MODE_VC : I32EnumAttrCase<"VC", 1, "vc">;
+def XeGPU_ModeKind : I32EnumAttr<"ModeKind", 
+             "The Mode an operator runs on", 
+  [MODE_SIMT, MODE_VC]> {
+  let genSpecializedAttr = 0;
+  let cppNamespace = "::mlir::xegpu";
+}
+
+def MEMORY_SCOPE_GLOBAL: I32EnumAttrCase<"GLOBAL", 0, "global">;
+def MEMORY_SCOPE_SHARED: I32EnumAttrCase<"SLM", 1, "slm">;
+def XeGPU_MemoryScopeKind: I32EnumAttr<"MemoryScopeKind", 
+      "The scope of the memory the tensor descritor is created for", 
+  [MEMORY_SCOPE_GLOBAL, MEMORY_SCOPE_SHARED]> {
+  let genSpecializedAttr = 0;
+  let cppNamespace = "::mlir::xegpu";
+}
+
+def CACHE_KIND_CACHED:        I32EnumAttrCase<"CACHED", 0, "cached">;                    // valid for read and write
+def CACHE_KIND_UNCACHED:      I32EnumAttrCase<"UNCACHED", 1, "uncached">;                // valid for read and write
+def CACHE_KIND_STREAMING:     I32EnumAttrCase<"STREAMING", 2, "streaming">;              // valid for read only
+def CACHE_KIND_INVALIDATE:    I32EnumAttrCase<"READ_INVALIDATE", 3, "read_invalidate">;  // valid for read only
+def CACHE_KIND_WRITE_BACK:    I32EnumAttrCase<"WRITE_BACK", 4, "write_back">;            // valid for write only
+def CACHE_KIND_WRITE_THROUGH: I32EnumAttrCase<"WRITE_THROUGH", 5, "write_through">;      // valid for write only
+
+
+
+def XeGPU_CacheKind : I32EnumAttr<"CacheKind", "Cache kind", 
+  [CACHE_KIND_CACHED, CACHE_KIND_UNCACHED, 
+   CACHE_KIND_STREAMING, CACHE_KIND_INVALIDATE,
+   CACHE_KIND_WRITE_BACK, CACHE_KIND_WRITE_THROUGH]> {
+  let genSpecializedAttr = 0;
+  let cppNamespace = "::mlir::xegpu";
+}
+
+def XeGPU_ArgTypeAttr : EnumAttr<XeGPU_Dialect, XeGPU_ArgTypeKind, "arg_type_kind">;
+def XeGPU_ModeAttr : EnumAttr<XeGPU_Dialect, XeGPU_ModeKind, "mode_kind">;
+def XeGPU_MemoryScopeAttr : EnumAttr<XeGPU_Dialect, XeGPU_MemoryScopeKind, "memory_scope_kind">;
+def XeGPU_CacheAttr : EnumAttr<XeGPU_Dialect, XeGPU_CacheKind, "cache_kind">;
+
+// RMW kind attribute
+def ATOMIC_RMW_KIND_ADDF    : I32EnumAttrCase<"addf", 0>;
+def ATOMIC_RMW_KIND_ADDI    : I32EnumAttrCase<"addi", 1>;
+def ATOMIC_RMW_KIND_ASSIGN  : I32EnumAttrCase<"assign", 2>;
+def ATOMIC_RMW_KIND_MAXF    : I32EnumAttrCase<"maxf", 3>;
+def ATOMIC_RMW_KIND_MAXS    : I32EnumAttrCase<"maxs", 4>;
+def ATOMIC_RMW_KIND_MAXU    : I32EnumAttrCase<"maxu", 5>;
+def ATOMIC_RMW_KIND_MINF    : I32EnumAttrCase<"minf", 6>;
+def ATOMIC_RMW_KIND_MINS    : I32EnumAttrCase<"mins", 7>;
+def ATOMIC_RMW_KIND_MINU    : I32EnumAttrCase<"minu", 8>;
+def ATOMIC_RMW_KIND_MULF    : I32EnumAttrCase<"mulf", 9>;
+def ATOMIC_RMW_KIND_MULI    : I32EnumAttrCase<"muli", 10>;
+def ATOMIC_RMW_KIND_ORI     : I32EnumAttrCase<"ori", 11>;
+def ATOMIC_RMW_KIND_ANDI    : I32EnumAttrCase<"andi", 12>;
+
+def XeGPU_AtomicRMWKind : I32EnumAttr<"AtomicRMWKind", 
+                       "Operation type for AtomicRMW",
+  [ATOMIC_RMW_KIND_ADDF, ATOMIC_RMW_KIND_ADDI, ATOMIC_RMW_KIND_ASSIGN,
+   ATOMIC_RMW_KIND_MAXF, ATOMIC_RMW_KIND_MAXS, ATOMIC_RMW_KIND_MAXU,
+   ATOMIC_RMW_KIND_MINF, ATOMIC_RMW_KIND_MINS, ATOMIC_RMW_KIND_MINU,
+   ATOMIC_RMW_KIND_MULF, ATOMIC_RMW_KIND_MULI, ATOMIC_RMW_KIND_ORI,
+   ATOMIC_RMW_KIND_ANDI]> {
+  let genSpecializedAttr = 0;
+  let cppNamespace = "::mlir::xegpu";
+}
+def XeGPU_AtomicRMWKindAttr : EnumAttr<XeGPU_Dialect, XeGPU_AtomicRMWKind, "atomic_rmw_kind">;
+
+#endif // MLIR_DIALECT_XEGPU_IR_XEGPUATTRS_TD
diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUDialect.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUDialect.td
new file mode 100644
index 00000000000000..f85ccb32cc43b0
--- /dev/null
+++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUDialect.td
@@ -0,0 +1,46 @@
+//===- XeGPUDialect.td - XeGPU dialect definition -----------*- tablegen -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MLIR_DIALECT_XEGPU_IR_XEGPUDIALECT_TD
+#define MLIR_DIALECT_XEGPU_IR_XEGPUDIALECT_TD
+
+include "mlir/IR/OpBase.td"
+include "mlir/IR/OpAsmInterface.td"
+include "mlir/IR/AttrTypeBase.td"
+include "mlir/IR/BuiltinTypes.td"
+include "mlir/IR/BuiltinTypeInterfaces.td"
+include "mlir/Interfaces/SideEffectInterfaces.td"
+include "mlir/Interfaces/ViewLikeInterface.td"
+include "mlir/Interfaces/CastInterfaces.td"
+include "mlir/Interfaces/ControlFlowInterfaces.td"
+include "mlir/Interfaces/CopyOpInterface.td"
+include "mlir/Interfaces/InferTypeOpInterface.td"
+include "mlir/Interfaces/ShapedOpInterfaces.td"
+
+def XeGPU_Dialect : Dialect {
+    let name = "xegpu";
+    let cppNamespace = "::mlir::xegpu";
+    let summary = "The XeGPU dialect that models Intel GPU's ISA";
+    let description = [{
+      The XeGPU dialect models Intel Xe ISA semantics but works at vector and
+      TensorDesc data type. It provides 1:1 mappings to match Xe instructions 
+      like DPAS and 2D block load. The matrix size being processed at this level
+      exactly matches the hardware instructions or the intrinsic supported by
+      the lower-level GPU compiler.
+    }];
+
+    let dependentDialects = [
+      "arith::ArithDialect",
+      "memref::MemRefDialect"
+    ];
+
+    let useDefaultTypePrinterParser = true;
+    let useDefaultAttributePrinterParser = true;
+}
+
+#endif // MLIR_DIALECT_XEGPU_IR_XEGPUDIALECT_TD
diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
new file mode 100644
index 00000000000000..766590f6a3f878
--- /dev/null
+++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUOps.td
@@ -0,0 +1,505 @@
+//===- XeGPUOps.td - XeGPU dialect operations definition ----*- tablegen -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MLIR_DIALECT_XEGPU_IR_XEGPUOPS_TD
+#define MLIR_DIALECT_XEGPU_IR_XEGPUOPS_TD
+
+include "mlir/Dialect/XeGPU/IR/XeGPUAttrs.td"
+include "mlir/Dialect/XeGPU/IR/XeGPUDialect.td"
+include "mlir/Dialect/XeGPU/IR/XeGPUTypes.td"
+
+
+// Base class for dialect operations. This operation inherits from the base
+// `Op` class in OpBase.td, and provides:
+//   * The parent dialect of the operation.
+//   * The mnemonic for the operation, or the name without the dialect prefix.
+//   * A list of traits for the operation.
+class XeGPU_Op<string mnemonic, list<Trait> traits = []>:
+          Op<XeGPU_Dialect, mnemonic, traits>;
+
+def XeGPU_CreateNdDescOp: XeGPU_Op<"create_nd_tdesc", [Pure, AttrSizedOperandSegments]> {
+
+  let summary = "create nd tensor descriptor operation";
+  let description = [{
+    The "create_nd_tdesc" operation creates a TensorDescType which represents
+    a sub-view of a 2D memory region (It can be extended to support N-D memory
+    region if needed in future). Elements in the subview continuous in each 
+    dimention. It encodes the following important information for supporting 
+    Intel hardware features:
+
+    * source: an object representing (starting address/pointer of) a 2D memory reagion. 
+        It can be either a 2D memref object, or simply a pointer represented by uint64_t type.
+    * offsets: two index values represents offsets from the "source" at the each dimension 
+        at which the subview of the target memory will be created. It is encoded via two
+        variables, including "dynamic_offsets" and "static_offsets", such that it can
+        accept various forms, such as, operands (e.g., [%c0, %c]) and attributes (e.g., [2, 4])).
+    * shape: the shape information of the memory region pointed by the "source".  It is 
+        typically encoded via the MemRefType of the source, e.g., memref<4096x4096xf16>. 
+        But if "source" is simply a pointer represented as uint64_t type, or a memref 
+        type without shape information e.g., memref<?x?xf16>, the shape information has 
+        to be explicitly passed via the "dynamic_shape" argument. Currently "dynamic_shape" 
+        only accepts operands(e.g., [%c4096, %c4096]), not attributes(e.g., [4096, 4096]).
+    * strides: the strides of the memory region pointed by the "source". Similar to shape, 
+        it is typically encoded via the MemRefType of the source too. But if "source" is 
+        simply a pointer represented as uint64_t type, or a memref type without shape 
+        information e.g., memref<?x?xf16>, the strides information has to be explicitly 
+        passed via the "dynamic_strides" argument. And it currently only accepts operands two.
+
+    Example 1 (suppose the tensor shape inferred by the compiler is 8x16):
+    %0 = memref.alloc() : memref<32x24xf32>
+    %c0 = arith.constant 0 : index
+    %c1 = arith.constant 1 : index
+    %1 = xegpu.create_nd_tdesc %0[%c0, %c1]: memref<32x24xf32> -> TensorDesc<8x16xf32>
+
+    Example 2 (suppose the tensor shape inferred by the compiler is 8x16):
+    %0 = memref.alloc(%h, %w) : memref<?x?xf32>
+    %c0 = arith.constant 0 : index
+    %c1 = arith.constant 1 : index
+    %1 = xegpu.create_nd_tdesc %0[%c0, %c1], [%h, %w], [%w, %c1]: memref<?x?xf32> -> TensorDesc<8x16xf32>
+
+    Example 3 (suppose the tensor shape inferred by the compiler is 8x16):
+    %0 = ... : ui64
+    %c0 = arith.constant 0 : index
+    %c1 = arith.constant 1 : index
+    %1 = xegpu.create_nd_tdesc %0[%c0, %c1], [%h, %w], [%w, %c1]: ui64 -> TensorDesc<8x16xf32>
+  }];
+
+  let arguments = (ins XeGPU_BaseAddrType: $source, 
+                 Variadic<Index>: $dynamic_offsets, 
+                 Variadic<Index>: $dynamic_shape, 
+                 Variadic<Index>: $dynamic_strides,
+                 DenseI64ArrayAttr: $static_offsets,
+                 DefaultValuedAttr<XeGPU_ModeAttr, "xegpu::ModeKind::SIMT">: $mode);
+  let results = (outs XeGPU_TensorDesc:$TensorDesc);
+
+  let hasCustomAssemblyFormat = 1;
+  let skipDefaultBuilders = 1;
+  let hasVerifier = 1;
+
+  let builders = [
+    OpBuilder<(ins "Type": $TensorDesc, "Value": $source, "ValueRange": $offsets, 
+                   "ValueRange": $shape, "ValueRange": $strides, 
+                   "llvm::ArrayRef<int64_t>": $static_offsets,
+                    CArg<"xegpu::ModeKind", "xegpu::ModeKind::SIMT">: $mode)>,
+
+    OpBuilder<(ins "Type": $tdesc, "Value": $source, 
+                   "llvm::ArrayRef<OpFoldResult>": $offsets,
+                   CArg<"xegpu::ModeKind", "xegpu::ModeKind::SIMT">: $mode)>,
+
+    OpBuilder<(ins "Type": $tdesc, "Value": $source, 
+                   "llvm::ArrayRef<OpFoldResult>": $offsets,
+                   "ValueRange": $shape, "ValueRange": $stride,
+                   CArg<"xegpu::ModeKind", "xegpu::ModeKind::SIMT">: $mode)>
+  ];
+
+  let extraClassDeclaration = [{
+    /// Returns the type of the source memref operand.
+    Type getSourceType() {
+      return getSource().getType();
+    }
+
+    /// Returns the type of the result TensorDesc.
+    xegpu::TensorDescType getTensorDescType();
+
+    /// Returns the offsets info to the source. It consolidates
+    /// information from both dynamic_offsets and static_offsets
+    /// parameters. static_offsets parameter always has the expected
+    /// ranks with some dim could have ShapeType::kDynamic value
+    /// indicating the corresponding value should be from dynamic_offsets.
+    llvm::SmallVector<OpFoldResult> getOffsets();
+
+    /// returns the shape info of the source. It is either from the
+    /// memref type, if source is a memref with static shape
+    /// information or from the dynamic_shape parameter. If both
+    /// exists, the dynamic_shape parameter will be used and the
+    /// shape information from  memref type will be ignored.
+    llvm::SmallVector<OpFoldResult> getShape();
+
+    /// returns the strides info of the source. It is either from the
+    /// memref type, if source is a memref with static shape
+    /// information or from the dynamic_stride parameter. If both
+    /// exists, the dynamic_strides parameter will be used and the
+    /// strides information from  memref type will be ignored.
+    llvm::SmallVector<OpFoldResult> getStrides();
+
+    /// return the shape embeded in the memref type of the source.
+    /// If source is not memref type. array of kDynamic will be returned.
+    llvm::ArrayRef<int64_t> getStaticShape();
+
+    /// return the strides embeded in the memref type of the source.
+    /// If source is not memref type. array of kDynamic will be returned.
+    llvm::ArrayRef<int64_t> getStaticStrides();
+
+    /// Return the element type of the TensorDesc
+    Type getElementType();
+
+    /// Return the shape of the TensorDesc
+    llvm::ArrayRef<int64_t> getTensorDescShape();
+  }];
+
+}
+
+def XeGPU_LoadNDOp : XeGPU_Op<"load_nd"> {
+  let summary = "loads a n-D block from memory (represented by TensorDesc)" 
+                "to registers (represented by vector)";
+  let description = [{
+    LoadNDOp essentially mimics the hardware block read instruction to read 
+    a block of data from memory to register. It takes a set of cache hints 
+    for each level of cache, L1, L2 and L3. If hardware does not have a 
+    correspoding cache, Corresponding cache hint attribute will be masked.
+    If both transpose and vnni_axis present at the same time. It assume to 
+    perform transpose first and then vnni transform.
+  }];
+
+  let arguments = (ins XeGPU_TensorDesc: $TensorDesc,
+                       OptionalAttr<I64Attr>: $vnni_axis,
+                       OptionalAttr<XeGPU_CacheAttr>: $l1_hint,
+                       OptionalAttr<XeGPU_CacheAttr>: $l2_hint,
+                       OptionalAttr<XeGPU_CacheAttr>: $l3_hint,
+                       OptionalAttr<DenseI64ArrayAttr>: $transpose,
+                       DefaultValuedAttr<XeGPU_ModeAttr, "xegpu::ModeKind::SIMT">: $mode);
+  let results = (outs XeGPU_ValueType: $value);
+
+  let extraClassDeclaration = [{
+    VectorType getValueType() {
+      return llvm::dyn_cast<VectorType>(getValue().getType());
+    }
+
+    xegpu::TensorDescType getTensorDescType() {
+      return getTensorDesc().getType();
+    }
+  }];
+
+  // Format: xegpu.load_nd %1 {transpose = [1, 0], l1_hint = cached, l2_hint = uncached, l3_hint=streaming}
+  //                          : !xegpu.tensor_desc<8x16xf32> -> vector<16x8xf32>
+  let hasCustomAssemblyFormat = 1;
+  let hasVerifier = 1;
+}
+
+def XeGPU_StoreNDOp : XeGPU_Op<"store_nd", []> {
+  let summary = "stores a n-D block register region back to memory, currently only supports 2D";
+  let arguments = (ins XeGPU_ValueType: $value,
+                       XeGPU_TensorDesc: $TensorDesc,
+                       OptionalAttr<XeGPU_CacheAttr>: $l1_hint,
+                       OptionalAttr<XeGPU_CacheAttr>: $l2_hint,
+                       OptionalAttr<XeGPU_CacheAttr>: $l3_hint,
+                       DefaultValuedAttr<XeGPU_ModeAttr, "xegpu::ModeKind::SIMT">: $mode);
+
+  // Format: xegpu.store_nd %3, %2 {l1_hint = write_back, l2_hint = uncached}
+  //                        : vector<8x16xf16>, !xegpu.tensor_desc<8x16xf16>
+  let hasCustomAssemblyFormat = 1;
+  let hasVerifier = 1;
+}
+
+def XeGPU_PrefetchNDOp : XeGPU_Op<"prefetch_nd", []> {
+  let summary = "prefetches a nD block to cache";
+  let arguments = (ins XeGPU_TensorDesc: $TensorDesc,
+                       OptionalAttr<XeGPU_CacheAttr>: $l1_hint,
+                       OptionalAttr<XeGPU_CacheAttr>: $l2_hint,
+                       OptionalAttr<XeGPU_CacheAttr>: $l3_hint,
+                       DefaultValuedAttr<XeGPU_ModeAttr, "xegpu::ModeKind::SIMT">: $mode);
+
+  // Format: xegpu.prefetch_nd %tdesc {l1_hint = cached, l2_hint = uncached}:
+  //                                    !xegpu.tensor_desc<8x16xf16>
+  let hasCustomAssemblyFormat = 1;
+}
+
+def XeGPU_UpdateNDOffsetOp : XeGPU_Op<"update_nd_offset", []> {
+  let summary = "update the offsets for the given tensor descriptor";
+
+  let arguments = (ins
+    XeGPU_TensorDesc: $TensorDesc,
+    Variadic<Index>: $offsets,
+    DefaultValuedAttr<XeGPU_ModeAttr, "xegpu::ModeKind::SIMT">: $mode);
+
+  let results = (outs XeGPU_TensorDesc: $result);
+
+  let hasCustomAssemblyFormat = 1;
+  let hasVerifier = 1;
+}
+
+def XeGPU_CreateDescOp: XeGPU_Op<"create_tdesc", [Pure]> {
+  let summary = "create scattered tensor descritors (TensorDesc).";
+  let description = [{
+    "create_tdesc" is similar to "create_nd_tdesc" in terms that it creates 
+    a Tensor Descriptor (TensorDescType) for a memory region. While "create_nd_tdesc" 
+    is for creating continious subviews, "create_tdesc" is for creating non-continious
+    (scattered) subviews. It is designed only works with VectorCompute (VC) mode and 
+    accepts the following parameters:
+
+    * source: a 1D memref or pointer (uint64_t) represents the memory object.
+    * offsets: It is a 1D vector containing offsets of each access point, the supportted 
+          group size, e.g., vector<16xindex>. And each element in the vector corresponds 
+          to a work item (SIMT lane) in the subgroup.
+    * chunk_size_per_lane: [optional attribute] indicates number of continious elements 
+          accessed for each offset, default is 1.
+
+    Example 1. It assumes subgroup size is 4, and accesses a[0], a[16], a[32], a[64]
+    %a = memref.alloc() : memref<1024xf32>
+    %c0 = arith.constant dense<0, 16, 32, 64> : vector<4xindex>
+    %1 = xegpu.create_tdesc %a, %c0: memref<1024xf32> -> TensorDesc<4xf32>
+
+    Example 2. It assumes subgroup size is 4, and each workitem access 8 elements.
+               It will access totally 32 data elements: a[0:7], a[16:23], a[32:39], a[64:71]
+    %0 = memref.alloc() : memref<1024xf32>
+    %c0 = arith.constant dense<0, 16, 32, 64> : vector<4xindex>
+    %1 = xegpu.create_tdesc %0, %c0 {chunk_size_per_lane = 8}: memref<1024xf32> -> TensorDesc<4x8xf32>
+  }];
+
+  let arguments = (ins XeGPU_BaseAddrType: $source,
+                       XeGPU_OffsetType: $offsets,
+                       DefaultValuedAttr<I64Attr, "1">: $chunk_size_per_lane,
+                       DefaultValuedAttr<XeGPU_ModeAttr, "xegpu::ModeKind::SIMT">: $mode);
+  let results = (outs XeGPU_TensorDesc:$TensorDesc);
+
+  let builders = [
+    OpBuilder<(ins "xegpu::TensorDescType": $TensorDesc, "Value": $source,
+                  "Value": $offsets, CArg<"uint32_t", "1"> : $chunk_size_per_lane)>,
+    OpBuilder<(ins "xegpu::TensorDescType": $TensorDesc, "Value": $source,
+                  "Value": $offsets, "IntegerAttr": $chunk_size_per_lane)>
+  ];
+  let skipDefaultBuilders = 1;
+
+  // Format: xegpu.create_tdesc %src, %offsets {mode=simt, chunk_size_per_lane=1}
+  //              : ui64, vector<16 x index> -> !xegpu.tensor_desc<16xf32, #xegpu.scattered>
+  let hasCustomAssemblyFormat = 1;
+  let hasVerifier = 1;
+}
+
+def XeGPU_LoadGatherOp : XeGPU_Op<"load"> {
+  let summary = "load a scalar at source[offset].";
+
+  let arguments = (ins XeGPU_TensorDesc: $TensorDesc,
+                       XeGPU_MaskType: $mask,
+                       OptionalAttr<I64Attr>: $vnni_axis,
+                       OptionalAttr<DenseI64ArrayAttr>: $transpose,
+                       OptionalAttr<XeGPU_CacheAttr>: $l1_hint,
+                       OptionalAttr<XeGPU_CacheAttr>: $l2_hint,
+                       OptionalAttr<XeGPU_CacheAttr>: $l3_hint,
+                       DefaultValuedAttr<XeGPU_ModeAttr, "xegpu::ModeKind::SIMT">: $mode);
+  let results = (outs XeGPU_ValueType: $value);
+
+  let builders = [
+    OpBuilder<(ins "mlir::Type": $value, "mlir::Value": $TensorDesc, 
+                   "mlir::Value": $mask, "mlir::IntegerAttr": $vnni_axis,
+                   CArg<"mlir::DenseI64ArrayAttr", "mlir::DenseI64ArrayAttr()">: $transpose,
+                   CArg<"xegpu::CacheKindAttr", "xegpu::CacheKindAttr()">: $l1_hint,
+                   CArg<"xegpu::CacheKindAttr", "xegpu::CacheKindAttr()">: $l2_hint,
+                   CArg<"xegpu::CacheKindAttr", "xegpu::CacheKindAttr()">: $l3_hint)>,
+
+    OpBuilder<(ins "mlir::Type": $value, "mlir::Value": $TensorDesc, 
+                   "mlir::Value": $mask, "mlir::IntegerAttr": $vnni_axis,
+                   CArg<"DenseI64ArrayAttr", "DenseI64ArrayAttr()">: $transpose,
+                   CArg<"xegpu::CacheKind", "xegpu::CacheKind::CACHED">: $l1_hint,
+                   CArg<"xegpu::CacheKind", "xegpu::CacheKind::CACHED">: $l2_hint,
+                   CArg<"xegpu::CacheKind", "xegpu::CacheKind::CACHED">: $l3_hint)>
+  ];
+  let skipDefaultBuilders = 1;
+
+  // Format: %2 = xegpu.load %1, %0 {transpose = [1, 0], l1_hint = cached, l2_hint = uncached}
+  //                 : !xegpu.tensor_desc<16x8xf32, #xegpu.scattered>, vector<16x8xi1> -> vector<8x16xf32>
+  let hasCustomAssemblyFormat = 1;
+  let hasVerifier = 1;
+}
+
+def XeGPU_StoreScatterOp : XeGPU_Op<"store", []> {
+  let summary = "store a scalar to source[offset].";
+
+  let arguments = (ins
+    XeGPU_ValueType: $value,
+    XeGPU_TensorDesc: $TensorDesc,
+    XeGPU_MaskType: $mask,
+    OptionalAttr<XeGPU_CacheAttr>: $l1_hint,
+    OptionalAttr<XeGPU_CacheAttr>: $l2_hint,
+    OptionalAttr<XeGPU_CacheAttr>: $l3_hint,
+    DefaultValuedAttr<XeGPU_ModeAttr, "xegpu::ModeKind::SIMT">: $mode
+  );
+
+  let builders = [
+    OpBuilder<(ins "Value": $value, "Value": $TensorDesc, "Value": $mask,
+        CArg<"xegpu::CacheKindAttr", "xegpu::CacheKindAttr()">: $l1_hint,
+        CArg<"xegpu::CacheKindAttr", "xegpu::CacheKindAttr()">: $l2_hint,
+        CArg<"xegpu::CacheKindAttr", "xegpu::CacheKindAttr()">: $l3_hint)>,
+    OpBuilder<(ins "Value": $value, "Value": $TensorDesc, "Value": $mask,
+        CArg<"xegpu::CacheKind", "xegpu::CacheKind::WRITE_BACK">: $l1_hint,
+        CArg<"xegpu::CacheKind", "xegpu::CacheKind::WRITE_BACK">: $l2_hint,
+        CArg<"xegpu::CacheKind", "xegpu::CacheKind::WRITE_BACK">: $l3_hint)>
+  ];
+  let skipDefaultBuilders = 1;
+
+  // Format: %3 = xegpu.load %1, %0 {l1_hint = cached, l2_hint = uncached}
+  //                      : !xegpu.tensor_desc<16xf32, #xegpu.scattered>, vector<16xi1> -> vector<16xf32>
+  let hasCustomAssemblyFormat = 1;
+  let hasVerifier = 1;
+}
+
+def XeGPU_PrefetchOp : XeGPU_Op<"prefetch", []> {
+  let summary = "prefetches a nD block to cache";
+  let arguments = (ins XeGPU_TensorDesc: $TensorDesc,
+         OptionalAttr<XeGPU_CacheAttr>: $l1_hint,
+         OptionalAttr<XeGPU_CacheAttr>: $l2_hint,
+         OptionalAttr<XeGPU_CacheAttr>: $l3_hint,
+         DefaultValuedAttr<XeGPU_ModeAttr, "xegpu::ModeKind::SIMT">: $mode);
+
+  let builders = [
+    OpBuilder<(ins "Value": $TensorDesc,
+      CArg<"xegpu::CacheKindAttr", "xegpu::CacheKindAttr()">: $l1_hint,
+      CArg<"xegpu::CacheKindAttr", "xegpu::CacheKindAttr()">: $l2_hint,
+      CArg<"xegpu::CacheKindAttr", "xegpu::CacheKindAttr()">: $l3_hint)>,
+    OpBuilder<(ins "Value": $TensorDesc,
+      CArg<"xegpu::CacheKind", "xegpu::CacheKind::CACHED">: $l1_hint,
+      CArg<"xegpu::CacheKind", "xegpu::CacheKind::CACHED">: $l2_hint,
+      CArg<"xegpu::CacheKind", "xegpu::CacheKind::CACHED">: $l3_hint)>
+  ];
+
+  let skipDefaultBuilders = 1;
+  let hasVerifier = 1;
+
+  // Format: xegpu.prefetch %tdesc {l1_hint = cached, l2_hint = uncached}:
+  //                                    !xegpu.tensor_desc<8x16xf16>
+  let hasCustomAssemblyFormat = 1;
+}
+
+def XeGPU_UpdateOffsetOp: XeGPU_Op<"update_offset", []> {
+  let summary = "update the offsets for the given tensor descriptor";
+  let arguments = (ins XeGPU_TensorDesc: $TensorDesc,
+                       XeGPU_OffsetType: $offsets,
+                       DefaultValuedAttr<XeGPU_ModeAttr, "xegpu::ModeKind::SIMT">: $mode);
+  let results = (outs XeGPU_TensorDesc: $result);
+
+  let builders = [
+    OpBuilder<(ins "Type": $result, "Value": $TensorDesc, "Value": $offsets)>
+  ];
+
+  let skipDefaultBuilders = 1;
+  let hasCustomAssemblyFormat = 1;
+  let hasVerifier = 1;
+}
+
+def XeGPU_DpasOp : XeGPU_Op<"dpas"> {
+  let summary = "performs dpas computation";
+  let arguments = (ins
+    XeGPU_DpasOpType : $lhs,
+    XeGPU_DpasOpType : $rhs,
+    Optional<XeGPU_Vector2DType>: $acc,
+    DefaultValuedAttr<XeGPU_ModeAttr, "xegpu::ModeKind::SIMT">: $mode
+  );
+  let results = (outs XeGPU_Vector2DType: $result);
+  let hasCustomAssemblyFormat = 1;
+
+  let extraClassDeclaration = [{
+    VectorType getLhsType() {
+      return ::llvm::cast<VectorType>(getLhs().getType());
+    }
+
+    VectorType getRhsType() {
+      return ::llvm::cast<VectorType>(getRhs().getType());
+    }
+
+    VectorType getAccType() {
+      return ::llvm::cast<VectorType>(getAcc().getType());
+    }
+
+    VectorType getResultType() { 
+      return getResult().getType(); 
+    }
+  }];
+
+  let hasVerifier = 1;
+}
+
+def XeGPU_InvokeSIMDOp : XeGPU_Op<"invoke_SIMD", []> {
+    let summary = "Invoke_SIMD operation";
+    let description = [{
+      The `xegpu.invoke_SIMD` operation works similar to a direct call to a function. 
+      But it is special to Intel GPU.
+    }];
+
+  let arguments = (ins FlatSymbolRefAttr:$callee,
+                       Variadic<AnyType>:$operands,
+                       XeGPU_ArgTypeAttr: $argType);
+  let results = (outs Variadic<AnyType>);
+
+  let builders = [
+    OpBuilder<(ins "SymbolRefAttr":$callee, "TypeRange":$results,
+      "xegpu::ArgTypeKindAttr":$argType, CArg<"ValueRange", "{}">:$operands)>,
+    OpBuilder<(ins "StringAttr":$callee, "TypeRange":$results,
+      "xegpu::ArgTypeKindAttr":$argType, CArg<"ValueRange", "{}">:$operands)>,
+    OpBuilder<(ins "llvm::StringRef":$callee, "TypeRange":$results,
+      "xegpu::ArgTypeKindAttr":$argType, CArg<"ValueRange", "{}">:$operands)>
+  ];
+}
+
+def XeGPU_AtomicRMWOp: XeGPU_Op<"atomic_rmw", []> {
+  let summary = "perform ready-modify-write operation that is free from data races.";
+  let arguments = (ins
+    XeGPU_AtomicRMWKindAttr:$kind,
+    XeGPU_TensorDesc:$tensorDesc,
+    XeGPU_MaskType:$mask,
+    Optional<XeGPU_ValueType>:$value,
+    DefaultValuedAttr<XeGPU_ModeAttr, "xegpu::ModeKind::SIMT">: $mode
+  );
+
+  let results = (outs XeGPU_ValueType:$result);
+  let hasCustomAssemblyFormat = 1;
+
+  let builders = [
+    OpBuilder<(ins "Type": $result, "xegpu::AtomicRMWKindAttr": $kind,
+                   "Value": $tensorDesc, "Value": $mask, "Value": $value)>,
+    OpBuilder<(ins "Type": $result, "xegpu::AtomicRMWKind": $kind,
+                   "Value": $tensorDesc, "Value": $mask, "Value": $value)>
+  ];
+
+  let skipDefaultBuilders = 1;
+  let hasVerifier = 1;
+}
+
+def XeGPU_AllocNbarrierOp: XeGPU_Op<"alloc_nbarrier", []> {
+  let summary = "allocate a specific number of named barriers.";
+  let arguments = (ins I64Attr: $nbarrierCount);
+  let assemblyFormat = "$nbarrierCount attr-dict";
+}
+
+
+def XeGPU_CreateNbarrierOp: XeGPU_Op<"create_nbarrier", []> {
+  let summary = "create a named barrier.";
+  let arguments = (ins I8: $nbarrier_id,
+          I8: $nbarrier_role,
+          I8Attr: $num_producers,
+          I8Attr: $num_consumers,
+          DefaultValuedAttr<XeGPU_ModeAttr, "xegpu::ModeKind::SIMT">: $mode);
+  let results = (outs XeGPU_Nbarrier: $result);
+  let hasCustomAssemblyFormat = 1;
+}
+
+def XeGPU_NbarrierArriveOp: XeGPU_Op<"nbarrier_arrive", []> {
+  let summary = "arrive at a named barrier.";
+  let arguments = (ins XeGPU_Nbarrier: $payload);
+  let assemblyFormat = [{ $payload attr-dict `:` qualified(type($payload))}];
+}
+
+def XeGPU_NbarrierWaitOp: XeGPU_Op<"nbarrier_wait", []> {
+  let summary = "wait for a named barrier.";
+  let arguments = (ins XeGPU_Nbarrier: $payload);
+  let assemblyFormat = [{ $payload attr-dict `:` qualified(type($payload)) }];
+}
+
+def XeGPU_CompileHintOp: XeGPU_Op<"compile_hint", []> {
+  let summary = "prevents the compiler from scheduling.";
+  let assemblyFormat = [{ attr-dict }];
+}
+
+def XeGPU_MfenceOp: XeGPU_Op<"mfence", []> {
+  let summary = "lsc fence.";
+  let arguments = (ins StrAttr: $memory_kind,
+                       StrAttr: $fence_op,
+                       StrAttr: $fence_scope);
+  let assemblyFormat = [{ attr-dict }];
+}
+
+#endif // MLIR_DIALECT_XEGPU_IR_XEGPUOPS_TD
diff --git a/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td
new file mode 100644
index 00000000000000..b3dceff9587ada
--- /dev/null
+++ b/mlir/include/mlir/Dialect/XeGPU/IR/XeGPUTypes.td
@@ -0,0 +1,170 @@
+//===- XeGPUTypes.td - XeGPU dialect types definition -------*- tablegen -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef MLIR_DIALECT_XEGPU_IR_XEGPUTYPES_TD
+#define MLIR_DIALECT_XEGPU_IR_XEGPUTYPES_TD
+
+include "mlir/IR/BuiltinTypes.td"
+
+include "mlir/Dialect/XeGPU/IR/XeGPUAttrs.td"
+include "mlir/Dialect/XeGPU/IR/XeGPUDialect.td"
+
+// An Integer array attribute with fixed 2 elements.
+def XeGPU_IntType: AnyTypeOf<[I1, I8, I16, I32, I64, SI1, SI8, SI16, SI32, SI64, UI1, UI8, UI16, UI32, UI64]>;
+def XeGPU_FloatType: AnyTypeOf<[F16, F32, F64, BF16, TF32]>;
+def XeGPU_ScalarType: AnyTypeOf<[XeGPU_IntType, XeGPU_FloatType]>;
+def XeGPU_BaseAddrType: AnyTypeOf<[MemRefRankOf<[XeGPU_ScalarType], [1, 2]>, UI64, UI32, I64, I32]>;
+def XeGPU_DpasOpType: VectorOfRankAndType<[2, 3], [XeGPU_ScalarType]>;
+// def XeGPU_OffsetType: AnyTypeOf<[VectorOfRankAndType<[1], [Index]>, Index]>;
+def XeGPU_OffsetType: VectorOfRankAndType<[1], [Index]>;
+def XeGPU_MaskType: AnyTypeOf<[VectorOfRankAndType<[1,2], [I1]>, I1]>;
+def XeGPU_ValueType: AnyTypeOf<[VectorOfRankAndType<[1,2,3,4], [XeGPU_ScalarType]>, XeGPU_ScalarType]>;
+
+def XeGPU_Vector2DType: VectorOfRankAndType<[2], [XeGPU_ScalarType]>;
+
+// common base class for types in XeGPU dialect
+class XeGPUTypeDef<string name, string typeMnemonic, list<Trait> traits = [],
+                   string baseCppClass = "::mlir::Type">
+    : TypeDef<XeGPU_Dialect, name, traits, baseCppClass> {
+  let mnemonic = typeMnemonic;
+}
+
+// TensorDesc contains dim and element type info
+def XeGPU_TensorDesc: XeGPUTypeDef<"TensorDesc", "tensor_desc",
+        [ShapedTypeInterface], "::mlir::TensorType"> {
+  let summary = "TensorDesc describing all kinds of memory and tensors, including scatter tensor, 1d tensor, 2d tensor, … 5d tensor";
+  let description = [{
+    TensorDesc is a type designed to describe all kinds of memory, scatter tensor, 1d tensor, 2d tensor, … 5d tensor.
+    Different with the builtin tensor type in MLIR, it essentially only contains the meta data that describes a region
+    of the intereted data as well as some features that are unique to intel hardware features. It does not hold the data
+    directly by itself. It is designed to mainly support 2d block load/store and DPAS (matrix multiplication instruction)
+    on Intel GPU. It majorly encodes the following information:
+
+    * shape:  the sizes/shape of the intereted data block, e.g., 8x16 means 8 rows
+              and each row contains 16 continious data element. The rows could be
+              either continuous or not, depends on whether the encoding attribute
+              is set or not.
+    * element_type: the data type of the data element, e.g., f16, f32.
+
+    Similar to the builtin tensor, it also provides an optinal attribute to encoding the following information via the TensorDescAttr object:
+    * memory_scope (xegpu::MemoryScope): [optional] where the data is located, global memory or shared memory. It is default to Global.
+    * array_length (int): [optional] The number of continuous blocks with size as `shape`,
+               that will be loaded by block load at a time. It is default to 1.
+    * boundary_check (bool): [optional] indicates whether the operation detects the boundary and pads with zero for out-of-boundary access (default)
+    * scattered (xegpu::ScatteredAttr): [optional] It is a unit attribute. It can be only set as empty or ScatteredAttr, indicating
+                whether the TensorDesc is blocked (empty, default) or scattered (ScatteredAttr). If it is
+                blocked, rows are continuous in the correspoding dimention, otherwise, rows may be not continous.
+    * mapping (xegpu::SubGroupMapAttr): [optional] Used to guide compiler to distribute the workload into different threads. It is default to none.
+
+    For convinience, its attribute field can also take either "ScatteredAttr" or "SubGroupMapAttr" directly if and only
+    if others are taking default values.
+
+    Syntax:
+
+    ```
+    TensorDesc-type ::= `tensor_desc` `<` dim-list element-type (attr-list)? `>`
+    element-type ::= float-type | integer-type | index-type
+    dim-list := (static-dim-list `x`)?
+    static-dim-list ::= decimal-literal `x` decimal-literal
+    attr-list = (, memory_scope = value)? (, arr_len = value)? (, ScatteredAttr)? (, mapping)?
+    ```
+
+    Examples:
+
+    ```mlir
+    // A block TensorDesc with 3x42 i32 elements
+    xegpu.tensor_desc<3x42xi32>
+
+    // A block TensorDesc with 4x5 f32 elements
+    xegpu.tensor_desc<4x5xf32>
+
+    // A Scattered TensorDesc with 16x4 f32 elements
+    xegpu.tensor_desc<16x4xf32, #!xegpu.scattered>
+
+    // A TensorDesc with 8x16 f16 elements.
+    // It will be distributed accross 16 hardware threads, organized as [2, 8],
+    // and each access 2 continious elements in dim 1.
+    xegpu.tensor_desc<8x16xf16, #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 2]>>
+
+    // A TensorDesc with 8x16 f32 elements for a memory region in shared memory space.
+    xegpu.tensor_desc<8x16xf32, #xegpu.tdesc_attr<memory_scope = slm>>
+    ```
+  }];
+
+  let parameters = (ins ArrayRefParameter<"int64_t">: $shape,
+                        "mlir::Type": $elementType,
+                        OptionalParameter<"mlir::Attribute">: $encoding);
+
+  let builders = [
+    TypeBuilderWithInferredContext<(ins
+      "llvm::ArrayRef<int64_t>":$shape, "mlir::Type":$elementType,
+      CArg<"mlir::Attribute", "{}"> : $encoding
+    )>,
+    TypeBuilder<(ins
+      "llvm::ArrayRef<int64_t>": $shape, "mlir::Type": $elementType,
+      "mlir::xegpu::MemoryScopeKind": $memory_scope, "int": $array_length,
+      "bool": $boundary_check, "mlir::xegpu::ScatteredAttr": $scattered,
+      "mlir::xegpu::SubGroupMapAttr": $mapping
+    )>,
+    TypeBuilderWithInferredContext<(ins
+      "llvm::ArrayRef<int64_t>": $shape, "mlir::Type": $elementType,
+      "mlir::xegpu::MemoryScopeKind": $memory_scope, "int": $array_length,
+      "bool": $boundary_check, "mlir::xegpu::ScatteredAttr": $scattered,
+      "mlir::xegpu::SubGroupMapAttr": $mapping
+    )>
+  ];
+
+  let extraClassDeclaration = [{
+    using TensorType::clone;
+    using mlir::ShapedType::Trait<TensorDescType>::getElementTypeBitWidth;
+    using mlir::ShapedType::Trait<TensorDescType>::getRank;
+    using mlir::ShapedType::Trait<TensorDescType>::getNumElements;
+    using mlir::ShapedType::Trait<TensorDescType>::isDynamicDim;
+    using mlir::ShapedType::Trait<TensorDescType>::hasStaticShape;
+    using mlir::ShapedType::Trait<TensorDescType>::getNumDynamicDims;
+    using mlir::ShapedType::Trait<TensorDescType>::getDimSize;
+    using mlir::ShapedType::Trait<TensorDescType>::getDynamicDimIndex;
+
+    TensorDescType clone(::mlir::Type elementType) {
+      return llvm::cast<TensorDescType>(cloneWith(getShape(), elementType));
+    }
+
+    TensorDescAttr getEncodingAsTensorDescAttr() const {
+      return llvm::dyn_cast_if_present<TensorDescAttr>(getEncoding());
+    }
+
+    SubGroupMapAttr getEncodingAsMapAttr() const {
+      return llvm::dyn_cast_if_present<SubGroupMapAttr>(getEncoding());
+    }
+
+    ScatteredAttr getEncodingAsScatteredAttr() const {
+      return llvm::dyn_cast_if_present<ScatteredAttr>(getEncoding());
+    }
+
+    xegpu::MemoryScopeKind getMemoryScope();
+    int getArrayLength();
+    bool getBoundaryCheck();
+    xegpu::ScatteredAttr getScattered();
+    xegpu::SubGroupMapAttr getMapping();
+  }];
+
+  let hasCustomAssemblyFormat = true;
+}
+
+
+def XeGPU_Nbarrier: XeGPUTypeDef<"Nbarrier", "nbarrier", [], "mlir::Type"> {
+  let summary = "!xegpu.nbarrier a custom XeGPU type representing a barrier.";
+
+  let extraClassDeclaration = [{
+    static NbarrierType get(mlir::MLIRContext *context) {
+      return Base::get(context);
+    };
+  }];
+}
+
+#endif // MLIR_DIALECT_XEGPU_IR_XEGPUTYPES_TD
diff --git a/mlir/include/mlir/InitAllDialects.h b/mlir/include/mlir/InitAllDialects.h
index 19a62cadaa2e04..838b7b87b09b64 100644
--- a/mlir/include/mlir/InitAllDialects.h
+++ b/mlir/include/mlir/InitAllDialects.h
@@ -87,6 +87,7 @@
 #include "mlir/Dialect/Vector/Transforms/BufferizableOpInterfaceImpl.h"
 #include "mlir/Dialect/Vector/Transforms/SubsetOpInterfaceImpl.h"
 #include "mlir/Dialect/X86Vector/X86VectorDialect.h"
+#include "mlir/Dialect/XeGPU/IR/XeGPU.h"
 #include "mlir/IR/Dialect.h"
 #include "mlir/Interfaces/CastInterfaces.h"
 #include "mlir/Target/LLVM/NVVM/Target.h"
@@ -138,7 +139,8 @@ inline void registerAllDialects(DialectRegistry &registry) {
                   transform::TransformDialect,
                   ub::UBDialect,
                   vector::VectorDialect,
-                  x86vector::X86VectorDialect>();
+                  x86vector::X86VectorDialect,
+                  xegpu::XeGPUDialect>();
   // clang-format on
 
   // Register all external models.
diff --git a/mlir/lib/Dialect/CMakeLists.txt b/mlir/lib/Dialect/CMakeLists.txt
index 68776a695cac4d..f5eeaaed5af97d 100644
--- a/mlir/lib/Dialect/CMakeLists.txt
+++ b/mlir/lib/Dialect/CMakeLists.txt
@@ -39,6 +39,7 @@ add_subdirectory(UB)
 add_subdirectory(Utils)
 add_subdirectory(Vector)
 add_subdirectory(X86Vector)
+add_subdirectory(XeGPU)
 
 set(LLVM_OPTIONAL_SOURCES
   Traits.cpp
diff --git a/mlir/lib/Dialect/XeGPU/CMakeLists.txt b/mlir/lib/Dialect/XeGPU/CMakeLists.txt
new file mode 100644
index 00000000000000..f33061b2d87cff
--- /dev/null
+++ b/mlir/lib/Dialect/XeGPU/CMakeLists.txt
@@ -0,0 +1 @@
+add_subdirectory(IR)
diff --git a/mlir/lib/Dialect/XeGPU/IR/CMakeLists.txt b/mlir/lib/Dialect/XeGPU/IR/CMakeLists.txt
new file mode 100644
index 00000000000000..2e99f39ed86d2e
--- /dev/null
+++ b/mlir/lib/Dialect/XeGPU/IR/CMakeLists.txt
@@ -0,0 +1,15 @@
+add_mlir_dialect_library(MLIRXeGPUDialect
+  XeGPUDialect.cpp
+  XeGPUOps.cpp
+
+  ADDITIONAL_HEADER_DIRS
+  ${PROJECT_SOURCE_DIR}/include/mlir/Dialect/XeGPU
+
+  DEPENDS
+  MLIRXeGPUIncGen
+  MLIRXeGPUAttrsIncGen
+  MLIRXeGPUEnumsIncGen
+
+  LINK_LIBS PUBLIC
+  MLIRIR
+)
diff --git a/mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp b/mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp
new file mode 100644
index 00000000000000..60ab50227c2247
--- /dev/null
+++ b/mlir/lib/Dialect/XeGPU/IR/XeGPUDialect.cpp
@@ -0,0 +1,385 @@
+//===- XeGPUDialect.cpp - MLIR XeGPU dialect implementation -----*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include <llvm/ADT/TypeSwitch.h>
+#include <llvm/Support/Debug.h>
+#include <mlir/Dialect/XeGPU/IR/XeGPU.h>
+
+#include <mlir/Dialect/Arith/IR/Arith.h>
+#include <mlir/Dialect/Linalg/IR/Linalg.h>
+#include <mlir/Dialect/MemRef/IR/MemRef.h>
+#include <mlir/Dialect/Tensor/IR/Tensor.h>
+#include <mlir/Dialect/Utils/StaticValueUtils.h>
+#include <mlir/IR/Builders.h>
+#include <mlir/IR/DialectImplementation.h>
+#include <mlir/IR/TypeUtilities.h>
+
+#include <numeric>
+
+namespace mlir {
+namespace xegpu {
+
+void XeGPUDialect::initialize() {
+  addTypes<
+#define GET_TYPEDEF_LIST
+#include <mlir/Dialect/XeGPU/IR/XeGPUTypes.cpp.inc>
+      >();
+  addOperations<
+#define GET_OP_LIST
+#include <mlir/Dialect/XeGPU/IR/XeGPU.cpp.inc>
+      >();
+  addAttributes<
+#define GET_ATTRDEF_LIST
+#include <mlir/Dialect/XeGPU/IR/XeGPUAttrs.cpp.inc>
+      >();
+}
+
+bool printDefaultValues() {
+  auto *env = getenv("MLIR_XEGPU_PRINT_DEFAULTS");
+  if (env && std::string(env) == "true")
+    return true;
+  return false;
+}
+
+SubGroupMapAttr SubGroupMapAttr::get(mlir::MLIRContext *context,
+                                     llvm::ArrayRef<int32_t> wiLayout,
+                                     llvm::ArrayRef<int32_t> wiData) {
+  assert(wiLayout.size() == 2 && wiData.size() == 2 &&
+         "wiLayout and wiData should be 2D arrays.\n");
+  return Base::get(context, mlir::DenseI32ArrayAttr::get(context, wiLayout),
+                   mlir::DenseI32ArrayAttr::get(context, wiData));
+}
+
+mlir::LogicalResult SubGroupMapAttr::verify(
+    llvm::function_ref<mlir::InFlightDiagnostic()> emitError,
+    mlir::DenseI32ArrayAttr layout, mlir::DenseI32ArrayAttr data) {
+
+  if (layout.size() != 2) {
+    emitError() << "Failed to parse SubGroupMapAttr: missing wi_layout which "
+                   "is to be an integer array of size 2.\n";
+    return mlir::failure();
+  }
+
+  if (data.size() != 2) {
+    emitError() << "Failed to parse SubGroupMapAttr: missing wi_data which is "
+                   "to be an integer array of size 2.\n";
+    return mlir::failure();
+  }
+
+  return mlir::success();
+}
+
+mlir::Attribute TensorDescAttr::parse(mlir::AsmParser &parser,
+                                      mlir::Type type) {
+  mlir::FailureOr<xegpu::MemoryScopeKind> memory_scope;
+  mlir::FailureOr<int> array_length;
+  mlir::FailureOr<bool> boundary_check;
+  mlir::FailureOr<xegpu::ScatteredAttr> scattered;
+  mlir::FailureOr<xegpu::SubGroupMapAttr> map;
+
+  bool seen_memory_scope = false;
+  bool seen_array_length = false;
+  bool seen_boundary_check = false;
+  bool seen_scattered = false;
+  bool seen_map = false;
+
+  // Parse literal '<'
+  if (parser.parseLess())
+    return {};
+
+  // Parse elements
+  auto parseElt = [&]() -> mlir::ParseResult {
+    llvm::StringRef paramKey;
+
+    if (!parser.parseOptionalKeyword(&paramKey)) {
+      if (parser.parseEqual())
+        return mlir::failure();
+
+      if (!seen_memory_scope && paramKey == "memory_scope") {
+        seen_memory_scope = true;
+        // Parse variable 'memory_scope'
+        memory_scope =
+            mlir::FieldParser<mlir::xegpu::MemoryScopeKind>::parse(parser);
+        if (mlir::failed(memory_scope))
+          return parser.emitError(
+              parser.getCurrentLocation(),
+              "Failed to parse the 'memory_scope' of TensorDescAttr, which is "
+              "to be a `xegpu::MemoryScope`");
+      } else if (!seen_array_length && paramKey == "array_length") {
+        seen_array_length = true;
+        // Parse variable 'array_length'
+        array_length = ::mlir::FieldParser<int>::parse(parser);
+        if (mlir::failed(array_length))
+          return parser.emitError(parser.getCurrentLocation(),
+                                  "Failed to parse the 'array_length' of "
+                                  "TensorDescAttr, which is to be a `int`");
+      } else if (!seen_boundary_check && paramKey == "boundary_check") {
+        seen_boundary_check = true;
+        // Parse variable 'boundary_check'
+        boundary_check = ::mlir::FieldParser<bool>::parse(parser);
+        if (::mlir::failed(boundary_check))
+          return parser.emitError(parser.getCurrentLocation(),
+                                  "Failed to parse the 'boundary_check' of "
+                                  "TensorDescAttr, which is to be a `bool`");
+      } else if (!seen_map && paramKey == "map") {
+        seen_map = true;
+        // Parse variable 'map'
+        map = ::mlir::FieldParser<xegpu::SubGroupMapAttr>::parse(parser);
+        if (::mlir::failed(map))
+          return parser.emitError(
+              parser.getCurrentLocation(),
+              "Failed to parse the 'map' of TensorDescAttr, which is to be a "
+              "`xegpu::SubGroupMapAttr`");
+      }
+    } else if (!seen_scattered) {
+      // parse scattered
+      scattered = mlir::FieldParser<xegpu::ScatteredAttr>::parse(parser);
+      if (mlir::failed(scattered))
+        return parser.emitError(
+            parser.getCurrentLocation(),
+            "Failed to parse 'scattered' attr of TensorDescAttr, which is to "
+            "be a `xegpu::ScatteredAttr`");
+      seen_scattered = true;
+    }
+    return mlir::success();
+  };
+
+  if (parser.parseCommaSeparatedList(parseElt))
+    return {};
+
+  // Parse literal '>'
+  if (parser.parseGreater())
+    return {};
+  return TensorDescAttr::get(
+      parser.getContext(),
+      memory_scope.value_or(xegpu::MemoryScopeKind::GLOBAL),
+      array_length.value_or(1), boundary_check.value_or(true),
+      scattered.value_or(xegpu::ScatteredAttr()),
+      map.value_or(xegpu::SubGroupMapAttr()));
+}
+
+void TensorDescAttr::print(::mlir::AsmPrinter &printer) const {
+  bool printSep = false;
+  bool printDefaults = printDefaultValues();
+
+  printer << "<";
+
+  if (printDefaults || getMemoryScope() != xegpu::MemoryScopeKind::GLOBAL) {
+    if (printSep)
+      printer << ", ";
+    printSep = true;
+    printer << "memory_scope = ";
+    printer.printStrippedAttrOrType(getMemoryScope());
+  }
+  if (printDefaults || getArrayLength() != 1) {
+    if (printSep)
+      printer << ", ";
+    printSep = true;
+    printer << "array_length = ";
+    printer.printStrippedAttrOrType(getArrayLength());
+  }
+  if (printDefaults || getBoundaryCheck() != true) {
+    if (printSep)
+      printer << ", ";
+    printSep = true;
+    printer << "boundary_check = ";
+    printer.printStrippedAttrOrType(getBoundaryCheck());
+  }
+  if (getScattered()) {
+    if (printSep)
+      printer << ", ";
+    printSep = true;
+    printer.printStrippedAttrOrType(getScattered());
+  }
+  if (getMap()) {
+    if (printSep)
+      printer << ", ";
+    printSep = true;
+    printer << "map = ";
+    printer.printStrippedAttrOrType(getMap());
+  }
+  printer << ">";
+}
+
+bool TensorDescAttr::hasNonDefaultAttrs() {
+  int count = 0;
+  if (getMemoryScope() != MemoryScopeKind::GLOBAL)
+    count++;
+  if (getBoundaryCheck() != true)
+    count++;
+  if (getArrayLength() != 1)
+    count++;
+  if (getScattered())
+    count++;
+  if (getMap())
+    count++;
+  return count;
+}
+
+TensorDescAttr TensorDescAttr::get(mlir::MLIRContext *context,
+                                   xegpu::MemoryScopeKind memory_scope,
+                                   int array_length,
+                                   xegpu::ScatteredAttr scattered,
+                                   xegpu::SubGroupMapAttr map) {
+  return Base::get(context, std::move(memory_scope), std::move(array_length),
+                   true, std::move(scattered), std::move(map));
+}
+
+mlir::Type TensorDescType::parse(::mlir::AsmParser &parser) {
+  llvm::SmallVector<int64_t> shape;
+  mlir::Type elementType;
+  mlir::FailureOr<mlir::Attribute> encoding;
+
+  // Parse literal '<'
+  if (parser.parseLess())
+    return {};
+
+  auto shapeLoc = parser.getCurrentLocation();
+  if (mlir::failed(parser.parseDimensionList(shape))) {
+    parser.emitError(shapeLoc, "failed to parse parameter 'shape'");
+    return {};
+  }
+
+  auto elemTypeLoc = parser.getCurrentLocation();
+  if (mlir::failed(parser.parseType(elementType))) {
+    parser.emitError(elemTypeLoc, "failed to parse parameter 'elementType'");
+    return {};
+  }
+
+  // parse optional attributes
+  if (mlir::succeeded(parser.parseOptionalComma())) {
+    encoding = mlir::FieldParser<mlir::Attribute>::parse(parser);
+    if (mlir::failed(encoding)) {
+      parser.emitError(
+          parser.getCurrentLocation(),
+          "Failed to parse the attribute field for TensorDescType.\n");
+      return {};
+    }
+  }
+
+  // Parse literal '>'
+  if (parser.parseGreater())
+    return {};
+
+  return TensorDescType::get(parser.getContext(), shape, elementType,
+                             encoding.value_or(mlir::Attribute()));
+}
+
+void TensorDescType::print(::mlir::AsmPrinter &printer) const {
+  printer << "<";
+
+  auto shape = getShape();
+  for (int64_t dim : shape) {
+    if (mlir::ShapedType::isDynamic(dim))
+      printer << '?';
+    else
+      printer << dim;
+    printer << 'x';
+  }
+  printer << getElementType();
+
+  if (printDefaultValues()) {
+    auto encoding = getEncoding();
+    if (auto attr = getEncodingAsMapAttr()) {
+      encoding = TensorDescAttr::get(getContext(), MemoryScopeKind::GLOBAL, 1,
+                                     {}, attr);
+    }
+    if (auto attr = getEncodingAsScatteredAttr()) {
+      encoding = TensorDescAttr::get(getContext(), MemoryScopeKind::GLOBAL, 1,
+                                     attr, {});
+    }
+    printer << ", " << encoding;
+  } else if (auto encoding = getEncodingAsTensorDescAttr()) {
+    if (encoding.hasNonDefaultAttrs())
+      printer << ", " << encoding;
+  } else if (auto encoding = getEncoding()) {
+    printer << ", " << encoding;
+  }
+  printer << ">";
+}
+
+TensorDescType TensorDescType::get(llvm::ArrayRef<int64_t> shape,
+                                   mlir::Type elementType,
+                                   mlir::Attribute encoding) {
+  return Base::get(elementType.getContext(), shape, elementType, encoding);
+}
+
+TensorDescType TensorDescType::get(mlir::MLIRContext *context,
+                                   llvm::ArrayRef<int64_t> shape,
+                                   mlir::Type elementType,
+                                   mlir::xegpu::MemoryScopeKind memory_scope,
+                                   int array_length, bool boundary_check,
+                                   mlir::xegpu::ScatteredAttr scattered,
+                                   mlir::xegpu::SubGroupMapAttr mapping) {
+  auto attr = TensorDescAttr::get(context, memory_scope, array_length,
+                                  boundary_check, scattered, mapping);
+  return Base::get(context, shape, elementType, attr);
+}
+
+TensorDescType TensorDescType::get(llvm::ArrayRef<int64_t> shape,
+                                   mlir::Type elementType,
+                                   mlir::xegpu::MemoryScopeKind memory_scope,
+                                   int array_length, bool boundary_check,
+                                   mlir::xegpu::ScatteredAttr scattered,
+                                   mlir::xegpu::SubGroupMapAttr mapping) {
+  auto attr =
+      TensorDescAttr::get(elementType.getContext(), memory_scope, array_length,
+                          boundary_check, scattered, mapping);
+  return Base::get(elementType.getContext(), shape, elementType, attr);
+}
+
+xegpu::MemoryScopeKind TensorDescType::getMemoryScope() {
+  auto attr = getEncodingAsTensorDescAttr();
+  if (attr)
+    return attr.getMemoryScope();
+  // return default value
+  return MemoryScopeKind::GLOBAL;
+}
+
+int TensorDescType::getArrayLength() {
+  auto attr = getEncodingAsTensorDescAttr();
+  if (attr)
+    return attr.getArrayLength();
+  // return default value
+  return 1;
+}
+
+bool TensorDescType::getBoundaryCheck() {
+  auto attr = getEncodingAsTensorDescAttr();
+  if (attr)
+    return attr.getBoundaryCheck();
+  // return default value
+  return true;
+}
+
+xegpu::ScatteredAttr TensorDescType::getScattered() {
+  if (auto attr = getEncodingAsTensorDescAttr())
+    return attr.getScattered();
+  if (auto attr = getEncodingAsScatteredAttr())
+    return attr;
+  // return default value
+  return {};
+}
+
+xegpu::SubGroupMapAttr TensorDescType::getMapping() {
+  if (auto attr = getEncodingAsTensorDescAttr())
+    return attr.getMap();
+  if (auto attr = getEncodingAsMapAttr())
+    return attr;
+  // return default value
+  return xegpu::SubGroupMapAttr();
+}
+
+} // namespace xegpu
+} // namespace mlir
+
+#include <mlir/Dialect/XeGPU/IR/XeGPUDialect.cpp.inc>
+#define GET_ATTRDEF_CLASSES
+#include <mlir/Dialect/XeGPU/IR/XeGPUAttrs.cpp.inc>
+#define GET_TYPEDEF_CLASSES
+#include <mlir/Dialect/XeGPU/IR/XeGPUTypes.cpp.inc>
diff --git a/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp b/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp
new file mode 100644
index 00000000000000..627680e84ec949
--- /dev/null
+++ b/mlir/lib/Dialect/XeGPU/IR/XeGPUOps.cpp
@@ -0,0 +1,1929 @@
+//===- XeGPUOps.cpp - MLIR XeGPU ops implementation -------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include <llvm/ADT/TypeSwitch.h>
+#include <llvm/Support/Debug.h>
+#include <mlir/Dialect/Arith/IR/Arith.h>
+#include <mlir/Dialect/Linalg/IR/Linalg.h>
+#include <mlir/Dialect/MemRef/IR/MemRef.h>
+#include <mlir/Dialect/Tensor/IR/Tensor.h>
+#include <mlir/Dialect/Utils/StaticValueUtils.h>
+#include <mlir/Dialect/XeGPU/IR/XeGPU.h>
+#include <mlir/IR/Builders.h>
+#include <mlir/IR/DialectImplementation.h>
+#include <mlir/IR/TypeUtilities.h>
+#include <numeric>
+#include <type_traits>
+
+#define DEBUG_TYPE "xegpu"
+
+namespace mlir {
+class Token;
+
+namespace xegpu {
+
+extern bool printDefaultValues();
+
+template <typename T>
+static std::string makeString(T array, bool breakline = false) {
+  std::string buf;
+  buf.clear();
+  llvm::raw_string_ostream os(buf);
+  os << "[";
+  for (size_t i = 1; i < array.size(); i++) {
+    os << array[i - 1] << ", ";
+    if (breakline)
+      os << "\n\t\t";
+  }
+  os << array.back() << "]";
+  os.flush();
+  return buf;
+}
+
+static size_t getRankOf(Value value) {
+  if (value.getType().isIntOrIndexOrFloat())
+    return 0;
+  if (auto ty = llvm::dyn_cast_if_present<MemRefType>(value.getType()))
+    return ty.getRank();
+  if (auto ty = llvm::dyn_cast_if_present<VectorType>(value.getType()))
+    return ty.getRank();
+  llvm_unreachable("Unsupported value for getRankOf");
+}
+
+static void transpose(llvm::ArrayRef<int64_t> trans,
+                      std::vector<int64_t> &shape) {
+  std::vector<int64_t> old = shape;
+  for (size_t i = 0; i < trans.size(); i++)
+    shape[i] = old[trans[i]];
+}
+
+static bool verifyAndInferShape(std::vector<int64_t> &shape,
+                                SubGroupMapAttr sgMap) {
+  if (sgMap) {
+    auto wiLayout = sgMap.getWiLayout();
+    auto wiData = sgMap.getWiData();
+
+    if ((int64_t)shape.size() != wiData.size() ||
+        (int64_t)shape.size() != wiLayout.size()) {
+      return false;
+    }
+
+    for (size_t i = 0; i < shape.size(); i++) {
+
+      if ((shape[i] % (wiLayout[i] * wiData[i]) != 0 &&
+           (wiLayout[i] * wiData[i]) % shape[i] != 0) ||
+          shape[i] % wiLayout[i] != 0 || shape[i] % wiData[i] != 0) {
+        return false;
+      }
+      shape[i] /= wiLayout[i];
+    }
+  }
+
+  return true;
+}
+
+static ParseResult
+parseOptionalAttrDictWithCustomAttrs(OpAsmParser &parser,
+                                     OperationState &result) {
+  // no optional attributes, return success
+  if (failed(parser.parseOptionalLBrace()))
+    return success();
+
+  llvm::SmallDenseSet<StringRef, 8> seenKeys;
+  auto parseElt = [&]() -> ParseResult {
+    // The name of an attribute can either be a keyword, or a string.
+    // as compared to mlir::parseOptionalAttrList, the cases of using
+    // TOken::bare_identifier and Token::inttype as key maybe not handlered
+    std::string nameId;
+    auto loc = parser.getCurrentLocation();
+    if (parser.parseOptionalKeywordOrString(&nameId))
+      return parser.emitError(loc, "invalid attribute name: ")
+             << nameId << ".\n";
+
+    if (nameId.empty())
+      return parser.emitError(loc, "expected valid attribute name");
+
+    if (!seenKeys.insert(nameId).second)
+      return parser.emitError(loc, "duplicate key '")
+             << nameId << "' in dictionary attribute.";
+
+    // Lazy load a dialect in the context if there is a possible namespace.
+    auto splitName = StringRef(nameId).split('.');
+    if (!splitName.second.empty())
+      parser.getContext()->getOrLoadDialect(splitName.first);
+
+    // Try to parse the '=' for the attribute value.
+    if (parser.parseEqual()) {
+      // If there is no '=', it is treated as a unit attribute.
+      result.addAttribute(nameId, parser.getBuilder().getUnitAttr());
+      return success();
+    }
+
+    // for xegpu specific attributes
+    if (nameId == "mode") {
+      ModeKindAttr attr;
+      return parser.parseCustomAttributeWithFallback(attr, Type{}, nameId,
+                                                     result.attributes);
+    } else if (nameId == "l1_hint" || nameId == "l2_hint" ||
+               nameId == "l3_hint") {
+      CacheKindAttr attr;
+      return parser.parseCustomAttributeWithFallback(attr, Type{}, nameId,
+                                                     result.attributes);
+    } else if (nameId == "transpose") {
+      // in form of [4, 5], acctually it is a copy of DenseI63ArrayAttr::parse()
+      if (succeeded(parser.parseOptionalLSquare())) {
+        Attribute attr;
+        // handle empty list case
+        if (succeeded(parser.parseOptionalRSquare())) {
+          attr = DenseI64ArrayAttr::get(parser.getContext(), {});
+        } else {
+          attr = DenseI64ArrayAttr::parseWithoutBraces(parser, Type{});
+          if (failed(parser.parseRSquare()))
+            return failure();
+        }
+        if (!attr)
+          return failure();
+        result.addAttribute(nameId, attr);
+        return success();
+      } else {
+        // in form of array<i64: 4, 5>
+        DenseI64ArrayAttr attr;
+        return parser.parseAttribute(attr, nameId, result.attributes);
+      }
+    } else {
+      Attribute attr;
+      return parser.parseAttribute(attr, nameId, result.attributes);
+    }
+  };
+
+  if (parser.parseCommaSeparatedList(parseElt))
+    return failure();
+
+  return parser.parseRBrace();
+}
+
+//===----------------------------------------------------------------------===//
+// XeGPU_CreateNdDescOp
+//===----------------------------------------------------------------------===//
+void CreateNdDescOp::build(OpBuilder &builder, OperationState &state,
+                           Type TensorDesc, Value source, ValueRange offsets,
+                           ValueRange shape, ValueRange strides,
+                           llvm::ArrayRef<int64_t> static_offsets,
+                           ModeKind mode) {
+  auto offsetRank = static_offsets.size();
+  auto shapeRank = shape.size() ? shape.size() : getRankOf(source);
+
+  size_t dynOffsetRank =
+      std::count_if(static_offsets.begin(), static_offsets.end(),
+                    [](int64_t d) { return ShapedType::isDynamic(d); });
+
+  // shape and strides should exists at the same time
+  // and the final rank for shape and offset (dynamic + static)
+  // should be the same
+  assert(shape.size() == strides.size() && shapeRank == offsetRank &&
+         offsets.size() == dynOffsetRank);
+
+  state.addOperands(source);
+  state.addOperands(offsets);
+  state.addOperands(shape);
+  state.addOperands(strides);
+  state.addAttribute(
+      getOperandSegmentSizesAttrName(state.name),
+      builder.getDenseI32ArrayAttr({1, static_cast<int32_t>(offsets.size()),
+                                    static_cast<int32_t>(shape.size()),
+                                    static_cast<int32_t>(strides.size())}));
+  state.addAttribute(getStaticOffsetsAttrName(state.name),
+                     builder.getDenseI64ArrayAttr(static_offsets));
+  state.addAttribute(getModeAttrName(state.name),
+                     xegpu::ModeKindAttr::get(builder.getContext(), mode));
+  state.addTypes(TensorDesc);
+}
+
+void CreateNdDescOp::build(OpBuilder &builder, OperationState &state,
+                           Type tdesc, Value source,
+                           llvm::ArrayRef<OpFoldResult> offsets,
+                           ModeKind mode) {
+  auto ty = llvm::dyn_cast_if_present<MemRefType>(source.getType());
+  assert(ty && ty.hasStaticShape() && offsets.size() == getRankOf(source));
+
+  llvm::SmallVector<int64_t> staticOffsets;
+  llvm::SmallVector<Value> dynamicOffsets;
+  dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets);
+
+  build(builder, state, tdesc, source, dynamicOffsets /* dynamic offsets */,
+        ValueRange({}) /* empty dynamic shape */,
+        ValueRange({}) /* empty dynamic strides */,
+        staticOffsets /* static offsets */, mode);
+}
+
+void CreateNdDescOp::build(OpBuilder &builder, OperationState &state,
+                           Type tdesc, Value source,
+                           llvm::ArrayRef<OpFoldResult> offsets,
+                           ValueRange shape, ValueRange stride, ModeKind mode) {
+  assert(shape.size() && offsets.size() && stride.size() &&
+         shape.size() == stride.size() && shape.size() == offsets.size());
+
+  llvm::SmallVector<int64_t> staticOffsets;
+  llvm::SmallVector<Value> dynamicOffsets;
+
+  dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets);
+
+  build(builder, state, tdesc, source, dynamicOffsets /* dynamic offsets */,
+        shape /* dynamic shape */, stride /* dynamic strides */,
+        staticOffsets /* static offsets */, mode);
+}
+
+ParseResult CreateNdDescOp::parse(OpAsmParser &parser, OperationState &result) {
+  // parse the source operand
+  llvm::SmallVector<OpAsmParser::UnresolvedOperand> sourceOperands(1);
+  llvm::SMLoc sourceOperandsLoc = parser.getCurrentLocation();
+  if (parser.parseOperand(sourceOperands[0]))
+    return failure();
+
+  // parse the offset operand, in format of [x, y]
+  llvm::SmallVector<OpAsmParser::UnresolvedOperand, 4> offsetsOperands;
+  DenseI64ArrayAttr static_offsetsAttr;
+  llvm::SMLoc offsetsOperandsLoc = parser.getCurrentLocation();
+  if (parseDynamicIndexList(parser, offsetsOperands, static_offsetsAttr))
+    return failure();
+  result.addAttribute("static_offsets", static_offsetsAttr);
+
+  llvm::SmallVector<OpAsmParser::UnresolvedOperand, 4> shapeOperands;
+  llvm::SMLoc shapeOperandsLoc;
+
+  llvm::SmallVector<OpAsmParser::UnresolvedOperand, 4> stridesOperands;
+  llvm::SMLoc stridesOperandsLoc;
+  // parse optional shape and strides, shape and strides should always come
+  // together
+  if (succeeded(parser.parseOptionalComma())) {
+    // parse shape part, in form of [x, y]
+    if (parser.parseLSquare())
+      return failure();
+    shapeOperandsLoc = parser.getCurrentLocation();
+    if (parser.parseOperandList(shapeOperands))
+      return failure();
+    if (parser.parseRSquare())
+      return failure();
+
+    if (parser.parseComma())
+      return failure();
+
+    // parse stride part, in form of [x, y]
+    if (parser.parseLSquare())
+      return failure();
+    stridesOperandsLoc = parser.getCurrentLocation();
+    if (parser.parseOperandList(stridesOperands))
+      return failure();
+    if (parser.parseRSquare())
+      return failure();
+  }
+
+  auto loc = parser.getCurrentLocation();
+  if (parseOptionalAttrDictWithCustomAttrs(parser, result))
+    return failure();
+
+  if (failed(verifyInherentAttrs(result.name, result.attributes, [&]() {
+        return parser.emitError(loc)
+               << "'" << result.name.getStringRef() << "' op ";
+      })))
+    return failure();
+
+  if (parser.parseColon())
+    return failure();
+
+  llvm::SmallVector<Type> sourceTypes(1);
+  if (parser.parseType(sourceTypes[0]))
+    return failure();
+
+  if (parser.parseArrow())
+    return failure();
+
+  llvm::SmallVector<Type> TensorDescTypes(1);
+  if (parser.parseType(TensorDescTypes[0]))
+    return failure();
+  result.addAttribute("operandSegmentSizes",
+                      parser.getBuilder().getDenseI32ArrayAttr(
+                          {1, static_cast<int32_t>(offsetsOperands.size()),
+                           static_cast<int32_t>(shapeOperands.size()),
+                           static_cast<int32_t>(stridesOperands.size())}));
+
+  result.addTypes(TensorDescTypes);
+  if (parser.resolveOperands(sourceOperands, sourceTypes, sourceOperandsLoc,
+                             result.operands))
+    return failure();
+
+  Type indexType = parser.getBuilder().getIndexType();
+  if (parser.resolveOperands(offsetsOperands, indexType, offsetsOperandsLoc,
+                             result.operands))
+    return failure();
+  if (parser.resolveOperands(shapeOperands, indexType, shapeOperandsLoc,
+                             result.operands))
+    return failure();
+  if (parser.resolveOperands(stridesOperands, indexType, stridesOperandsLoc,
+                             result.operands))
+    return failure();
+  return success();
+}
+
+void CreateNdDescOp::print(OpAsmPrinter &printer) {
+  auto mode = getMode();
+  auto printDefaults = printDefaultValues();
+
+  printer << ' ';
+  printer << getSource();
+  printDynamicIndexList(printer, *this, getDynamicOffsets(),
+                        getStaticOffsetsAttr());
+  if (!getDynamicShape().empty()) {
+    printer << ",";
+    printer << ' ' << "[";
+    printer << getDynamicShape();
+    printer << "]";
+  }
+
+  if (!getDynamicStrides().empty()) {
+    printer << ",";
+    printer << ' ' << "[";
+    printer << getDynamicStrides();
+    printer << "]";
+  }
+
+  llvm::SmallVector<llvm::StringRef> elidedAttrs;
+  elidedAttrs.push_back("static_offsets");
+  elidedAttrs.push_back("operandSegmentSizes");
+  if (!printDefaults && mode == xegpu::ModeKind::SIMT)
+    elidedAttrs.push_back("mode");
+
+  printer.printOptionalAttrDict((*this)->getAttrs(), elidedAttrs);
+
+  printer << ' ' << ":";
+  printer << ' ';
+  printer << getSourceType();
+  printer << ' ' << "->";
+  printer << ' ';
+  printer << getTensorDescType();
+}
+
+LogicalResult CreateNdDescOp::verify() {
+  auto mode = getMode();
+  auto isScattered = getTensorDescType().getScattered();
+  auto mapping = getTensorDescType().getMapping();
+
+  if (isScattered) {
+    return emitOpError("Encoding Attribute of TensorDesc is not expected for "
+                       "non-scattered operators.\n");
+  }
+
+  if (mode == ModeKind::VC && mapping) {
+    return emitOpError("Mapping attribute of TensorDesc is not expected "
+                       "for VC mode operations.\n");
+  }
+
+  if (mode == ModeKind::SIMT && !mapping) {
+    return emitOpError("Expecting SgMap attribute for SIMT mode operators.\n");
+  }
+
+  auto offsetRank = getOffsets().size();
+  auto shapeRank = getShape().size();
+  auto stridesRank = getStrides().size();
+  auto baseRank = getRankOf(getSource()) ? getRankOf(getSource()) : 2;
+
+  if (offsetRank != shapeRank || shapeRank != stridesRank ||
+      shapeRank != baseRank)
+    return emitOpError(
+        "Expecting the rank of shape, strides, offsets and memref type "
+        "should match with each other (they currently should be 2D).");
+
+  return success();
+}
+
+xegpu::TensorDescType CreateNdDescOp::getTensorDescType() {
+  return getTensorDesc().getType();
+}
+
+llvm::SmallVector<OpFoldResult> CreateNdDescOp::getOffsets() {
+  llvm::SmallVector<OpFoldResult> offsets;
+  auto dynamicOffsets = getDynamicOffsets(); // given by dynamic_offsets
+                                             // variable
+  auto staticOffsets = getStaticOffsets(); // given by static_offsets attribute
+
+  // in case static_offsets is missing
+  if (staticOffsets.size() == 0) {
+    offsets.assign(dynamicOffsets.begin(), dynamicOffsets.end());
+    return offsets;
+  }
+
+  for (size_t i = 0, j = 0; i < staticOffsets.size(); i++) {
+    if (ShapedType::isDynamic(staticOffsets[i])) {
+      assert(j < dynamicOffsets.size());
+      offsets.push_back(dynamicOffsets[j++]);
+    } else {
+      auto ty = IndexType::get(getContext());
+      auto attr = IntegerAttr::get(ty, staticOffsets[i]);
+      offsets.push_back(attr);
+    }
+  }
+  return offsets;
+}
+
+llvm::ArrayRef<int64_t> CreateNdDescOp::getStaticShape() {
+  auto rank = getTensorDescType().getRank();
+  static llvm::SmallVector<int64_t> dyn(rank, ShapedType::kDynamic);
+  auto srcTy = llvm::dyn_cast_if_present<MemRefType>(getSourceType());
+  if (srcTy)
+    return srcTy.getShape();
+
+  return dyn;
+}
+
+llvm::SmallVector<OpFoldResult> CreateNdDescOp::getShape() {
+  llvm::SmallVector<OpFoldResult> shape;
+  auto dynShape = getDynamicShape();
+  if (dynShape.size()) {
+    shape.append(dynShape.begin(), dynShape.end());
+    return shape;
+  }
+
+  auto ty = llvm::dyn_cast_if_present<MemRefType>(getSourceType());
+  if (ty && ty.hasStaticShape()) {
+    for (auto dim : ty.getShape()) {
+      auto attr = IntegerAttr::get(IndexType::get(getContext()), dim);
+      shape.push_back(attr);
+    }
+    return shape;
+  }
+
+  llvm_unreachable("Unexpected error in CreateNdDescOp. "
+                   "The shape information is missing.\n");
+}
+
+llvm::ArrayRef<int64_t> CreateNdDescOp::getStaticStrides() {
+  auto rank = getTensorDescType().getRank();
+  static llvm::SmallVector<int64_t> dyn(rank, ShapedType::kDynamic);
+  auto srcTy = llvm::dyn_cast_if_present<MemRefType>(getSourceType());
+  if (srcTy) {
+    auto [strides, offset] = getStridesAndOffset(srcTy);
+    return strides;
+  }
+  return dyn;
+}
+
+llvm::SmallVector<OpFoldResult> CreateNdDescOp::getStrides() {
+  llvm::SmallVector<OpFoldResult> strides;
+
+  auto dynStrides = getDynamicStrides();
+  if (dynStrides.size()) {
+    strides.append(dynStrides.begin(), dynStrides.end());
+    return strides;
+  }
+
+  auto ty = llvm::dyn_cast_if_present<MemRefType>(getSourceType());
+  if (ty && ty.hasStaticShape()) {
+    auto [staticStrides, offset] = getStridesAndOffset(ty);
+    for (auto dim : staticStrides) {
+      auto attr = IntegerAttr::get(IndexType::get(getContext()), dim);
+      strides.push_back(attr);
+    }
+    return strides;
+  }
+  llvm_unreachable("Unexpected error in CreateNdDescOp. The strides "
+                   "information is missing.\n");
+}
+
+/// Return the element type of the TensorDesc
+Type CreateNdDescOp::getElementType() {
+  return getTensorDescType().getElementType();
+}
+
+/// Return the shape of the TensorDesc
+llvm::ArrayRef<int64_t> CreateNdDescOp::getTensorDescShape() {
+  return getTensorDescType().getShape();
+}
+
+//===----------------------------------------------------------------------===//
+// XeGPU_LoadNDOp
+//===----------------------------------------------------------------------===//
+
+ParseResult LoadNDOp::parse(OpAsmParser &parser, OperationState &result) {
+  llvm::SmallVector<OpAsmParser::UnresolvedOperand> Operands(1);
+  llvm::SMLoc OperandsLoc = parser.getCurrentLocation();
+  if (parser.parseOperand(Operands[0]))
+    return failure();
+
+  auto loc = parser.getCurrentLocation();
+  if (parseOptionalAttrDictWithCustomAttrs(parser, result))
+    return failure();
+
+  if (failed(verifyInherentAttrs(result.name, result.attributes, [&]() {
+        return parser.emitError(loc)
+               << "'" << result.name.getStringRef() << "' op ";
+      })))
+    return failure();
+
+  if (parser.parseColon())
+    return failure();
+
+  llvm::SmallVector<Type> Types(1);
+  if (parser.parseType(Types[0]))
+    return failure();
+
+  if (parser.parseArrow())
+    return failure();
+
+  llvm::SmallVector<Type> valueTypes(1);
+  if (parser.parseType(valueTypes[0]))
+    return failure();
+
+  result.addTypes(valueTypes);
+  if (parser.resolveOperands(Operands, Types, OperandsLoc, result.operands))
+    return failure();
+
+  return success();
+}
+
+void LoadNDOp::print(OpAsmPrinter &printer) {
+  auto mode = getMode();
+  auto printDefaults = printDefaultValues();
+
+  printer << ' ';
+  printer << getTensorDesc();
+
+  llvm::SmallVector<llvm::StringRef> elidedAttrs;
+  if (!printDefaults && mode == xegpu::ModeKind::SIMT)
+    elidedAttrs.push_back("mode");
+
+  printer.printOptionalAttrDict((*this)->getAttrs(), elidedAttrs);
+
+  printer << ' ' << ":";
+  printer << ' ';
+  printer << getTensorDesc().getType();
+  printer << ' ' << "->";
+  printer << ' ';
+  printer << getValue().getType();
+}
+
+LogicalResult LoadNDOp::verify() {
+  auto tdescTy = getTensorDescType();
+  auto valueTy = getValueType();
+
+  if (tdescTy.getRank() != 2)
+    return emitOpError(
+        "The TensorDesc for LoadNDOp should be a 2D TensorDesc.");
+
+  if (!valueTy)
+    return emitOpError("Invalid result, it should be a VectorType.\n");
+
+  auto tdescElemTy = tdescTy.getElementType();
+  auto valueElemTy = valueTy.getElementType();
+
+  if (tdescElemTy != valueElemTy)
+    return emitOpError(
+        "Value should have the same element type as TensorDesc.");
+
+  auto mode = getMode();
+  auto tdescShape = tdescTy.getShape().vec();
+  auto valueShape = valueTy.getShape().vec();
+  auto array_len = tdescTy.getArrayLength();
+
+  if (mode == ModeKind::SIMT) {
+    auto sgMap = tdescTy.getMapping();
+    if (!sgMap) {
+      return emitOpError(
+          "Expecting SgMap attribute for SIMT mode operators.\n");
+    }
+
+    if (!verifyAndInferShape(tdescShape, sgMap)) {
+      return emitOpError("Failed to infer the shape.")
+             << "The new shape[i] should meet the following condistions "
+                "for SubGroupMapAttr: "
+             << "\n\ttdescShape[i] % mma_block_size[i] == 0 (if it has) && "
+             << "\n\ttdescShape[i] % wi_layout[i] == 0 && "
+             << "\n\ttdescShape[i] % wi_data[i] == 0 && "
+             << "\n\t(tdescShape[i] % (wi_layout[i] * wi_data[i]) == 0 || "
+             << "\n\t (wi_layout[i] * wi_data[i]) % tdescShape[i] == 0).\n";
+    }
+  }
+
+  if (getTranspose()) {
+    auto trans = getTranspose().value();
+    if (tdescShape.size() >= trans.size())
+      transpose(trans, tdescShape);
+    else
+      emitWarning("Invalid transpose attr. It is ignored.");
+  }
+
+  if (getVnniAxis()) {
+    auto axis = getVnniAxis().value();
+    auto vnni_factor = valueShape.back();
+    tdescShape[axis] /= vnni_factor;
+    tdescShape.push_back(vnni_factor);
+  }
+
+  if (array_len > 1) {
+    auto it = tdescShape.begin();
+    tdescShape.insert(it, array_len);
+  }
+
+  if (tdescShape != valueShape)
+    return emitOpError("Result shape doesn't match TensorDesc shape.")
+           << "\nThe expected shape is " << makeString(tdescShape) << "."
+           << "\nBut the given shape is " << makeString(valueShape) << "."
+           << "\nIn VC mode, when VNNI is not enabled, the result should have "
+           << "the same shape (or transposed shape if transpose is enabled) "
+           << "as TensorDesc; \nwhen VNNI is enabled, the result should have "
+           << "one more dimention than the TensorDesc, with last dimention "
+           << "having vnni factor, \nbut having same number of total data "
+           << "elements. The vnni factor are typically calculated as "
+           << "simd_lane_width / elementTypeBitWidth. \nFor element type "
+           << "having more than 32 bits, vnni shouldn't be used. \nIn SIMT "
+           << "mode, the shape is derived from the mapping attributes.\n";
+  return success();
+}
+
+//===----------------------------------------------------------------------===//
+// XeGPU_StoreNDOp
+//===----------------------------------------------------------------------===//
+ParseResult StoreNDOp::parse(OpAsmParser &parser, OperationState &result) {
+  llvm::SmallVector<OpAsmParser::UnresolvedOperand> Operands(2);
+  llvm::SMLoc OperandsLoc = parser.getCurrentLocation();
+  // parse value
+  if (parser.parseOperand(Operands[0]))
+    return failure();
+
+  if (parser.parseComma())
+    return failure();
+
+  // parse TensorDesc
+  if (parser.parseOperand(Operands[1]))
+    return failure();
+
+  // parse optional attributes
+  auto loc = parser.getCurrentLocation();
+  if (parseOptionalAttrDictWithCustomAttrs(parser, result))
+    return failure();
+
+  if (failed(verifyInherentAttrs(result.name, result.attributes, [&]() {
+        return parser.emitError(loc)
+               << "'" << result.name.getStringRef() << "' op ";
+      })))
+    return failure();
+
+  if (parser.parseColon())
+    return failure();
+
+  llvm::SmallVector<Type> Types;
+  if (parser.parseTypeList(Types))
+    return failure();
+
+  if (parser.resolveOperands(Operands, Types, OperandsLoc, result.operands))
+    return failure();
+
+  return success();
+}
+
+void StoreNDOp::print(OpAsmPrinter &printer) {
+  auto mode = getMode();
+  auto printDefaults = printDefaultValues();
+
+  printer << ' ';
+  printer << getValue();
+  printer << ",";
+  printer << ' ';
+  printer << getTensorDesc();
+
+  llvm::SmallVector<llvm::StringRef> elidedAttrs;
+  if (!printDefaults && mode == xegpu::ModeKind::SIMT)
+    elidedAttrs.push_back("mode");
+  printer.printOptionalAttrDict((*this)->getAttrs(), elidedAttrs);
+
+  printer << ' ' << ":";
+  printer << ' ';
+  printer << getValue().getType();
+  printer << ",";
+  printer << ' ';
+  printer << getTensorDesc().getType();
+}
+
+LogicalResult StoreNDOp::verify() {
+  auto dstTy = getTensorDesc().getType();                        // Tile
+  auto valTy = llvm::dyn_cast<VectorType>(getValue().getType()); // Vector
+
+  if (dstTy.getRank() != 2)
+    return emitOpError(
+        "The TensorDesc for StoreNdOp should be a 2D TensorDesc.");
+
+  if (!valTy)
+    return emitOpError("Invalid value operand, it should be a VectorType.\n");
+
+  auto dstElemTy = dstTy.getElementType();
+  auto valElemTy = valTy.getElementType();
+
+  if (dstElemTy != valElemTy) {
+    return emitOpError("The elem type of value (vector) shape doesn't match "
+                       "the elem type of memory (dst) shape.\n");
+  }
+
+  auto mode = getMode();
+
+  if (mode == ModeKind::VC) { // for VC mode, no attr attached
+    if (dstTy.getShape() != valTy.getShape())
+      return emitOpError("In VC mode, the value (vector) shape doesn't match "
+                         "the memory (dst) shape.\n");
+  } else {
+    auto mapping = dstTy.getMapping();
+    if (!mapping) {
+      return emitOpError(
+          "Expecting SgMap attribute for SIMT mode operators.\n");
+    }
+
+    SubGroupMapAttr sgMap;
+    std::vector<int64_t> shape = dstTy.getShape().vec();
+
+    sgMap = llvm::dyn_cast<SubGroupMapAttr>(mapping);
+
+    if (!verifyAndInferShape(shape, sgMap)) {
+      return emitOpError("Failed to infer the shape.")
+             << "The new shape[i] should meet the following condistions "
+                "for SubGroupMapAttr: "
+             << "\n\ttdescShape[i] % mma_block_size[i] == 0 (if it has) && "
+             << "\n\ttdescShape[i] % wi_layout[i] == 0 && "
+             << "\n\ttdescShape[i] % wi_data[i] == 0 && "
+             << "\n\t(tdescShape[i] % (wi_layout[i] * wi_data[i]) == 0 || "
+             << "\n\t (wi_layout[i] * wi_data[i]) % tdescShape[i] == 0).\n";
+    }
+
+    if (shape != valTy.getShape().vec())
+      return emitOpError(
+          "In SIMT mode, the value (vector) shape doesn't match the memory"
+          "(dst) shape as derived according to the mapping rule.\n");
+  }
+  return success();
+}
+
+//===----------------------------------------------------------------------===//
+// XeGPU_PrefetchNDOp
+//===----------------------------------------------------------------------===//
+ParseResult PrefetchNDOp::parse(OpAsmParser &parser, OperationState &result) {
+  llvm::SmallVector<OpAsmParser::UnresolvedOperand> TensorDescOperands(1);
+  llvm::SmallVector<Type> TensorDescTypes(1);
+  llvm::SMLoc TensorDescOperandsLoc;
+
+  TensorDescOperandsLoc = parser.getCurrentLocation();
+  if (parser.parseOperand(TensorDescOperands[0]))
+    return failure();
+
+  auto loc = parser.getCurrentLocation();
+  if (parseOptionalAttrDictWithCustomAttrs(parser, result))
+    return failure();
+
+  if (failed(verifyInherentAttrs(result.name, result.attributes, [&]() {
+        return parser.emitError(loc)
+               << "'" << result.name.getStringRef() << "' op ";
+      })))
+    return failure();
+
+  if (parser.parseColon())
+    return failure();
+
+  if (parser.parseType(TensorDescTypes[0]))
+    return failure();
+  if (parser.resolveOperands(TensorDescOperands, TensorDescTypes,
+                             TensorDescOperandsLoc, result.operands))
+    return failure();
+  return success();
+}
+
+void PrefetchNDOp::print(OpAsmPrinter &printer) {
+  auto mode = getMode();
+  auto printDefaults = printDefaultValues();
+
+  printer << ' ';
+  printer << getTensorDesc();
+
+  llvm::SmallVector<llvm::StringRef> elidedAttrs;
+  if (!printDefaults && mode == xegpu::ModeKind::SIMT)
+    elidedAttrs.push_back("mode");
+  printer.printOptionalAttrDict((*this)->getAttrs(), elidedAttrs);
+
+  printer << ' ' << ":";
+  printer << ' ';
+  printer << getTensorDesc().getType();
+}
+
+//===----------------------------------------------------------------------===//
+// XeGPU_UpdateNDOffsetOp
+//===----------------------------------------------------------------------===//
+ParseResult UpdateNDOffsetOp::parse(OpAsmParser &parser,
+                                    OperationState &result) {
+  llvm::SmallVector<OpAsmParser::UnresolvedOperand> TensorDescOperands(1);
+  llvm::SmallVector<OpAsmParser::UnresolvedOperand, 4> offsetsOperands;
+  llvm::SmallVector<Type> TensorDescTypes(1);
+  llvm::SmallVector<Type> resultTypes(1);
+  llvm::SMLoc TensorDescOperandsLoc;
+  llvm::SMLoc offsetsOperandsLoc;
+
+  TensorDescOperandsLoc = parser.getCurrentLocation();
+  if (parser.parseOperand(TensorDescOperands[0]))
+    return failure();
+  if (parser.parseComma())
+    return failure();
+
+  // parse offsets, e.g.,  [x, y]
+  if (succeeded(parser.parseOptionalLSquare())) {
+    offsetsOperandsLoc = parser.getCurrentLocation();
+    if (parser.parseOperandList(offsetsOperands))
+      return failure();
+    if (parser.parseRSquare())
+      return failure();
+  }
+
+  if (parseOptionalAttrDictWithCustomAttrs(parser, result))
+    return failure();
+
+  auto loc = parser.getCurrentLocation();
+  if (failed(verifyInherentAttrs(result.name, result.attributes, [&]() {
+        return parser.emitError(loc)
+               << "'" << result.name.getStringRef() << "' op ";
+      })))
+    return failure();
+
+  if (parser.parseColon())
+    return failure();
+
+  if (parser.parseType(TensorDescTypes[0]))
+    return failure();
+  if (parser.parseArrow())
+    return failure();
+
+  if (parser.parseType(resultTypes[0]))
+    return failure();
+  result.addTypes(resultTypes);
+  if (parser.resolveOperands(TensorDescOperands, TensorDescTypes,
+                             TensorDescOperandsLoc, result.operands))
+    return failure();
+
+  Type indexType = parser.getBuilder().getIndexType();
+  if (parser.resolveOperands(offsetsOperands, indexType, offsetsOperandsLoc,
+                             result.operands))
+    return failure();
+  return success();
+}
+
+void UpdateNDOffsetOp::print(OpAsmPrinter &printer) {
+  auto mode = getMode();
+  auto printDefaults = printDefaultValues();
+
+  printer << ' ';
+  printer << getTensorDesc();
+  printer << ",";
+  if (!getOffsets().empty()) {
+    printer << ' ' << "[";
+    printer << getOffsets();
+    printer << "]";
+  }
+
+  llvm::SmallVector<llvm::StringRef> elidedAttrs;
+  if (!printDefaults && mode == xegpu::ModeKind::SIMT)
+    elidedAttrs.push_back("mode");
+  printer.printOptionalAttrDict((*this)->getAttrs(), elidedAttrs);
+
+  printer << ' ' << ":";
+  printer << ' ';
+  printer << getTensorDesc().getType();
+  printer << ' ' << "->";
+  printer << ' ';
+  printer << getResult().getType();
+}
+
+LogicalResult UpdateNDOffsetOp::verify() {
+  // number of offsets specified must match the rank of the tensor descriptor
+  if (getTensorDesc().getType().getRank() != (int64_t)getOffsets().size()) {
+    return emitOpError("Invalid number of offsets.");
+  }
+  return success();
+}
+
+//===----------------------------------------------------------------------===//
+// XeGPU_CreateDescOp
+//===----------------------------------------------------------------------===//
+void CreateDescOp::build(OpBuilder &builder, OperationState &state,
+                         TensorDescType TensorDesc, Value source, Value offsets,
+                         uint32_t chunk_size_per_lane) {
+  state.addOperands(source);
+  state.addOperands(offsets);
+  state.getOrAddProperties<Properties>().chunk_size_per_lane =
+      builder.getIntegerAttr(builder.getIntegerType(32), chunk_size_per_lane);
+  state.getOrAddProperties<Properties>().mode =
+      ModeKindAttr::get(builder.getContext(), ModeKind::VC);
+  state.addTypes(TensorDesc);
+}
+
+void CreateDescOp::build(OpBuilder &builder, OperationState &state,
+                         TensorDescType TensorDesc, Value source, Value offsets,
+                         IntegerAttr chunk_size_per_lane) {
+  state.addOperands(source);
+  state.addOperands(offsets);
+  if (chunk_size_per_lane)
+    state.getOrAddProperties<Properties>().chunk_size_per_lane =
+        chunk_size_per_lane;
+  state.getOrAddProperties<Properties>().mode =
+      ModeKindAttr::get(builder.getContext(), ModeKind::VC);
+  state.addTypes(TensorDesc);
+}
+
+ParseResult CreateDescOp::parse(OpAsmParser &parser, OperationState &result) {
+  llvm::SmallVector<OpAsmParser::UnresolvedOperand> Operands(2);
+  llvm::SmallVector<Type> Types(2);
+  llvm::SMLoc operandsLoc = parser.getCurrentLocation();
+  // parse the source operand
+  if (parser.parseOperand(Operands[0]))
+    return failure();
+
+  if (parser.parseComma())
+    return failure();
+
+  // parse the offset operand
+  if (parser.parseOperand(Operands[1]))
+    return failure();
+
+  // parse the optional attributes
+  auto loc = parser.getCurrentLocation();
+  if (parseOptionalAttrDictWithCustomAttrs(parser, result))
+    return failure();
+
+  if (failed(verifyInherentAttrs(result.name, result.attributes, [&]() {
+        return parser.emitError(loc)
+               << "'" << result.name.getStringRef() << "' op ";
+      })))
+    return failure();
+
+  if (parser.parseColon())
+    return failure();
+
+  if (parser.parseType(Types[0]))
+    return failure();
+  if (parser.parseComma())
+    return failure();
+
+  if (parser.parseType(Types[1]))
+    return failure();
+  if (parser.parseArrow())
+    return failure();
+
+  llvm::SmallVector<Type> TensorDescTypes(1);
+  if (parser.parseType(TensorDescTypes[0]))
+    return failure();
+
+  result.addTypes(TensorDescTypes);
+  if (parser.resolveOperands(Operands, Types, operandsLoc, result.operands))
+    return failure();
+  return success();
+}
+
+void CreateDescOp::print(OpAsmPrinter &printer) {
+  auto mode = getMode();
+  auto chunk = getChunkSizePerLane();
+  auto printDefaults = printDefaultValues();
+
+  printer << ' ';
+  printer << getSource();
+  printer << ",";
+  printer << ' ';
+  printer << getOffsets();
+
+  llvm::SmallVector<llvm::StringRef> elidedAttrs;
+  if (!printDefaults) {
+    if (mode == xegpu::ModeKind::SIMT)
+      elidedAttrs.push_back("mode");
+    if (chunk == 1)
+      elidedAttrs.push_back("chunk_size_per_lane");
+  }
+  printer.printOptionalAttrDict((*this)->getAttrs(), elidedAttrs);
+
+  printer << ' ' << ":";
+  printer << ' ';
+  printer << getSource().getType();
+  printer << ",";
+  printer << ' ';
+  printer << getOffsets().getType();
+  printer << ' ' << "->";
+  printer << ' ';
+  printer << getTensorDesc().getType();
+}
+
+LogicalResult CreateDescOp::verify() {
+  auto mode = getMode();
+  auto mapping = getTensorDesc().getType().getMapping();
+  auto offsetTy = getOffsets().getType();
+  auto tdescTy = getTensorDesc().getType();
+  auto chunkSize = getChunkSizePerLane();
+
+  if (mode == ModeKind::SIMT || mapping) {
+    return emitOpError("CreateDescOp only support VC mode and mapping "
+                       "attribute of TensorDesc is not expected.\n");
+  }
+
+  if (getRankOf(getSource()) > 2)
+    return emitOpError(
+        "Expecting the source is a 1D/2D memref or pointer (uint64_t).");
+
+  if (!tdescTy.getScattered())
+    return emitOpError(
+        "Expecting the presence of ScatteredAttr for tensor descriptor.");
+
+  // Infer the TensorDesc shape
+  std::vector<int64_t> shape;
+  if (llvm::isa<VectorType>(offsetTy)) {
+    shape = llvm::dyn_cast<VectorType>(offsetTy).getShape().vec();
+    if (shape.size() != 1)
+      return emitOpError("Expecting the offset is a 1D vector.");
+  }
+
+  if (chunkSize != 1) {
+    shape.push_back(chunkSize);
+  }
+
+  auto tdescShape = tdescTy.getShape();
+  if (shape != tdescShape.vec()) {
+    return emitOpError("Expecting dimensions of offsets is the same as the "
+                       "tensor descriptor, or one less than.");
+  }
+
+  return success();
+}
+
+//===----------------------------------------------------------------------===//
+// XeGPU_LoadGatherOp
+//===----------------------------------------------------------------------===//
+void LoadGatherOp::build(OpBuilder &builder, OperationState &state, Type value,
+                         Value TensorDesc, Value mask, IntegerAttr vnni_axis,
+                         DenseI64ArrayAttr transpose, CacheKindAttr l1_hint,
+                         CacheKindAttr l2_hint, CacheKindAttr l3_hint) {
+  state.addOperands(TensorDesc);
+  state.addOperands(mask);
+  if (vnni_axis)
+    state.getOrAddProperties<Properties>().vnni_axis = vnni_axis;
+
+  if (transpose)
+    state.getOrAddProperties<Properties>().transpose = transpose;
+
+  if (l1_hint)
+    state.getOrAddProperties<Properties>().l1_hint = l1_hint;
+
+  if (l2_hint)
+    state.getOrAddProperties<Properties>().l2_hint = l2_hint;
+
+  if (l3_hint)
+    state.getOrAddProperties<Properties>().l3_hint = l3_hint;
+
+  state.getOrAddProperties<Properties>().mode =
+      ModeKindAttr::get(builder.getContext(), ModeKind::VC);
+  state.addTypes(value);
+}
+
+void LoadGatherOp::build(OpBuilder &builder, OperationState &state, Type value,
+                         Value TensorDesc, Value mask, IntegerAttr vnni_axis,
+                         DenseI64ArrayAttr transpose, CacheKind l1_hint,
+                         CacheKind l2_hint, CacheKind l3_hint) {
+  state.addOperands(TensorDesc);
+  state.addOperands(mask);
+  if (vnni_axis)
+    state.getOrAddProperties<Properties>().vnni_axis = vnni_axis;
+
+  if (transpose)
+    state.getOrAddProperties<Properties>().transpose = transpose;
+
+  state.getOrAddProperties<Properties>().l1_hint =
+      CacheKindAttr::get(builder.getContext(), l1_hint);
+  state.getOrAddProperties<Properties>().l2_hint =
+      CacheKindAttr::get(builder.getContext(), l2_hint);
+  state.getOrAddProperties<Properties>().l3_hint =
+      CacheKindAttr::get(builder.getContext(), l3_hint);
+  state.getOrAddProperties<Properties>().mode =
+      ModeKindAttr::get(builder.getContext(), ModeKind::VC);
+  state.addTypes(value);
+}
+
+ParseResult LoadGatherOp::parse(OpAsmParser &parser, OperationState &result) {
+  llvm::SmallVector<OpAsmParser::UnresolvedOperand> Operands(2);
+  llvm::SmallVector<Type> Types(2);
+  llvm::SmallVector<Type> valueTypes(1);
+  llvm::SMLoc OperandsLoc;
+
+  OperandsLoc = parser.getCurrentLocation();
+  if (parser.parseOperand(Operands[0]))
+    return failure();
+
+  if (parser.parseComma())
+    return failure();
+
+  if (parser.parseOperand(Operands[1]))
+    return failure();
+
+  auto loc = parser.getCurrentLocation();
+  if (parseOptionalAttrDictWithCustomAttrs(parser, result))
+    return failure();
+  if (failed(verifyInherentAttrs(result.name, result.attributes, [&]() {
+        return parser.emitError(loc)
+               << "'" << result.name.getStringRef() << "' op ";
+      })))
+    return failure();
+
+  if (parser.parseColon())
+    return failure();
+
+  if (parser.parseType(Types[0]))
+    return failure();
+
+  if (parser.parseComma())
+    return failure();
+
+  if (parser.parseType(Types[1]))
+    return failure();
+
+  if (parser.parseArrow())
+    return failure();
+
+  if (parser.parseType(valueTypes[0]))
+    return failure();
+
+  result.addTypes(valueTypes);
+
+  if (parser.resolveOperands(Operands, Types, OperandsLoc, result.operands))
+    return failure();
+
+  return success();
+}
+
+void LoadGatherOp::print(OpAsmPrinter &printer) {
+  auto mode = getMode();
+  auto printDefaults = printDefaultValues();
+
+  printer << ' ';
+  printer << getTensorDesc();
+  printer << ",";
+  printer << ' ';
+  printer << getMask();
+
+  llvm::SmallVector<llvm::StringRef> elidedAttrs;
+  if (!printDefaults && mode == xegpu::ModeKind::SIMT)
+    elidedAttrs.push_back("mode");
+  printer.printOptionalAttrDict((*this)->getAttrs(), elidedAttrs);
+
+  printer << ' ' << ":";
+  printer << ' ';
+  printer << getTensorDesc().getType();
+  printer << ",";
+  printer << ' ';
+  printer << getMask().getType();
+  printer << ' ' << "->";
+  printer << ' ';
+  printer << getValue().getType();
+}
+
+LogicalResult LoadGatherOp::verify() {
+  auto tdescTy = getTensorDesc().getType();
+  auto maskTy = getMask().getType();
+  auto valueTy = getValue().getType();
+
+  if (!tdescTy.getScattered())
+    return emitOpError(
+        "LoadGatherOp only works on TensorDesc with ScatteredAttr.");
+
+  auto getElementType = [&](Type type) -> Type {
+    if (type.isIntOrIndexOrFloat())
+      return type;
+    else if (llvm::isa<VectorType>(type))
+      return llvm::dyn_cast<VectorType>(type).getElementType();
+    else if (llvm::isa<TensorDescType>(type))
+      return llvm::dyn_cast<TensorDescType>(type).getElementType();
+    llvm_unreachable("Unsupported type.");
+    return type;
+  };
+
+  auto tdescElemTy = getElementType(tdescTy);
+  auto valueElemTy = getElementType(valueTy);
+  if (tdescElemTy != valueElemTy)
+    return emitOpError(
+        "Value should have the same element type as TensorDesc.");
+
+  auto getShape = [&](Type type) -> std::vector<int64_t> {
+    std::vector<int64_t> shape;
+    if (type.isIntOrIndexOrFloat())
+      shape.push_back(1);
+    else if (llvm::isa<VectorType>(type))
+      shape = llvm::dyn_cast<VectorType>(type).getShape().vec();
+    else
+      llvm_unreachable("Unsupported type.");
+    return shape;
+  };
+
+  std::vector<int64_t> maskShape = getShape(maskTy);
+  std::vector<int64_t> valueShape = getShape(valueTy);
+  std::vector<int64_t> tdescShape = tdescTy.getShape().vec();
+
+  if (tdescShape != maskShape)
+    return emitOpError("Mask should have the same shape as TensorDesc.");
+
+  auto mode = getMode();
+  auto mapping = tdescTy.getMapping();
+  if (mode == ModeKind::SIMT || mapping) {
+    return emitOpError("LoadGatherOp only supports VC mode and mapping "
+                       "attribute of TensorDesc is not expected.\n");
+  }
+
+  if (getTransposeAttr()) {
+    auto trans = getTranspose().value();
+    if (tdescShape.size() < trans.size())
+      return emitWarning("Invalid transpose attr. It is ignored.");
+    transpose(trans, tdescShape);
+  }
+
+  if (getVnniAxis()) {
+    auto axis = getVnniAxis().value();
+    auto vnni_factor = valueShape.back();
+    tdescShape[axis] /= vnni_factor;
+    tdescShape.push_back(vnni_factor);
+  }
+
+  if (valueShape != tdescShape)
+    return emitOpError(
+        "Result shape doesn't match TensorDesc shape. when VNNI is not enabled,"
+        "the result should have the same shape (or transposed shape if "
+        "transpose is also enabled) as TensorDesc. When VNNI is enabled, "
+        "the result should have one more dimention than the TensorDesc, "
+        "with last dimention having vnni factor, but having same number of"
+        "total data elements. The vnni factor are typically calculated as "
+        "simd_lane_width/elementTypeBitWidth. For element type having "
+        "more than 32 bits, vnni shouldn't be used.\n");
+
+  return success();
+}
+
+//===----------------------------------------------------------------------===//
+// XeGPU_StoreScatterOp
+//===----------------------------------------------------------------------===//
+void StoreScatterOp::build(OpBuilder &builder, OperationState &state,
+                           Value value, Value TensorDesc, Value mask,
+                           CacheKindAttr l1_hint, CacheKindAttr l2_hint,
+                           CacheKindAttr l3_hint) {
+  state.addOperands(value);
+  state.addOperands(TensorDesc);
+  state.addOperands(mask);
+  if (l1_hint)
+    state.getOrAddProperties<Properties>().l1_hint = l1_hint;
+  if (l2_hint)
+    state.getOrAddProperties<Properties>().l2_hint = l2_hint;
+  if (l3_hint)
+    state.getOrAddProperties<Properties>().l3_hint = l3_hint;
+  state.getOrAddProperties<Properties>().mode =
+      ModeKindAttr::get(builder.getContext(), ModeKind::VC);
+}
+
+void StoreScatterOp::build(OpBuilder &builder, OperationState &state,
+                           Value value, Value TensorDesc, Value mask,
+                           CacheKind l1_hint, CacheKind l2_hint,
+                           CacheKind l3_hint) {
+  state.addOperands(value);
+  state.addOperands(TensorDesc);
+  state.addOperands(mask);
+  state.getOrAddProperties<Properties>().l1_hint =
+      CacheKindAttr::get(builder.getContext(), l1_hint);
+  state.getOrAddProperties<Properties>().l2_hint =
+      CacheKindAttr::get(builder.getContext(), l2_hint);
+  ;
+  state.getOrAddProperties<Properties>().l3_hint =
+      CacheKindAttr::get(builder.getContext(), l3_hint);
+  ;
+  state.getOrAddProperties<Properties>().mode =
+      ModeKindAttr::get(builder.getContext(), ModeKind::VC);
+}
+
+ParseResult StoreScatterOp::parse(OpAsmParser &parser, OperationState &result) {
+  llvm::SmallVector<OpAsmParser::UnresolvedOperand> Operands;
+  llvm::SmallVector<Type> Types;
+  llvm::SMLoc OperandsLoc;
+
+  OperandsLoc = parser.getCurrentLocation();
+  if (parser.parseOperandList(Operands))
+    return failure();
+
+  auto loc = parser.getCurrentLocation();
+  if (parseOptionalAttrDictWithCustomAttrs(parser, result))
+    return failure();
+  if (failed(verifyInherentAttrs(result.name, result.attributes, [&]() {
+        return parser.emitError(loc)
+               << "'" << result.name.getStringRef() << "' op ";
+      })))
+    return failure();
+
+  if (parser.parseColon())
+    return failure();
+
+  if (parser.parseTypeList(Types))
+    return failure();
+
+  if (parser.resolveOperands(Operands, Types, OperandsLoc, result.operands))
+    return failure();
+
+  return success();
+}
+
+void StoreScatterOp::print(OpAsmPrinter &printer) {
+  auto mode = getMode();
+  auto printDefaults = printDefaultValues();
+
+  printer << ' ';
+  printer << getValue();
+  printer << ",";
+  printer << ' ';
+  printer << getTensorDesc();
+  printer << ",";
+  printer << ' ';
+  printer << getMask();
+
+  llvm::SmallVector<llvm::StringRef> elidedAttrs;
+  if (!printDefaults && mode == xegpu::ModeKind::SIMT)
+    elidedAttrs.push_back("mode");
+  printer.printOptionalAttrDict((*this)->getAttrs(), elidedAttrs);
+
+  printer << ' ' << ":";
+  printer << ' ';
+  printer << getValue().getType();
+  printer << ",";
+  printer << ' ';
+  printer << getTensorDesc().getType();
+  printer << ",";
+  printer << ' ';
+  printer << getMask().getType();
+}
+
+LogicalResult StoreScatterOp::verify() {
+  auto tdescTy = getTensorDesc().getType();
+  auto valueTy = getValue().getType();
+  auto maskTy = getMask().getType();
+  auto mode = getMode();
+  auto mapping = tdescTy.getMapping();
+
+  if (mode != ModeKind::VC || mapping)
+    return emitOpError("StoreScatterOp only supports VC mode and mapping "
+                       "attribute of TensorDesc is not expected.\n");
+
+  if (!tdescTy.getScattered())
+    return emitOpError("Invalid TensorDesc. StoreScatterOp only works on "
+                       "TensorDescs with ScatteredAttr.");
+
+  auto getShape = [&](Type type) -> std::vector<int64_t> {
+    std::vector<int64_t> shape;
+    if (type.isIntOrIndexOrFloat())
+      shape.push_back(1);
+    else if (llvm::isa<VectorType>(type))
+      shape = llvm::dyn_cast<VectorType>(type).getShape().vec();
+    else
+      llvm_unreachable("Unsupported type.");
+    return shape;
+  };
+
+  std::vector<int64_t> maskShape = getShape(maskTy);
+  std::vector<int64_t> valueShape = getShape(valueTy);
+  std::vector<int64_t> tdescShape = tdescTy.getShape().vec();
+
+  if (valueShape != maskShape) {
+    return emitOpError("Mask and value should have the same shape/size");
+  }
+
+  if (tdescShape != valueShape) {
+    return emitOpError("TensorDesc shape and value shape doesn't match. ")
+           << "The expected/derived value shape is: " << makeString(tdescShape)
+           << ".\nMask and value should have the same shape/size as "
+              "TensorDesc.\n";
+  }
+
+  return success();
+}
+
+//===----------------------------------------------------------------------===//
+// XeGPU_PrefetchOp
+//===----------------------------------------------------------------------===//
+void PrefetchOp::build(OpBuilder &builder, OperationState &state,
+                       Value TensorDesc, CacheKindAttr l1_hint,
+                       CacheKindAttr l2_hint, CacheKindAttr l3_hint) {
+  state.addOperands(TensorDesc);
+  if (l1_hint)
+    state.getOrAddProperties<Properties>().l1_hint = l1_hint;
+
+  if (l2_hint)
+    state.getOrAddProperties<Properties>().l2_hint = l2_hint;
+
+  if (l3_hint)
+    state.getOrAddProperties<Properties>().l3_hint = l3_hint;
+
+  state.getOrAddProperties<Properties>().mode =
+      ModeKindAttr::get(builder.getContext(), ModeKind::VC);
+}
+
+void PrefetchOp::build(OpBuilder &builder, OperationState &state,
+                       Value TensorDesc, CacheKind l1_hint, CacheKind l2_hint,
+                       CacheKind l3_hint) {
+  state.addOperands(TensorDesc);
+  state.getOrAddProperties<Properties>().l1_hint =
+      CacheKindAttr::get(builder.getContext(), l1_hint);
+  state.getOrAddProperties<Properties>().l2_hint =
+      CacheKindAttr::get(builder.getContext(), l2_hint);
+  state.getOrAddProperties<Properties>().l3_hint =
+      CacheKindAttr::get(builder.getContext(), l3_hint);
+  state.getOrAddProperties<Properties>().mode =
+      ModeKindAttr::get(builder.getContext(), ModeKind::VC);
+}
+
+ParseResult PrefetchOp::parse(OpAsmParser &parser, OperationState &result) {
+  llvm::SmallVector<OpAsmParser::UnresolvedOperand> TensorDescOperands(1);
+  llvm::SmallVector<Type> TensorDescTypes(1);
+  llvm::SMLoc TensorDescOperandsLoc;
+
+  TensorDescOperandsLoc = parser.getCurrentLocation();
+  if (parser.parseOperand(TensorDescOperands[0]))
+    return failure();
+
+  auto loc = parser.getCurrentLocation();
+  if (parseOptionalAttrDictWithCustomAttrs(parser, result))
+    return failure();
+  if (failed(verifyInherentAttrs(result.name, result.attributes, [&]() {
+        return parser.emitError(loc)
+               << "'" << result.name.getStringRef() << "' op ";
+      })))
+    return failure();
+
+  if (parser.parseColon())
+    return failure();
+
+  if (parser.parseType(TensorDescTypes[0]))
+    return failure();
+
+  if (parser.resolveOperands(TensorDescOperands, TensorDescTypes,
+                             TensorDescOperandsLoc, result.operands))
+    return failure();
+  return success();
+}
+
+void PrefetchOp::print(OpAsmPrinter &printer) {
+  auto mode = getMode();
+  auto printDefaults = printDefaultValues();
+
+  printer << ' ';
+  printer << getTensorDesc();
+
+  llvm::SmallVector<llvm::StringRef> elidedAttrs;
+  if (!printDefaults && mode == xegpu::ModeKind::SIMT)
+    elidedAttrs.push_back("mode");
+  printer.printOptionalAttrDict((*this)->getAttrs(), elidedAttrs);
+
+  printer << ' ' << ":";
+  printer << ' ';
+  printer << getTensorDesc().getType();
+}
+
+LogicalResult PrefetchOp::verify() {
+  auto mode = getMode();
+  auto tdescTy = getTensorDesc().getType();
+  auto mapping = tdescTy.getMapping();
+
+  auto isValidHint = [&](CacheKindAttr attr) -> bool {
+    if (!attr)
+      return true;
+    auto kind = attr.getValue();
+    return kind == CacheKind::CACHED || kind == CacheKind::UNCACHED ||
+           kind == CacheKind::STREAMING || kind == CacheKind::READ_INVALIDATE;
+  };
+
+  if (!isValidHint(getL1HintAttr()))
+    return emitOpError("invlid l1_hint: ") << getL1HintAttr();
+
+  if (!isValidHint(getL2HintAttr()))
+    return emitOpError("invlid l2_hint: ") << getL2HintAttr();
+
+  if (!isValidHint(getL3HintAttr()))
+    return emitOpError("invlid l3_hint: ") << getL3HintAttr();
+
+  if (!tdescTy.getScattered())
+    return emitOpError("Invalid TensorDesc. PrefetchOp only works on "
+                       "TensorDescs with ScatteredAttr.");
+
+  if (mode != ModeKind::VC || mapping) {
+    return emitOpError("PrefetchOp only supports VC mode, and mapping "
+                       "attribute of TensorDesc is not expected.\n");
+  }
+
+  return success();
+}
+
+//===----------------------------------------------------------------------===//
+// XeGPU_UpdateOffsetOp
+//===----------------------------------------------------------------------===//
+void UpdateOffsetOp::build(OpBuilder &builder, OperationState &state,
+                           Type result, Value TensorDesc, Value offsets) {
+  state.addOperands(TensorDesc);
+  state.addOperands(offsets);
+  state.getOrAddProperties<Properties>().mode =
+      xegpu::ModeKindAttr::get(builder.getContext(), xegpu::ModeKind::VC);
+  state.addTypes(result);
+}
+
+ParseResult UpdateOffsetOp::parse(OpAsmParser &parser, OperationState &result) {
+  llvm::SmallVector<OpAsmParser::UnresolvedOperand> Operands;
+  llvm::SmallVector<Type> Types;
+
+  auto OperandsLoc = parser.getCurrentLocation();
+  if (parser.parseOperandList(Operands))
+    return failure();
+
+  auto loc = parser.getCurrentLocation();
+  if (parseOptionalAttrDictWithCustomAttrs(parser, result))
+    return failure();
+  if (failed(verifyInherentAttrs(result.name, result.attributes, [&]() {
+        return parser.emitError(loc)
+               << "'" << result.name.getStringRef() << "' op ";
+      })))
+    return failure();
+
+  if (parser.parseColon())
+    return failure();
+
+  if (parser.parseTypeList(Types))
+    return failure();
+
+  if (parser.parseArrow())
+    return failure();
+
+  llvm::SmallVector<Type> resultTypes(1);
+  if (parser.parseType(resultTypes[0]))
+    return failure();
+  result.addTypes(resultTypes);
+
+  if (parser.resolveOperands(Operands, Types, OperandsLoc, result.operands))
+    return failure();
+  return success();
+}
+
+void UpdateOffsetOp::print(OpAsmPrinter &printer) {
+  auto mode = getMode();
+  auto printDefaults = printDefaultValues();
+
+  printer << ' ';
+  printer << getTensorDesc();
+  printer << ",";
+  printer << ' ';
+  printer << getOffsets();
+
+  llvm::SmallVector<llvm::StringRef> elidedAttrs;
+  if (!printDefaults && mode == xegpu::ModeKind::SIMT)
+    elidedAttrs.push_back("mode");
+  printer.printOptionalAttrDict((*this)->getAttrs(), elidedAttrs);
+  printer << ' ' << ":";
+  printer << ' ';
+  printer << getTensorDesc().getType();
+  printer << ",";
+  printer << ' ';
+  printer << getOffsets().getType();
+  printer << ' ' << "->";
+  printer << ' ';
+  printer << getResult().getType();
+}
+
+LogicalResult UpdateOffsetOp::verify() {
+  auto mode = getMode();
+  if (mode != ModeKind::VC)
+    return emitOpError("UpdateOffsetOp only work on VC mode.\n");
+
+  auto srcTy = getTensorDesc().getType();
+  auto resTy = getResult().getType();
+  if (srcTy != resTy)
+    return emitOpError("The result should have the same type (shape and "
+                       "encoding attribute) as the input TensorDesc.");
+
+  if (!srcTy.getScattered()) {
+    return emitOpError("Invalid TensorDesc. UpdateOffsetOp only works on "
+                       "TensorDescs with ScatteredAttr.");
+  }
+
+  auto offTy = llvm::dyn_cast<VectorType>(getOffsets().getType());
+  if (!offTy || offTy.getRank() != 1)
+    return emitOpError("The offset should be an 1D vector.\n");
+
+  auto shape = srcTy.getShape();
+  if (shape[0] != offTy.getShape()[0])
+    return emitOpError(
+        "The offset should have same length as the dim-0 of TensorDesc.");
+
+  return success();
+}
+
+//===----------------------------------------------------------------------===//
+// XeGPU_DpasOp
+//===----------------------------------------------------------------------===//
+ParseResult DpasOp::parse(OpAsmParser &parser, OperationState &result) {
+  llvm::SmallVector<OpAsmParser::UnresolvedOperand> Operands;
+  llvm::SmallVector<Type> Types;
+
+  llvm::SMLoc OperandsLoc = parser.getCurrentLocation();
+  if (parser.parseOperandList(Operands))
+    return failure();
+
+  auto loc = parser.getCurrentLocation();
+  if (parseOptionalAttrDictWithCustomAttrs(parser, result))
+    return failure();
+  if (failed(verifyInherentAttrs(result.name, result.attributes, [&]() {
+        return parser.emitError(loc)
+               << "'" << result.name.getStringRef() << "' op ";
+      })))
+    return failure();
+
+  if (parser.parseColon())
+    return failure();
+
+  if (parser.parseTypeList(Types))
+    return failure();
+
+  if (parser.parseArrow())
+    return failure();
+
+  llvm::SmallVector<Type> resultTypes(1);
+  if (parser.parseType(resultTypes[0]))
+    return failure();
+  result.addTypes(resultTypes);
+
+  if (parser.resolveOperands(Operands, Types, OperandsLoc, result.operands))
+    return failure();
+
+  return success();
+}
+
+void DpasOp::print(OpAsmPrinter &printer) {
+  auto mode = getMode();
+  auto printDefaults = printDefaultValues();
+
+  printer << ' ';
+  printer << getLhs();
+  printer << ",";
+  printer << ' ';
+  printer << getRhs();
+  if (Value value = getAcc())
+    printer << ", " << value;
+
+  llvm::SmallVector<llvm::StringRef, 2> elidedAttrs;
+  if (!printDefaults && mode == xegpu::ModeKind::SIMT)
+    elidedAttrs.push_back("mode");
+
+  printer.printOptionalAttrDict((*this)->getAttrs(), elidedAttrs);
+  printer << ' ' << ":";
+  printer << ' ';
+  printer << getLhs().getType();
+  printer << ",";
+  printer << ' ';
+  printer << getRhs().getType();
+  if (getAcc()) {
+    printer << ",";
+    printer << ' ';
+    printer << llvm::ArrayRef<Type>(getAcc().getType());
+  }
+  printer << ' ' << "->";
+  printer << ' ';
+  printer << getResult().getType();
+}
+
+LogicalResult DpasOp::verify() {
+  int64_t lhsRank = getLhsType().getRank();
+  int64_t rhsRank = getRhsType().getRank();
+  Type lhsElemType = getLhsType().getElementType();
+  Type rhsElemType = getRhsType().getElementType();
+
+  if (lhsElemType != rhsElemType)
+    return emitOpError("lhs and rhs element type does not match for dpas op");
+
+  if (getAcc() && getAccType() != getResultType())
+    return emitOpError("Accumulator and Result for dpas op should have the "
+                       "same type (both shape and element type).");
+
+  if (lhsRank != rhsRank || lhsRank != 3)
+    return emitOpError(
+        "lhs and rhs rank does not match for dpas op, or their rank is not 3.");
+
+  return success();
+}
+
+//===----------------------------------------------------------------------===//
+// XeGPU_InvokeSIMDOp
+//===----------------------------------------------------------------------===//
+void InvokeSIMDOp::build(OpBuilder &builder, OperationState &state,
+                         SymbolRefAttr callee, TypeRange results,
+                         ArgTypeKindAttr argType, ValueRange operands) {
+  state.addOperands(operands);
+  state.addAttribute("argType", argType);
+  state.addAttribute("callee", callee);
+  state.addTypes(results);
+}
+
+void InvokeSIMDOp::build(OpBuilder &builder, OperationState &state,
+                         StringAttr callee, TypeRange results,
+                         ArgTypeKindAttr argType, ValueRange operands) {
+  build(builder, state, SymbolRefAttr::get(callee), results, argType, operands);
+}
+
+void InvokeSIMDOp::build(OpBuilder &builder, OperationState &state,
+                         llvm::StringRef callee, TypeRange results,
+                         ArgTypeKindAttr argType, ValueRange operands) {
+  build(builder, state, StringAttr::get(builder.getContext(), callee), results,
+        argType, operands);
+}
+
+//===----------------------------------------------------------------------===//
+// XeGPU_AtomicRMWOp
+//===----------------------------------------------------------------------===//
+void AtomicRMWOp::build(OpBuilder &builder, OperationState &state, Type result,
+                        AtomicRMWKindAttr kind, Value tensorDesc, Value mask,
+                        Value value) {
+  state.addOperands(tensorDesc);
+  state.addOperands(mask);
+  if (value)
+    state.addOperands(value);
+  state.getOrAddProperties<Properties>().kind = kind;
+  state.getOrAddProperties<Properties>().mode =
+      ModeKindAttr::get(builder.getContext(), ModeKind::VC);
+  state.addTypes(result);
+}
+
+void AtomicRMWOp::build(OpBuilder &builder, OperationState &state, Type result,
+                        AtomicRMWKind kind, Value tensorDesc, Value mask,
+                        Value value) {
+  state.addOperands(tensorDesc);
+  state.addOperands(mask);
+  if (value)
+    state.addOperands(value);
+  state.getOrAddProperties<Properties>().kind =
+      AtomicRMWKindAttr::get(builder.getContext(), kind);
+  state.getOrAddProperties<Properties>().mode =
+      ModeKindAttr::get(builder.getContext(), ModeKind::VC);
+  state.addTypes(result);
+}
+
+ParseResult AtomicRMWOp::parse(OpAsmParser &parser, OperationState &result) {
+  llvm::SmallVector<OpAsmParser::UnresolvedOperand> Operands;
+  llvm::SmallVector<Type, 1> Types;
+  llvm::SMLoc OperandsLoc;
+
+  llvm::SmallVector<Type> resultTypes(1);
+
+  xegpu::AtomicRMWKindAttr kindAttr;
+  if (parser.parseCustomAttributeWithFallback(kindAttr, Type{}))
+    return failure();
+  if (kindAttr)
+    result.getOrAddProperties<AtomicRMWOp::Properties>().kind = kindAttr;
+
+  OperandsLoc = parser.getCurrentLocation();
+  if (parser.parseOperandList(Operands))
+    return failure();
+
+  auto loc = parser.getCurrentLocation();
+  if (parseOptionalAttrDictWithCustomAttrs(parser, result))
+    return failure();
+  if (failed(verifyInherentAttrs(result.name, result.attributes, [&]() {
+        return parser.emitError(loc)
+               << "'" << result.name.getStringRef() << "' op ";
+      })))
+    return failure();
+
+  if (parser.parseColon())
+    return failure();
+
+  if (parser.parseTypeList(Types))
+    return failure();
+
+  if (parser.parseArrow())
+    return failure();
+
+  if (parser.parseCustomTypeWithFallback(resultTypes[0]))
+    return failure();
+  result.addTypes(resultTypes);
+
+  if (parser.resolveOperands(Operands, Types, OperandsLoc, result.operands))
+    return failure();
+  return success();
+}
+
+void AtomicRMWOp::print(OpAsmPrinter &printer) {
+  auto mode = getMode();
+  auto printDefaults = printDefaultValues();
+
+  printer.printStrippedAttrOrType(getKindAttr());
+  printer << ' ';
+  printer << getTensorDesc();
+  printer << ",";
+  printer << ' ';
+  printer << getMask();
+  if (Value value = getValue())
+    printer << ", " << value;
+
+  llvm::SmallVector<llvm::StringRef, 2> elidedAttrs;
+  elidedAttrs.push_back("kind");
+  if (!printDefaults && mode == xegpu::ModeKind::SIMT)
+    elidedAttrs.push_back("mode");
+
+  printer.printOptionalAttrDict((*this)->getAttrs(), elidedAttrs);
+  printer << ' ' << ":";
+  printer << ' ';
+  printer << getOperation()->getOperandTypes();
+  printer << ' ' << "->";
+  printer << ' ';
+  printer << getResult().getType();
+}
+
+LogicalResult AtomicRMWOp::verify() {
+  auto mode = getMode();
+  if (mode != ModeKind::VC)
+    return emitOpError("AtomicRMWOp only work on VC mode.\n");
+  return success();
+}
+
+//===----------------------------------------------------------------------===//
+// XeGPU_CreateNbarrierOp
+//===----------------------------------------------------------------------===//
+ParseResult CreateNbarrierOp::parse(OpAsmParser &parser,
+                                    OperationState &result) {
+  llvm::SmallVector<OpAsmParser::UnresolvedOperand, 2> Operands;
+  llvm::SmallVector<Type> Types;
+  llvm::SMLoc OperandsLoc;
+
+  OperandsLoc = parser.getCurrentLocation();
+  if (parser.parseOperandList(Operands))
+    return failure();
+
+  auto loc = parser.getCurrentLocation();
+  if (parseOptionalAttrDictWithCustomAttrs(parser, result))
+    return failure();
+
+  if (failed(verifyInherentAttrs(result.name, result.attributes, [&]() {
+        return parser.emitError(loc)
+               << "'" << result.name.getStringRef() << "' op ";
+      })))
+    return failure();
+
+  if (parser.parseColon())
+    return failure();
+
+  if (parser.parseLParen())
+    return failure();
+
+  if (parser.parseTypeList(Types))
+    return failure();
+
+  if (parser.parseRParen())
+    return failure();
+
+  if (parser.parseArrow())
+    return failure();
+
+  llvm::SmallVector<Type> resultTypes(1);
+  if (parser.parseType(resultTypes[0]))
+    return failure();
+
+  result.addTypes(resultTypes);
+  if (parser.resolveOperands(Operands, Types, OperandsLoc, result.operands))
+    return failure();
+  return success();
+}
+
+void CreateNbarrierOp::print(OpAsmPrinter &printer) {
+  auto mode = getMode();
+  auto printDefaults = printDefaultValues();
+  llvm::SmallVector<llvm::StringRef, 2> elidedAttrs;
+  if (!printDefaults && mode == xegpu::ModeKind::SIMT)
+    elidedAttrs.push_back("mode");
+
+  printer << ' ';
+  printer << getNbarrierId();
+  printer << ",";
+  printer << ' ';
+  printer << getNbarrierRole();
+  printer.printOptionalAttrDict((*this)->getAttrs(), elidedAttrs);
+  printer << ' ' << ":";
+  printer << ' ' << "(";
+  printer << getNbarrierId().getType();
+  printer << ",";
+  printer << ' ';
+  printer << getNbarrierRole().getType();
+  printer << ")";
+  printer << ' ' << "->";
+  printer << ' ';
+  printer << getResult().getType();
+}
+
+} // namespace xegpu
+} // namespace mlir
+
+#include <mlir/Dialect/XeGPU/IR/XeGPUEnums.cpp.inc>
+#define GET_OP_CLASSES
+#include <mlir/Dialect/XeGPU/IR/XeGPU.cpp.inc>
diff --git a/mlir/test/Dialect/XeGPU/IR/XeGPUOps.mlir b/mlir/test/Dialect/XeGPU/IR/XeGPUOps.mlir
new file mode 100644
index 00000000000000..64a6f547fbd29d
--- /dev/null
+++ b/mlir/test/Dialect/XeGPU/IR/XeGPUOps.mlir
@@ -0,0 +1,110 @@
+// RUN: mlir-opt %s | FileCheck %s
+// Verify the printed output can be parsed.
+// RUN: mlir-opt %s | mlir-opt | FileCheck %s
+// Verify the generic form can be parsed.
+// RUN: mlir-opt -mlir-print-op-generic %s | mlir-opt | FileCheck %s
+
+// CHECK-LABEL: func @test_create_nd_tdesc_vc({{.*}}) {
+func.func @test_create_nd_tdesc_vc(%src: memref<24x32xf32>) {
+  %c0 = arith.constant 2 : index
+  %c1 = arith.constant 4 : index
+
+  // CHECK: xegpu.create_nd_tdesc {{.*}} {mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf32>
+  %1 = xegpu.create_nd_tdesc %src[%c0, %c1] {mode = vc}
+      : memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf32>
+
+  // CHECK: xegpu.create_nd_tdesc {{.*}} {mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf32>
+  %2 = xegpu.create_nd_tdesc %src[2, 4] {mode = vc}
+      : memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf32>
+
+  return
+}
+
+// CHECK-LABEL: func @test_create_tdesc_vc({{.*}}) {
+func.func @test_create_tdesc_vc(%src: ui64, %offsets : vector<16 x index>) {
+  // CHECK: xegpu.create_tdesc {{.*}} {chunk_size_per_lane = 2 : i64, mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: ui64, vector<16xindex> -> !xegpu.tensor_desc<16x2xf32, #xegpu.tdesc_attr<memory_scope = slm, #xegpu.scattered>>
+  %1 = xegpu.create_tdesc %src, %offsets {mode = vc, chunk_size_per_lane = 2}
+                          : ui64, vector<16 x index> -> !xegpu.tensor_desc<16x2xf32, #xegpu.tdesc_attr<memory_scope = slm, #xegpu.scattered>>
+  return
+}
+
+// CHECK-LABEL: func @test_load_nd_vc({{.*}}) {
+func.func @test_load_nd_vc(%src: memref<24x32xf16>, %x : index, %y : index) {
+  // CHECK: xegpu.create_nd_tdesc {{.*}} {mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16>
+  %1 = xegpu.create_nd_tdesc %src[%x, %y] {mode = vc}
+      : memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16>
+
+  // CHECK: xegpu.load_nd {{.*}} {l1_hint = #xegpu<cache_kind cached>, l2_hint = #xegpu<cache_kind uncached>, mode = #xegpu<mode_kind vc>, vnni_axis = 0 : i64}
+  // CHECK-SAME: !xegpu.tensor_desc<8x16xf16> -> vector<4x16x2xf16>
+  %2 = xegpu.load_nd %1 {mode = vc, vnni_axis = 0, l1_hint = cached, l2_hint = uncached} : !xegpu.tensor_desc<8x16xf16> -> vector<4x16x2xf16>
+  return
+}
+
+// CHECK-LABEL: func @test_store_nd_vc({{.*}}) {
+func.func @test_store_nd_vc(%src: memref<24x32xf16>, %dst: memref<24x32xf16>) {
+  %c0 = arith.constant 2 : index
+  %c1 = arith.constant 4 : index
+
+  // CHECK: xegpu.create_nd_tdesc {{.*}} {mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16>
+  %1 = xegpu.create_nd_tdesc %src[%c0, %c1] {mode = vc}
+      : memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16>
+
+  // CHECK: xegpu.create_nd_tdesc {{.*}} {mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16>
+  %2 = xegpu.create_nd_tdesc %dst[%c0, %c1] {mode = vc}
+      : memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16>
+
+  // CHECK: xegpu.load_nd {{.*}} {l1_hint = #xegpu<cache_kind cached>, l2_hint = #xegpu<cache_kind uncached>, mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: !xegpu.tensor_desc<8x16xf16> -> vector<8x16xf16>
+  %3 = xegpu.load_nd %1 {mode=vc, l1_hint = cached, l2_hint = uncached}: !xegpu.tensor_desc<8x16xf16> -> vector<8x16xf16>
+
+  // CHECK: xegpu.store_nd {{%[0-9], %[0-9]}} {l1_hint = #xegpu<cache_kind write_back>, l2_hint = #xegpu<cache_kind uncached>, mode = #xegpu<mode_kind vc>} 
+  // CHECK-SAME: vector<8x16xf16>, !xegpu.tensor_desc<8x16xf16>
+  xegpu.store_nd %3, %2 {mode = vc, l1_hint = write_back, l2_hint = uncached}: vector<8x16xf16>, !xegpu.tensor_desc<8x16xf16>
+  return
+}
+
+// CHECK-LABEL: func @test_dpas_vc({{.*}}) {
+func.func @test_dpas_vc(%a : vector<8x8x2xf16>, %b: vector<8x16x2xf16>) {
+  // CHECK: xegpu.dpas {{.*}} {mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: vector<8x8x2xf16>, vector<8x16x2xf16> -> vector<8x16xf32>
+  %1 = xegpu.dpas %a, %b {mode = vc}: vector<8x8x2xf16>, vector<8x16x2xf16> -> vector<8x16xf32>
+  return
+}
+
+// CHECK-LABEL: func @test_update_nd_offset_vc({{.*}}) {
+func.func @test_update_nd_offset_vc(%src: memref<24x32xf32>) {
+  %c0 = arith.constant 2 : index
+  %c1 = arith.constant 4 : index
+
+  // CHECK: xegpu.create_nd_tdesc {{.*}} {mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf32>
+  %1 = xegpu.create_nd_tdesc %src[%c0, %c1] {mode = vc}
+      : memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf32>
+
+  // CHECK: xegpu.load_nd {{%[0-9]}} {l1_hint = #xegpu<cache_kind cached>, l2_hint = #xegpu<cache_kind uncached>, mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: !xegpu.tensor_desc<8x16xf32> -> vector<8x16xf32>
+  %2 = xegpu.load_nd %1 {mode = vc, l1_hint = cached, l2_hint = uncached}: !xegpu.tensor_desc<8x16xf32> -> vector<8x16xf32>
+
+  // CHECK: xegpu.update_nd_offset {{%[0-9]}}, [{{%c[0-9], %c[0-9]}}] {mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: !xegpu.tensor_desc<8x16xf32> -> !xegpu.tensor_desc<8x16xf32>
+  %3 = xegpu.update_nd_offset %1, [%c0, %c1] {mode = vc}: !xegpu.tensor_desc<8x16xf32> -> !xegpu.tensor_desc<8x16xf32>
+
+  return
+}
+
+// CHECK-LABEL: func @test_prefetch_nd_vc({{.*}}) {
+func.func @test_prefetch_nd_vc(%src: memref<24x32xf16>, %x : index, %y : index) {
+  // CHECK: xegpu.create_nd_tdesc {{.*}} {mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16>
+  %1 = xegpu.create_nd_tdesc %src[%x, %y] {mode = vc} : memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16>
+  // CHECK: xegpu.prefetch_nd {{%[0-9]}} {l1_hint = #xegpu<cache_kind cached>, l2_hint = #xegpu<cache_kind uncached>, mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: !xegpu.tensor_desc<8x16xf16>
+  xegpu.prefetch_nd %1 {mode = vc, l1_hint = cached, l2_hint = uncached}: !xegpu.tensor_desc<8x16xf16>
+  return
+}
diff --git a/mlir/test/Dialect/XeGPU/IR/atomic_rmw.mlir b/mlir/test/Dialect/XeGPU/IR/atomic_rmw.mlir
new file mode 100644
index 00000000000000..f80df161a543ac
--- /dev/null
+++ b/mlir/test/Dialect/XeGPU/IR/atomic_rmw.mlir
@@ -0,0 +1,43 @@
+// RUN: mlir-opt %s | FileCheck %s
+// Verify the printed output can be parsed.
+// RUN: mlir-opt %s | mlir-opt | FileCheck %s
+// Verify the generic form can be parsed.
+// RUN: mlir-opt -mlir-print-op-generic %s | mlir-opt | FileCheck %s
+
+// CHECK-LABEL: func @test_atomic_rmw({{.*}}) {
+func.func @test_atomic_rmw(%src: ui64, %offsets : vector<16 x index>, %value : vector<16xf32>, %mask : vector<16xi1>) {
+  %1 = xegpu.create_tdesc %src, %offsets {mode=vc}: ui64, vector<16 x index> -> !xegpu.tensor_desc<16xf32, #xegpu.scattered>
+
+  // CHECK: xegpu.atomic_rmw
+  // CHECK-SAME: !xegpu.tensor_desc<16xf32, #xegpu.scattered>, vector<16xi1>, vector<16xf32>
+  xegpu.atomic_rmw #xegpu<atomic_rmw_kind addf> %1, %mask, %value {mode=vc}
+        : !xegpu.tensor_desc<16xf32, #xegpu.scattered>, vector<16xi1>, vector<16xf32> -> vector<16xf32>
+
+  return
+}
+
+// CHECK-LABEL: func @test_atomic_rmw_0({{.*}}) {
+func.func @test_atomic_rmw_0(%src: ui64, %offsets : vector<16 x index>, %value : vector<16x2xf32>, %mask : vector<16xi1>) {
+  %1 = xegpu.create_tdesc %src, %offsets {chunk_size_per_lane = 2, mode=vc}
+        : ui64, vector<16 x index> -> !xegpu.tensor_desc<16x2xf32, #xegpu.scattered>
+
+  // CHECK: xegpu.atomic_rmw
+  // CHECK-SAME: tensor_desc<16x2xf32, #xegpu.scattered>, vector<16xi1>, vector<16x2xf32> -> vector<16x2xf32>
+  xegpu.atomic_rmw mulf %1, %mask, %value {mode=vc}
+        : !xegpu.tensor_desc<16x2xf32, #xegpu.scattered>, vector<16xi1>, vector<16x2xf32> -> vector<16x2xf32>
+
+  return
+}
+
+// CHECK-LABEL: func @test_atomic_rmw_1({{.*}}) {
+func.func @test_atomic_rmw_1(%src: ui64, %offsets : vector<16 x index>, %value : vector<16x2xi32>, %mask : vector<16xi1>) {
+  %1 = xegpu.create_tdesc %src, %offsets {chunk_size_per_lane = 2, mode=vc}
+        : ui64, vector<16 x index> -> !xegpu.tensor_desc<16x2xi32, #xegpu.scattered>
+
+  // CHECK: xegpu.atomic_rmw
+  // CHECK-SAME: !xegpu.tensor_desc<16x2xi32, #xegpu.scattered>, vector<16xi1>, vector<16x2xi32> -> vector<16x2xf32>
+  xegpu.atomic_rmw andi %1, %mask, %value {mode=vc}
+        : !xegpu.tensor_desc<16x2xi32, #xegpu.scattered>, vector<16xi1>, vector<16x2xi32> -> vector<16x2xf32>
+
+  return
+}
diff --git a/mlir/test/Dialect/XeGPU/IR/atomic_rmw_vc.mlir b/mlir/test/Dialect/XeGPU/IR/atomic_rmw_vc.mlir
new file mode 100644
index 00000000000000..0f7229a02aa180
--- /dev/null
+++ b/mlir/test/Dialect/XeGPU/IR/atomic_rmw_vc.mlir
@@ -0,0 +1,38 @@
+// RUN: mlir-opt %s | FileCheck %s
+// Verify the printed output can be parsed.
+// RUN: mlir-opt %s | mlir-opt | FileCheck %s
+// Verify the generic form can be parsed.
+// RUN: mlir-opt -mlir-print-op-generic %s | mlir-opt | FileCheck %s
+
+// CHECK-LABEL: func @test_atomic_rmw({{.*}}) {
+func.func @test_atomic_rmw(%src: ui64, %offsets : vector<16 x index>, %value : vector<16x1xf32>, %mask : vector<16xi1>) {
+  %1 = xegpu.create_tdesc %src, %offsets {mode = vc} : ui64, vector<16 x index> -> !xegpu.tensor_desc<16xf32, #xegpu.scattered>
+
+  // CHECK: xegpu.atomic_rmw
+  // CHECK-SAME: !xegpu.tensor_desc<16xf32, #xegpu.scattered>, vector<16xi1>, vector<16x1xf32>
+  xegpu.atomic_rmw addf %1, %mask, %value {mode = vc} : !xegpu.tensor_desc<16xf32, #xegpu.scattered>, vector<16xi1>, vector<16x1xf32> -> vector<16x1xf32>
+
+  return
+}
+
+// CHECK-LABEL: func @test_atomic_rmw_0({{.*}}) {
+func.func @test_atomic_rmw_0(%src: ui64, %offsets : vector<16 x index>, %value : vector<16x2xf32>, %mask : vector<16xi1>) {
+  %1 = xegpu.create_tdesc %src, %offsets {mode = vc, chunk_size_per_lane = 2}: ui64, vector<16 x index> -> !xegpu.tensor_desc<16x2xf32, #xegpu.scattered>
+
+  // CHECK: xegpu.atomic_rmw
+  // CHECK-SAME: !xegpu.tensor_desc<16x2xf32, #xegpu.scattered>, vector<16xi1>, vector<16x2xf32>
+  xegpu.atomic_rmw mulf %1, %mask, %value {mode = vc} : !xegpu.tensor_desc<16x2xf32, #xegpu.scattered>, vector<16xi1>, vector<16x2xf32> -> vector<16x2xf32>
+
+  return
+}
+
+// CHECK-LABEL: func @test_atomic_rmw_1({{.*}}) {
+func.func @test_atomic_rmw_1(%src: ui64, %offsets : vector<16 x index>, %value : vector<16x2xi32>, %mask : vector<16xi1>) {
+  %1 = xegpu.create_tdesc %src, %offsets {mode = vc, chunk_size_per_lane = 2}: ui64, vector<16 x index> -> !xegpu.tensor_desc<16x2xi32, #xegpu.scattered>
+
+  // CHECK: xegpu.atomic_rmw
+  // CHECK-SAME: !xegpu.tensor_desc<16x2xi32, #xegpu.scattered>, vector<16xi1>, vector<16x2xi32>
+  xegpu.atomic_rmw andi %1, %mask, %value {mode = vc} : !xegpu.tensor_desc<16x2xi32, #xegpu.scattered>, vector<16xi1>, vector<16x2xi32> -> vector<16x2xf32>
+
+  return
+}
diff --git a/mlir/test/Dialect/XeGPU/IR/barrier_ops.mlir b/mlir/test/Dialect/XeGPU/IR/barrier_ops.mlir
new file mode 100644
index 00000000000000..a1abc9e171bcaf
--- /dev/null
+++ b/mlir/test/Dialect/XeGPU/IR/barrier_ops.mlir
@@ -0,0 +1,54 @@
+// RUN: mlir-opt %s | FileCheck %s
+// Verify the printed output can be parsed.
+// RUN: mlir-opt %s | mlir-opt | FileCheck %s
+// Verify the generic form can be parsed.
+// RUN: mlir-opt -mlir-print-op-generic %s | mlir-opt | FileCheck %s
+
+// CHECK-LABEL: func @alloc_nbarrier({{.*}}) {
+func.func @alloc_nbarrier() {
+  // CHECK: xegpu.alloc_nbarrier
+  xegpu.alloc_nbarrier 8
+  return
+}
+
+// CHECK-LABEL: func @create_nbarrier({{.*}}) {
+func.func @create_nbarrier() {
+  %nbarrier_id = arith.constant 1 : i8
+  %nbarrier_role = arith.constant 0 : i8
+  // CHECK: xegpu.create_nbarrier
+  // CHECK-SAME: {num_consumers = 32 : i8, num_producers = 32 : i8}
+  // CHECK-SAME: (i8, i8) -> !xegpu.nbarrier
+  %nbarrier = xegpu.create_nbarrier %nbarrier_id, %nbarrier_role {num_producers = 32 :i8 , num_consumers = 32 : i8}
+    : (i8, i8) -> !xegpu.nbarrier
+  return
+}
+
+// CHECK-LABEL: func @nbarrier_arrive({{.*}}) {
+func.func @nbarrier_arrive(%nbarrier : !xegpu.nbarrier) {
+  // CHECK:  xegpu.nbarrier_arrive
+  // CHECK-SAME: !xegpu.nbarrier
+  xegpu.nbarrier_arrive %nbarrier : !xegpu.nbarrier
+  return
+}
+
+// CHECK-LABEL: func @nbarrier_wait({{.*}}) {
+func.func @nbarrier_wait(%nbarrier : !xegpu.nbarrier) {
+  // CHECK: xegpu.nbarrier_wait
+  // CHECK-SAME: !xegpu.nbarrier
+  xegpu.nbarrier_wait %nbarrier : !xegpu.nbarrier
+  return
+}
+
+// CHECK-LABEL: func @compile_hint({{.*}}) {
+func.func @compile_hint() {
+  // CHECK: xegpu.compile_hint
+  xegpu.compile_hint
+  return
+}
+
+// CHECK-LABEL: func @mfence({{.*}}) {
+func.func @mfence() {
+  // CHECK: xegpu.mfence {fence_op = "none", fence_scope = "local", memory_kind = "ugm"}
+  xegpu.mfence {memory_kind = "ugm" , fence_op = "none", fence_scope = "local"}
+  return
+}
diff --git a/mlir/test/Dialect/XeGPU/IR/create_nd_tdesc.mlir b/mlir/test/Dialect/XeGPU/IR/create_nd_tdesc.mlir
new file mode 100644
index 00000000000000..cebf59f12939da
--- /dev/null
+++ b/mlir/test/Dialect/XeGPU/IR/create_nd_tdesc.mlir
@@ -0,0 +1,111 @@
+// RUN: mlir-opt %s | FileCheck %s
+// Verify the printed output can be parsed.
+// RUN: mlir-opt %s | mlir-opt | FileCheck %s
+// Verify the generic form can be parsed.
+// RUN: mlir-opt -mlir-print-op-generic %s | mlir-opt | FileCheck %s
+
+#sg_map_fp16 = #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 2]>
+
+func.func @test_create_nd_tdesc_0(%src: memref<24x32xf16>) {
+  %c0 = arith.constant 2 : index
+  %c1 = arith.constant 4 : index
+
+  // CHECK:  xegpu.create_nd_tdesc
+  // CHECK-SAME: memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 2]>>
+  %1 = xegpu.create_nd_tdesc %src[%c0, %c1]
+      : memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16, #sg_map_fp16>
+
+  // CHECK: xegpu.create_nd_tdesc
+  // CHECK-SAME: memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 2]>>
+  %2 = xegpu.create_nd_tdesc %src[2, 4]
+      : memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16, #sg_map_fp16>
+
+  return
+}
+
+// CHECK-LABEL: func @test_create_nd_tdesc_1({{.*}}) {
+func.func @test_create_nd_tdesc_1(%src: memref<24x32xf16>, %x : index, %y : index) {
+  // CHECK: xegpu.create_nd_tdesc
+  // CHECK-SAME: memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 2]>>
+  %1 = xegpu.create_nd_tdesc %src[%x, %y]
+      : memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16, #sg_map_fp16>
+  return
+}
+
+// CHECK-LABEL: func @test_create_nd_tdesc_2({{.*}}) {
+func.func @test_create_nd_tdesc_2(%src: ui64, %w : index, %h : index, %x : index, %y : index) {
+  %c1 = arith.constant 1 : index
+  // CHECK: xegpu.create_nd_tdesc
+  // CHECK-SAME: ui64 -> !xegpu.tensor_desc<8x16xf16, #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 2]>>
+  %1 = xegpu.create_nd_tdesc %src[%x, %y], [%h, %w], [%w, %c1]  : ui64 -> !xegpu.tensor_desc<8x16xf16, #sg_map_fp16>
+  return
+}
+
+// CHECK-LABEL: func @test_create_nd_tdesc_3({{.*}}) {
+func.func @test_create_nd_tdesc_3(%src: memref<?x?xf16>, %w : index, %h : index, %x : index, %y : index) {
+  %c1 = arith.constant 1 : index
+  // CHECK: xegpu.create_nd_tdesc
+  // CHECK-SAME: memref<?x?xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 2]>>
+  %1 = xegpu.create_nd_tdesc %src[%x, %y], [%h, %w], [%w, %c1]  : memref<?x?xf16> -> !xegpu.tensor_desc<8x16xf16, #sg_map_fp16>
+  return
+}
+
+
+// CHECK-LABEL: func @test_create_nd_tdesc_4({{.*}}) {
+func.func @test_create_nd_tdesc_4(%src: memref<?x?xf16>, %w : index, %h : index, %x : index, %y : index) {
+  %c1 = arith.constant 1 : index
+  // CHECK: xegpu.create_nd_tdesc
+  // CHECK-SAME: memref<?x?xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 2]>>
+  %1 = xegpu.create_nd_tdesc %src[%x, %y], [%h, %w], [%w, %c1]
+          : memref<?x?xf16> -> !xegpu.tensor_desc<8x16xf16, #sg_map_fp16>
+  return
+}
+
+// CHECK-LABEL: func @test_create_nd_tdesc_5({{.*}}) {
+func.func @test_create_nd_tdesc_5(%src: memref<?x?xf16>, %w : index, %h : index, %x : index, %y : index) {
+  %c1 = arith.constant 1 : index
+  // CHECK: xegpu.create_nd_tdesc
+  // CHECK-SAME: memref<?x?xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.tdesc_attr<memory_scope = slm, map = <wi_layout = [2, 8], wi_data = [1, 2]>>>
+  %1 = xegpu.create_nd_tdesc %src[%x, %y], [%h, %w], [%w, %c1]
+                                  : memref<?x?xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.tdesc_attr<memory_scope = slm, map = #sg_map_fp16>>
+  return
+}
+
+// CHECK-LABEL: func @test_create_nd_tdesc_6({{.*}}) {
+func.func @test_create_nd_tdesc_6(%src: memref<?x?xf16>, %w : index, %h : index, %x : index, %y : index) {
+  %c1 = arith.constant 1 : index
+  // CHECK: xegpu.create_nd_tdesc
+  // CHECK-SAME: memref<?x?xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.tdesc_attr<memory_scope = slm, map = <wi_layout = [2, 8], wi_data = [1, 2]>>>
+  %1 = xegpu.create_nd_tdesc %src[%x, %y], [%h, %w], [%w, %c1]
+                            : memref<?x?xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.tdesc_attr<memory_scope = slm, map = #sg_map_fp16>>
+  return
+}
+
+// CHECK-LABEL: func @test_create_nd_tdesc_7({{.*}}) {
+func.func @test_create_nd_tdesc_7(%src: memref<1024xf16>, %offset : index) {
+  // CHECK: xegpu.create_nd_tdesc
+  // CHECK-SAME: memref<1024xf16> -> !xegpu.tensor_desc<16xf16, #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 2]>>
+  %1 = xegpu.create_nd_tdesc %src[%offset] : memref<1024xf16> -> !xegpu.tensor_desc<16xf16, #sg_map_fp16>
+  return
+}
+
+
+// CHECK-LABEL: func @test_create_nd_tdesc_8({{.*}}) {
+func.func @test_create_nd_tdesc_8(%src: memref<?x?xf16>, %w : index, %h : index, %x : index) {
+  %c1 = arith.constant 1 : index
+  // CHECK: xegpu.create_nd_tdesc
+  // CHECK-SAME: memref<?x?xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.tdesc_attr<memory_scope = slm, map = <wi_layout = [2, 8], wi_data = [1, 2]>>>
+  %1 = xegpu.create_nd_tdesc %src[8, %x], [%h, %w], [%w, %c1]
+                                    : memref<?x?xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.tdesc_attr<memory_scope = slm, map = #sg_map_fp16>>
+  return
+}
+
+// CHECK-LABEL: func @test_create_nd_tdesc_9({{.*}}) {
+func.func @test_create_nd_tdesc_9(%src: memref<?x?xf16>, %w : index, %h : index, %x : index) {
+  %c1 = arith.constant 1 : index
+  // CHECK: xegpu.create_nd_tdesc
+  // CHECK-SAME: memref<?x?xf16> -> !xegpu.tensor_desc<64x128xf16, #xegpu.tdesc_attr<memory_scope = slm, map = <wi_layout = [2, 8], wi_data = [1, 2]>>>
+  %1 = xegpu.create_nd_tdesc %src[8, %x], [%h, %w], [%w, %c1] : memref<?x?xf16>
+            -> !xegpu.tensor_desc<64x128xf16, #xegpu.tdesc_attr<memory_scope = slm, map = #sg_map_fp16>>
+  return
+}
diff --git a/mlir/test/Dialect/XeGPU/IR/create_nd_tdesc_vc.mlir b/mlir/test/Dialect/XeGPU/IR/create_nd_tdesc_vc.mlir
new file mode 100644
index 00000000000000..a21bf792fe0792
--- /dev/null
+++ b/mlir/test/Dialect/XeGPU/IR/create_nd_tdesc_vc.mlir
@@ -0,0 +1,115 @@
+// RUN: mlir-opt %s | FileCheck %s
+// Verify the printed output can be parsed.
+// RUN: mlir-opt %s | mlir-opt | FileCheck %s
+// Verify the generic form can be parsed.
+// RUN: mlir-opt -mlir-print-op-generic %s | mlir-opt | FileCheck %s
+
+// ----- SIMD -----
+// CHECK-LABEL: func @test_create_nd_tdesc_vc_0({{.*}}) {
+func.func @test_create_nd_tdesc_vc_0(%src: memref<24x32xf32>) {
+  %c0 = arith.constant 2 : index
+  %c1 = arith.constant 4 : index
+
+  // CHECK: xegpu.create_nd_tdesc
+  // CHECK-SAME: memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf32>
+  %1 = xegpu.create_nd_tdesc %src[%c0, %c1] {mode = vc}
+      : memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf32>
+
+  // CHECK: xegpu.create_nd_tdesc
+  // CHECK-SAME: memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf32>
+  %2 = xegpu.create_nd_tdesc %src[2, 4] {mode = vc}
+      : memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf32>
+
+  return
+}
+
+// CHECK-LABEL: func @test_create_nd_tdesc_vc_1({{.*}}) {
+func.func @test_create_nd_tdesc_vc_1(%src: memref<24x32xf32>, %x : index, %y : index) {
+  // CHECK: xegpu.create_nd_tdesc
+  // CHECK-SAME: %arg0[%arg1, %arg2]
+  // CHECK-SAME: memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf32>
+  %1 = xegpu.create_nd_tdesc %src[%x, %y] {mode = vc}
+      : memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf32>
+  return
+}
+
+// CHECK-LABEL: func @test_create_nd_tdesc_vc_2({{.*}}) {
+func.func @test_create_nd_tdesc_vc_2(%src: ui64, %w : index, %h : index, %x : index, %y : index) {
+  %c1 = arith.constant 1 : index
+  // CHECK: xegpu.create_nd_tdesc
+  // CHECK-SAME: %arg0[%arg3, %arg4], [%arg2, %arg1], [%arg1, %c1]
+  // CHECK-SAME: ui64 -> !xegpu.tensor_desc<8x16xf32>
+  %1 = xegpu.create_nd_tdesc %src[%x, %y], [%h, %w], [%w, %c1] {mode = vc} : ui64 -> !xegpu.tensor_desc<8x16xf32>
+  return
+}
+
+// CHECK-LABEL: func @test_create_nd_tdesc_vc_3({{.*}}) {
+func.func @test_create_nd_tdesc_vc_3(%src: memref<?x?xf32>, %w : index, %h : index, %x : index, %y : index) {
+  %c1 = arith.constant 1 : index
+  // CHECK: xegpu.create_nd_tdesc
+  // CHECK-SAME: %arg0[%arg3, %arg4], [%arg2, %arg1], [%arg1, %c1]
+  // CHECK-SAME: memref<?x?xf32> -> !xegpu.tensor_desc<8x16xf32>
+  %1 = xegpu.create_nd_tdesc %src[%x, %y], [%h, %w], [%w, %c1] {mode = vc} : memref<?x?xf32> -> !xegpu.tensor_desc<8x16xf32>
+  return
+}
+
+
+// CHECK-LABEL: func @test_create_nd_tdesc_vc_4({{.*}}) {
+func.func @test_create_nd_tdesc_vc_4(%src: memref<?x?xf32>, %w : index, %h : index, %x : index, %y : index) {
+  %c1 = arith.constant 1 : index
+  // CHECK: xegpu.create_nd_tdesc
+  // CHECK-SAME: %arg0[%arg3, %arg4], [%arg2, %arg1], [%arg1, %c1]
+  // CHECK-SAME: memref<?x?xf32> -> !xegpu.tensor_desc<8x16xf32>
+  %1 = xegpu.create_nd_tdesc %src[%x, %y], [%h, %w], [%w, %c1] {mode = vc} : memref<?x?xf32> -> !xegpu.tensor_desc<8x16xf32>
+  return
+}
+
+// CHECK-LABEL: func @test_create_nd_tdesc_vc_5({{.*}}) {
+func.func @test_create_nd_tdesc_vc_5(%src: memref<?x?xf32>, %w : index, %h : index, %x : index, %y : index) {
+  %c1 = arith.constant 1 : index
+  // CHECK: xegpu.create_nd_tdesc
+  // CHECK-SAME: %arg0[%arg3, %arg4], [%arg2, %arg1], [%arg1, %c1]
+  // CHECK-SAME: memref<?x?xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.tdesc_attr<memory_scope = slm>>
+  %1 = xegpu.create_nd_tdesc %src[%x, %y], [%h, %w], [%w, %c1] {mode = vc}
+                                  : memref<?x?xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.tdesc_attr<memory_scope = slm>>
+  return
+}
+
+// CHECK-LABEL: func @test_create_nd_tdesc_vc_6({{.*}}) {
+func.func @test_create_nd_tdesc_vc_6(%src: memref<?x?xf32>, %w : index, %h : index, %x : index, %y : index) {
+  %c1 = arith.constant 1 : index
+  // CHECK: xegpu.create_nd_tdesc
+  // CHECK-SAME: %arg0[%arg3, %arg4], [%arg2, %arg1], [%arg1, %c1]
+  // CHECK-SAME: memref<?x?xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.tdesc_attr<memory_scope = slm>>
+  %1 = xegpu.create_nd_tdesc %src[%x, %y], [%h, %w], [%w, %c1] {mode = vc}
+                            : memref<?x?xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.tdesc_attr<memory_scope = slm>>
+  return
+}
+
+
+// CHECK-LABEL: func @test_create_nd_tdesc_vc_7({{.*}}) {
+func.func @test_create_nd_tdesc_vc_7(%src: memref<1024xf32>, %offset : index) {
+  // CHECK: xegpu.create_nd_tdesc
+  // CHECK-SAME: memref<1024xf32> -> !xegpu.tensor_desc<16xf32>
+  %1 = xegpu.create_nd_tdesc %src[%offset] {mode = vc} : memref<1024xf32> -> !xegpu.tensor_desc<16xf32>
+  return
+}
+
+
+// CHECK-LABEL: func @test_create_nd_tdesc_vc_8({{.*}}) {
+func.func @test_create_nd_tdesc_vc_8(%src: memref<?x?xf32>, %w : index, %h : index, %x : index) {
+  %c1 = arith.constant 1 : index
+  // CHECK: xegpu.create_nd_tdesc
+  // CHECK-SAME: memref<?x?xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.tdesc_attr<memory_scope = slm>>
+  %1 = xegpu.create_nd_tdesc %src[8, %x], [%h, %w], [%w, %c1] {mode = vc}
+                                    : memref<?x?xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.tdesc_attr<memory_scope = slm>>
+  return
+}
+
+// CHECK-LABEL: func @test_create_nd_tdesc_vc_9({{.*}}) {
+func.func @test_create_nd_tdesc_vc_9(%src: memref<8x32xf32>) {
+  // CHECK: xegpu.create_nd_tdesc
+  // CHECK-SAME: memref<8x32xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.tdesc_attr<memory_scope = slm, array_length = 2>>
+  %1 = xegpu.create_nd_tdesc %src[0, 0] {mode = vc} : memref<8x32xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.tdesc_attr<memory_scope = slm, array_length = 2>>
+  return
+}
diff --git a/mlir/test/Dialect/XeGPU/IR/create_tdesc.mlir b/mlir/test/Dialect/XeGPU/IR/create_tdesc.mlir
new file mode 100644
index 00000000000000..8fb5ac824ddb27
--- /dev/null
+++ b/mlir/test/Dialect/XeGPU/IR/create_tdesc.mlir
@@ -0,0 +1,11 @@
+// RUN: mlir-opt %s | FileCheck %s
+// Verify the printed output can be parsed.
+// RUN: mlir-opt %s | mlir-opt | FileCheck %s
+// Verify the generic form can be parsed.
+// RUN: mlir-opt -mlir-print-op-generic %s | mlir-opt | FileCheck %s
+
+// CHECK-LABEL: func @test_create_tdesc_vc({{.*}}) {
+func.func @test_create_tdesc_vc(%src: ui64, %offsets : vector<16 x index>) {
+  %1 = xegpu.create_tdesc %src, %offsets {mode=vc} : ui64, vector<16 x index> -> !xegpu.tensor_desc<16xf32, #xegpu.scattered>
+  return
+}
\ No newline at end of file
diff --git a/mlir/test/Dialect/XeGPU/IR/create_tdesc_vc.mlir b/mlir/test/Dialect/XeGPU/IR/create_tdesc_vc.mlir
new file mode 100644
index 00000000000000..245d862e302a7c
--- /dev/null
+++ b/mlir/test/Dialect/XeGPU/IR/create_tdesc_vc.mlir
@@ -0,0 +1,51 @@
+// RUN: mlir-opt %s | FileCheck %s
+// Verify the printed output can be parsed.
+// RUN: mlir-opt %s | mlir-opt | FileCheck %s
+// Verify the generic form can be parsed.
+// RUN: mlir-opt -mlir-print-op-generic %s | mlir-opt | FileCheck %s
+
+
+// CHECK-LABEL: func @test_create_tdesc_vc({{.*}}) {
+func.func @test_create_tdesc_vc(%src: ui64, %offsets : vector<16 x index>) {
+  // CHECK: xegpu.create_tdesc %{{arg[0-9]}}, %{{arg[0-9]}} {mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: ui64, vector<16xindex> -> !xegpu.tensor_desc<16xf32, #xegpu.scattered>
+  %1 = xegpu.create_tdesc %src, %offsets {mode = vc}: ui64, vector<16 x index> -> !xegpu.tensor_desc<16xf32, #xegpu.scattered>
+  return
+}
+
+// CHECK-LABEL: func @test_create_tdesc_vc_2({{.*}}) {
+func.func @test_create_tdesc_vc_2(%src: ui64, %offsets : vector<16 x index>) {
+  // CHECK: xegpu.create_tdesc %{{arg[0-9]}}, %{{arg[0-9]}} {mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: ui64, vector<16xindex> -> !xegpu.tensor_desc<16xf32, #xegpu.tdesc_attr<memory_scope = slm, #xegpu.scattered>>
+  %1 = xegpu.create_tdesc %src, %offsets {mode = vc} : ui64, vector<16 x index>
+                            -> !xegpu.tensor_desc<16xf32, #xegpu.tdesc_attr<memory_scope = slm, #xegpu.scattered>>
+  return
+}
+
+// CHECK-LABEL: func @test_create_tdesc_vc_3({{.*}}) {
+func.func @test_create_tdesc_vc_3(%src: ui64, %offsets : vector<16 x index>) {
+  // CHECK: xegpu.create_tdesc %{{arg[0-9]}}, %{{arg[0-9]}} {chunk_size_per_lane = 8 : i64, mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: ui64, vector<16xindex> -> !xegpu.tensor_desc<16x8xf32, #xegpu.scattered>
+  %1 = xegpu.create_tdesc %src, %offsets {mode = vc, chunk_size_per_lane = 8}
+                                          : ui64, vector<16 x index> -> !xegpu.tensor_desc<16x8xf32, #xegpu.scattered>
+  return
+}
+
+// CHECK-LABEL: func @test_create_tdesc_vc_4({{.*}}) {
+func.func @test_create_tdesc_vc_4(%src: ui64, %offsets : vector<16 x index>) {
+  // CHECK: xegpu.create_tdesc %{{arg[0-9]}}, %{{arg[0-9]}} {chunk_size_per_lane = 2 : i64, mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: ui64, vector<16xindex> -> !xegpu.tensor_desc<16x2xf32, #xegpu.tdesc_attr<memory_scope = slm, #xegpu.scattered>>
+  %1 = xegpu.create_tdesc %src, %offsets {mode = vc, chunk_size_per_lane = 2}
+                        : ui64, vector<16 x index> -> !xegpu.tensor_desc<16x2xf32, #xegpu.tdesc_attr<memory_scope = slm, #xegpu.scattered>>
+  return
+}
+
+
+// CHECK-LABEL: func @test_create_tdesc_vc_5({{.*}}) {
+func.func @test_create_tdesc_vc_5(%src: memref<?xf32>, %offsets : vector<16 x index>) {
+  // CHECK: xegpu.create_tdesc %{{arg[0-9]}}, %{{arg[0-9]}} {chunk_size_per_lane = 2 : i64, mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: memref<?xf32>, vector<16xindex> -> !xegpu.tensor_desc<16x2xf32, #xegpu.tdesc_attr<memory_scope = slm, #xegpu.scattered>>
+  %1 = xegpu.create_tdesc %src, %offsets {mode = vc, chunk_size_per_lane = 2}
+              : memref<?xf32>, vector<16 x index> -> !xegpu.tensor_desc<16x2xf32, #xegpu.tdesc_attr<memory_scope = slm, #xegpu.scattered>>
+  return
+}
diff --git a/mlir/test/Dialect/XeGPU/IR/invalid_vc.mlir b/mlir/test/Dialect/XeGPU/IR/invalid_vc.mlir
new file mode 100644
index 00000000000000..4a92fa77c5815e
--- /dev/null
+++ b/mlir/test/Dialect/XeGPU/IR/invalid_vc.mlir
@@ -0,0 +1,70 @@
+// RUN: mlir-opt -allow-unregistered-dialect %s -split-input-file -verify-diagnostics
+
+// -----
+func.func @test_create_nd_tdesc_vc_1(%src: memref<24xf32>) {
+  %c0 = arith.constant 2 : index
+  %c1 = arith.constant 4 : index
+
+  // expected-error at +1 {{Expecting the rank of shape, strides, offsets and memref type should match with each other}}
+  %1 = xegpu.create_nd_tdesc %src[%c0, %c1] {mode = vc} : memref<24xf32> -> !xegpu.tensor_desc<8x16xf32>
+  return
+}
+
+// -----
+func.func @test_create_nd_tdesc_vc_3(%input: memref<?xf32>) {
+  %c0 = arith.constant 2 : index
+  %c1 = arith.constant 4 : index
+
+  %c8 = arith.constant 8 : index
+  %c16 = arith.constant 16 : index
+
+  // expected-error at +1 {{Expecting the rank of shape, strides, offsets and memref type should match with each other}}
+  %1 = xegpu.create_nd_tdesc %input[%c0, %c1], [%c8, %c16], [%c16, %c1] {mode = vc} : memref<?xf32> -> !xegpu.tensor_desc<8x16xf32>
+  return
+}
+
+
+// -----
+func.func @test_create_nd_tdesc_vc_4(%input: memref<?x?xf32>) {
+  %c1 = arith.constant 2 : index
+  %c8 = arith.constant 8 : index
+
+  // expected-error at +1 {{Expecting the rank of shape, strides, offsets and memref type should match with each other}}
+  %1 = xegpu.create_nd_tdesc %input[%c1], [%c8], [%c1] {mode = vc}
+                              : memref<?x?xf32> -> !xegpu.tensor_desc<8x16xf32>
+  return
+}
+
+// -----
+func.func @test_create_nd_tdesc_vc_5(%input: memref<24x32x64xf32>) {
+  %c1 = arith.constant 2 : index
+  %c8 = arith.constant 8 : index
+
+  // expected-error at +1 {{operand #0 must be 1D/2D memref}}
+  %1 = xegpu.create_nd_tdesc %input[%c1, %c1, %c8] {mode = vc}
+                              : memref<24x32x64xf32> -> !xegpu.tensor_desc<8x16x8xf32>
+  return
+}
+
+// -----
+func.func @test_create_tdesc(%src: ui64, %offsets : vector<16x8xindex>) {
+  // expected-error at +1 {{operand #1 must be vector of index values of ranks 1}}
+  %1 = xegpu.create_tdesc %src, %offsets {mode = vc}
+                              : ui64, vector<16x8xindex> -> !xegpu.tensor_desc<16x8xf32, #xegpu.scattered>
+  return
+}
+
+// -----
+func.func @test_load_gather(%src: ui64, %offsets : vector<16xindex>) {
+  %0 = arith.constant dense<1>: vector<16x8xi1>
+  // CHECK: xegpu.create_tdesc
+  // CHECK-SAME: {mode = vc, chunk_size_per_lane = 8}
+  // CHECK-SAME: ui64, vector<16xindex> -> !xegpu.tensor_desc<16x8xf32, #xegpu.scattered>
+  %1 = xegpu.create_tdesc %src, %offsets {mode = vc, chunk_size_per_lane = 8}
+                              : ui64, vector<16xindex> -> !xegpu.tensor_desc<16x8xf16, #xegpu.scattered>
+
+  // expected-error at +1 {{Result shape doesn't match TensorDesc shape.}}
+  %2 = xegpu.load %1, %0 {mode = vc, vnni_axis = 0, l1_hint = cached, l2_hint = uncached}
+                          : !xegpu.tensor_desc<16x8xf16, #xegpu.scattered>, vector<16x8xi1> -> vector<8x8x4xf16>
+  return
+}
diff --git a/mlir/test/Dialect/XeGPU/IR/load_gather_vc.mlir b/mlir/test/Dialect/XeGPU/IR/load_gather_vc.mlir
new file mode 100644
index 00000000000000..a3cb890483e634
--- /dev/null
+++ b/mlir/test/Dialect/XeGPU/IR/load_gather_vc.mlir
@@ -0,0 +1,50 @@
+// RUN: mlir-opt %s | FileCheck %s
+// Verify the printed output can be parsed.
+// RUN: mlir-opt %s | mlir-opt | FileCheck %s
+// Verify the generic form can be parsed.
+// RUN: mlir-opt -mlir-print-op-generic %s | mlir-opt | FileCheck %s
+
+
+// CHECK-LABEL: func @test_load_gather_vc({{.*}}) {
+func.func @test_load_gather_vc(%src: ui64, %offsets : vector<16xindex>) {
+  %0 = arith.constant dense<1>: vector<16xi1>
+  // CHECK: xegpu.create_tdesc %{{arg[0-9]}}, %{{arg[0-9]}} {mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: ui64, vector<16xindex> -> !xegpu.tensor_desc<16xf32, #xegpu.scattered>
+  %1 = xegpu.create_tdesc %src, %offsets {mode = vc}: ui64, vector<16xindex> -> !xegpu.tensor_desc<16xf32, #xegpu.scattered>
+
+  // CHECK: xegpu.load %{{[0-9]}}, %{{.*}} {l1_hint = #xegpu<cache_kind cached>, l2_hint = #xegpu<cache_kind uncached>, mode = #xegpu<mode_kind vc>} 
+  // CHECK-SAME: !xegpu.tensor_desc<16xf32, #xegpu.scattered>, vector<16xi1> -> vector<16xf32>
+  %2 = xegpu.load %1, %0 {mode = vc, l1_hint = cached, l2_hint = uncached}
+                : !xegpu.tensor_desc<16xf32, #xegpu.scattered>, vector<16xi1> -> vector<16xf32>
+  return
+}
+
+// CHECK-LABEL: func @test_load_gather_vc_2({{.*}}) {
+func.func @test_load_gather_vc_2(%src: ui64, %offsets : vector<16xindex>) {
+  %0 = arith.constant dense<1>: vector<16x8xi1>
+  // CHECK: xegpu.create_tdesc %{{arg[0-9]}}, %{{arg[0-9]}} {chunk_size_per_lane = 8 : i64, mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: ui64, vector<16xindex> -> !xegpu.tensor_desc<16x8xf32, #xegpu.scattered>
+  %1 = xegpu.create_tdesc %src, %offsets {mode = vc, chunk_size_per_lane = 8}
+                : ui64, vector<16xindex> -> !xegpu.tensor_desc<16x8xf32, #xegpu.scattered>
+
+  // CHECK: xegpu.load %{{[0-9]}}, %{{.*}} {l1_hint = #xegpu<cache_kind cached>, l2_hint = #xegpu<cache_kind uncached>, mode = #xegpu<mode_kind vc>, transpose = array<i64: 1, 0>} 
+  // CHECK-SAME: !xegpu.tensor_desc<16x8xf32, #xegpu.scattered>, vector<16x8xi1> -> vector<8x16xf32>
+  %2 = xegpu.load %1, %0 {mode = vc, transpose = [1, 0], l1_hint = cached, l2_hint = uncached}
+               : !xegpu.tensor_desc<16x8xf32, #xegpu.scattered>, vector<16x8xi1> -> vector<8x16xf32>
+  return
+}
+
+// CHECK-LABEL: func @test_load_gather_vc_3({{.*}}) {
+func.func @test_load_gather_vc_3(%src: ui64, %offsets : vector<16xindex>) {
+  %0 = arith.constant dense<1>: vector<16xi1>
+  // CHECK: xegpu.create_tdesc %{{arg[0-9]}}, %{{arg[0-9]}} {mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: ui64, vector<16xindex> -> !xegpu.tensor_desc<16xf32, #xegpu.scattered> 
+  %1 = xegpu.create_tdesc %src, %offsets {mode = vc, chunk_size_per_lane = 1}
+                : ui64, vector<16xindex> -> !xegpu.tensor_desc<16xf32, #xegpu.scattered>
+
+  // CHECK: xegpu.load %{{[0-9]}}, %{{.*}} {l1_hint = #xegpu<cache_kind cached>, l2_hint = #xegpu<cache_kind uncached>, mode = #xegpu<mode_kind vc>} 
+  // CHECK-SAME: !xegpu.tensor_desc<16xf32, #xegpu.scattered>, vector<16xi1> -> vector<16xf32>
+  %2 = xegpu.load %1, %0 {mode = vc, l1_hint = cached, l2_hint = uncached}
+                : !xegpu.tensor_desc<16xf32, #xegpu.scattered>, vector<16xi1> -> vector<16xf32>
+  return
+}
diff --git a/mlir/test/Dialect/XeGPU/IR/load_nd.mlir b/mlir/test/Dialect/XeGPU/IR/load_nd.mlir
new file mode 100644
index 00000000000000..0644565c3f002e
--- /dev/null
+++ b/mlir/test/Dialect/XeGPU/IR/load_nd.mlir
@@ -0,0 +1,164 @@
+// RUN: mlir-opt %s | FileCheck %s
+// Verify the printed output can be parsed.
+// RUN: mlir-opt %s | mlir-opt | FileCheck %s
+// Verify the generic form can be parsed.
+// RUN: mlir-opt -mlir-print-op-generic %s | mlir-opt | FileCheck %s
+
+#sg_map_fp16_a = #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 2]>
+#sg_map_fp16_b = #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>
+#sg_map_fp16_c = #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>
+#sg_map_fp16_d = #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 2]>
+// CHECK-LABEL: func @test_load_nd_fp16({{.*}}) {
+func.func @test_load_nd_fp16(%A: memref<24x32xf16>, %B : memref<24x32xf16>, %C : memref<24x32xf16>) {
+  %c0 = arith.constant 2 : index
+  %c1 = arith.constant 4 : index
+
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{c[0-9]+}}, %{{c[0-9]+}}] : memref<24x32xf16>
+  // CHECK-SAME: -> !xegpu.tensor_desc<8x16xf16, #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 2]>>
+  %1 = xegpu.create_nd_tdesc %A[%c0, %c1]
+      : memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16, #sg_map_fp16_a>
+
+  // CHECK: xegpu.load_nd %{{[0-9]}} {vnni_axis = 1 : i64}
+  // CHECK-SAME: !xegpu.tensor_desc<8x16xf16, #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 2]>> -> vector<4x1x2xf16>
+  %2 = xegpu.load_nd %1 {vnni_axis = 1} : !xegpu.tensor_desc<8x16xf16, #sg_map_fp16_a> -> vector<4x1x2xf16>
+
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{c[0-9]+}}, %{{c[0-9]+}}] : memref<24x32xf16>
+  // CHECK-SAME: -> !xegpu.tensor_desc<16x16xf16, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
+  %3 = xegpu.create_nd_tdesc %B[%c0, %c1]
+    : memref<24x32xf16> -> !xegpu.tensor_desc<16x16xf16, #sg_map_fp16_b>
+
+  // CHECK: xegpu.load_nd %{{[0-9]}} {vnni_axis = 0 : i64}
+  // CHECK-SAME: !xegpu.tensor_desc<16x16xf16, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>> -> vector<8x1x2xf16>
+  %4 = xegpu.load_nd %3 {vnni_axis = 0} : !xegpu.tensor_desc<16x16xf16, #sg_map_fp16_b> -> vector<8x1x2xf16>
+
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{c[0-9]+}}, %{{c[0-9]+}}] : memref<24x32xf16>
+  // CHECK-SAME: -> !xegpu.tensor_desc<8x16xf32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
+  %5 = xegpu.create_nd_tdesc %C[%c0, %c1]
+    : memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf32, #sg_map_fp16_c>
+
+  // CHECK: xegpu.load_nd %{{[0-9]}} : !xegpu.tensor_desc<8x16xf32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>> -> vector<8x1xf32>
+  %6 = xegpu.load_nd %5 : !xegpu.tensor_desc<8x16xf32, #sg_map_fp16_c> -> vector<8x1xf32>
+
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{c[0-9]+}}, %{{c[0-9]+}}] : memref<24x32xf16>
+  // CHECK-SAME: -> !xegpu.tensor_desc<8x16xf16, #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 2]>>
+  %7 = xegpu.create_nd_tdesc %A[%c0, %c1]
+      : memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16, #sg_map_fp16_d>
+  // CHECK: xegpu.load_nd %{{[0-9]}} {vnni_axis = 1 : i64}
+  // CHECK-SAME: !xegpu.tensor_desc<8x16xf16, #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 2]>> -> vector<4x1x2xf16>
+  %8 = xegpu.load_nd %7 {vnni_axis = 1} : !xegpu.tensor_desc<8x16xf16, #sg_map_fp16_d> -> vector<4x1x2xf16>
+
+  return
+}
+
+#sg_map_bf16_a = #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 2]>
+#sg_map_bf16_b = #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>
+#sg_map_bf16_c = #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>
+// CHECK-LABEL: func @test_load_nd_bf16({{.*}}) {
+func.func @test_load_nd_bf16(%A: memref<24x32xbf16>, %B : memref<24x32xbf16>, %C : memref<24x32xbf16>) {
+  %c0 = arith.constant 2 : index
+  %c1 = arith.constant 4 : index
+
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{c[0-9]+}}, %{{c[0-9]+}}] : memref<24x32xbf16>
+  // CHECK-SAME: -> !xegpu.tensor_desc<8x16xbf16, #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 2]>>
+  %1 = xegpu.create_nd_tdesc %A[%c0, %c1] : memref<24x32xbf16> -> !xegpu.tensor_desc<8x16xbf16, #sg_map_bf16_a>
+
+  // CHECK: xegpu.load_nd %{{[0-9]}} {vnni_axis = 1 : i64}
+  // CHECK-SAME: !xegpu.tensor_desc<8x16xbf16, #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 2]>> -> vector<4x1x2xbf16>
+  %2 = xegpu.load_nd %1 {vnni_axis = 1} : !xegpu.tensor_desc<8x16xbf16, #sg_map_bf16_a> -> vector<4x1x2xbf16>
+
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{c[0-9]+}}, %{{c[0-9]+}}] : memref<24x32xbf16>
+  // CHECK-SAME: -> !xegpu.tensor_desc<16x16xbf16, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
+  %3 = xegpu.create_nd_tdesc %B[%c0, %c1] : memref<24x32xbf16> -> !xegpu.tensor_desc<16x16xbf16, #sg_map_bf16_b>
+
+  // CHECK: xegpu.load_nd %{{[0-9]}} {vnni_axis = 0 : i64}
+  // CHECK-SAME: !xegpu.tensor_desc<16x16xbf16, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>> -> vector<8x1x2xbf16>
+  %4 = xegpu.load_nd %3 {vnni_axis = 0} : !xegpu.tensor_desc<16x16xbf16, #sg_map_bf16_b> -> vector<8x1x2xbf16>
+
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{c[0-9]+}}, %{{c[0-9]+}}] : memref<24x32xbf16>
+  // CHECK-SAME: -> !xegpu.tensor_desc<8x16xf32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
+  %5 = xegpu.create_nd_tdesc %C[%c0, %c1] : memref<24x32xbf16> -> !xegpu.tensor_desc<8x16xf32, #sg_map_fp16_c>
+
+  // CHECK: xegpu.load_nd %{{[0-9]}} : !xegpu.tensor_desc<8x16xf32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>> -> vector<8x1xf32>
+  %6 = xegpu.load_nd %5 : !xegpu.tensor_desc<8x16xf32, #sg_map_bf16_c> -> vector<8x1xf32>
+
+  return
+}
+
+#sg_map_i8_a = #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 4]>
+#sg_map_i8_b = #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>
+#sg_map_i8_c = #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>
+// CHECK-LABEL: func @test_load_nd_i8({{.*}}) {
+func.func @test_load_nd_i8(%A: memref<64x64xi8>, %B : memref<64x64xi8>, %C : memref<64x64xi8>) {
+  %c0 = arith.constant 2 : index
+  %c1 = arith.constant 4 : index
+
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{c[0-9]+}}, %{{c[0-9]+}}] : memref<64x64xi8>
+  // CHECK-SAME: -> !xegpu.tensor_desc<8x32xi8, #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 4]>>
+  %1 = xegpu.create_nd_tdesc %A[%c0, %c1] : memref<64x64xi8> -> !xegpu.tensor_desc<8x32xi8, #sg_map_i8_a>
+
+  // CHECK: xegpu.load_nd %{{[0-9]}} {vnni_axis = 1 : i64}
+  // CHECK-SAME: !xegpu.tensor_desc<8x32xi8, #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 4]>> -> vector<4x1x4xi8>
+  %2 = xegpu.load_nd %1 {vnni_axis = 1} : !xegpu.tensor_desc<8x32xi8, #sg_map_i8_a> -> vector<4x1x4xi8>
+
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{c[0-9]+}}, %{{c[0-9]+}}] : memref<64x64xi8>
+  // CHECK-SAME: -> !xegpu.tensor_desc<32x16xi8, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
+  %3 = xegpu.create_nd_tdesc %B[%c0, %c1] : memref<64x64xi8> -> !xegpu.tensor_desc<32x16xi8, #sg_map_i8_b>
+
+  // CHECK: xegpu.load_nd %{{[0-9]}} {vnni_axis = 0 : i64}
+  // CHECK-SAME: !xegpu.tensor_desc<32x16xi8, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>> -> vector<8x1x4xi8>
+  %4 = xegpu.load_nd %3 {vnni_axis = 0} : !xegpu.tensor_desc<32x16xi8, #sg_map_i8_b> -> vector<8x1x4xi8>
+
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{c[0-9]+}}, %{{c[0-9]+}}] : memref<64x64xi8>
+  // CHECK-SAME: -> !xegpu.tensor_desc<8x16xi32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
+  %5 = xegpu.create_nd_tdesc %C[%c0, %c1] : memref<64x64xi8> -> !xegpu.tensor_desc<8x16xi32, #sg_map_i8_c>
+
+  // CHECK: xegpu.load_nd %{{[0-9]}}
+  // CHECK-SAME: !xegpu.tensor_desc<8x16xi32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>> -> vector<8x1xi32>
+  %6 = xegpu.load_nd %5 : !xegpu.tensor_desc<8x16xi32, #sg_map_i8_c> -> vector<8x1xi32>
+
+  return
+}
+
+#sg_map_f64_a = #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 1]>
+#sg_map_f64_b = #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 1]>
+#sg_map_f64_c = #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 1]>
+// CHECK-LABEL: func @test_load_nd_f64({{.*}}) {
+func.func @test_load_nd_f64(%A: memref<64x64xf64>, %B : memref<64x64xf64>, %C : memref<64x64xf64>) {
+  %c0 = arith.constant 2 : index
+  %c1 = arith.constant 4 : index
+
+  // CHECK: xegpu.create_nd_tdesc
+  // CHECK-SAME: memref<64x64xf64>
+  // CHECK-SAME: -> !xegpu.tensor_desc<4x8xf64, #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 1]>>
+  %1 = xegpu.create_nd_tdesc %A[%c0, %c1]
+      : memref<64x64xf64> -> !xegpu.tensor_desc<4x8xf64, #sg_map_f64_a>
+
+  // CHECK: xegpu.load_nd
+  // CHECK-SAME: !xegpu.tensor_desc<4x8xf64, #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 1]>>
+  // CHECK-SAME: -> vector<2x1xf64>
+  %2 = xegpu.load_nd %1 : !xegpu.tensor_desc<4x8xf64, #sg_map_f64_a> -> vector<2x1xf64>
+
+  // CHECK: xegpu.create_nd_tdesc
+  // CHECK-SAME:  memref<64x64xf64>
+  // CHECK-SAME:  -> !xegpu.tensor_desc<8x8xf64, #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 1]>>
+  %3 = xegpu.create_nd_tdesc %B[%c0, %c1]
+    : memref<64x64xf64> -> !xegpu.tensor_desc<8x8xf64, #sg_map_f64_b>
+
+  // CHECK: xegpu.load_nd
+  // CHECK-SAME: !xegpu.tensor_desc<8x8xf64, #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 1]>>
+  // CHECK-SAME: -> vector<4x1xf64>
+  %4 = xegpu.load_nd %3  : !xegpu.tensor_desc<8x8xf64, #sg_map_f64_b> -> vector<4x1xf64>
+
+  // CHECK: xegpu.create_nd_tdesc
+  // CHECK-SAME: memref<64x64xf64>
+  // CHECK-SAME: -> !xegpu.tensor_desc<4x8xf64, #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 1]>>
+  %5 = xegpu.create_nd_tdesc %C[%c0, %c1]
+    : memref<64x64xf64> -> !xegpu.tensor_desc<4x8xf64, #sg_map_f64_c>
+
+  // CHECK: xegpu.load_nd
+  // CHECK-SAME: !xegpu.tensor_desc<4x8xf64, #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 1]>>
+  // CHECK-SAME: -> vector<2x1xf64>
+  %6 = xegpu.load_nd %5 : !xegpu.tensor_desc<4x8xf64, #sg_map_f64_c> -> vector<2x1xf64>
+
+  return
+}
diff --git a/mlir/test/Dialect/XeGPU/IR/load_nd_vc.mlir b/mlir/test/Dialect/XeGPU/IR/load_nd_vc.mlir
new file mode 100644
index 00000000000000..78980b551c0677
--- /dev/null
+++ b/mlir/test/Dialect/XeGPU/IR/load_nd_vc.mlir
@@ -0,0 +1,69 @@
+// RUN: mlir-opt %s | FileCheck %s
+// Verify the printed output can be parsed.
+// RUN: mlir-opt %s | mlir-opt | FileCheck %s
+// Verify the generic form can be parsed.
+// RUN: mlir-opt -mlir-print-op-generic %s | mlir-opt | FileCheck %s
+
+// -- SIMD ---
+// CHECK-LABEL: func @test_load_nd_simd_f32({{.*}}) {
+func.func @test_load_nd_simd_f32(%src: memref<24x32xf32>) {
+  %c0 = arith.constant 2 : index
+  %c1 = arith.constant 4 : index
+
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{c[0-9]+}}, %{{c[0-9]+}}]
+  // CHECK-SAME: {mode = #xegpu<mode_kind vc>} : memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf32>
+  %1 = xegpu.create_nd_tdesc %src[%c0, %c1] {mode = vc}
+      : memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf32>
+
+  // CHECK: xegpu.load_nd %{{[0-9]}}
+  // CHECK-SAME: {mode = #xegpu<mode_kind vc>} : !xegpu.tensor_desc<8x16xf32> -> vector<8x16xf32>
+  %2 = xegpu.load_nd %1 {mode = vc} : !xegpu.tensor_desc<8x16xf32> -> vector<8x16xf32>
+
+  // CHECK: xegpu.load_nd %{{[0-9]}}
+  // CHECK-SAME: {l1_hint = #xegpu<cache_kind cached>, l2_hint = #xegpu<cache_kind uncached>, l3_hint = #xegpu<cache_kind streaming>, mode = #xegpu<mode_kind vc>, transpose = array<i64: 1, 0>}
+  // CHECK-SAME: !xegpu.tensor_desc<8x16xf32> -> vector<16x8xf32>
+  %3 = xegpu.load_nd %1 {mode= vc, transpose = [1, 0], l1_hint = cached, l2_hint = uncached, l3_hint=streaming} : !xegpu.tensor_desc<8x16xf32> -> vector<16x8xf32>
+  return
+}
+
+// CHECK-LABEL: func @test_load_nd_simd_f16({{.*}}) {
+func.func @test_load_nd_simd_f16(%src: memref<24x32xf16>, %x : index, %y : index) {
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{arg[0-9]}}, %{{arg[0-9]}}]
+  // CHECK-SAME: {mode = #xegpu<mode_kind vc>} : memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16>
+  %1 = xegpu.create_nd_tdesc %src[%x, %y] {mode = vc} : memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16>
+
+  // CHECK: xegpu.load_nd %{{[0-9]+}}
+  // CHECK-SAME: {l1_hint = #xegpu<cache_kind cached>, l2_hint = #xegpu<cache_kind uncached>, mode = #xegpu<mode_kind vc>, vnni_axis = 0 : i64}
+  // CHECK-SAME: !xegpu.tensor_desc<8x16xf16> -> vector<4x16x2xf16> 
+  %2 = xegpu.load_nd %1 {mode = vc, vnni_axis = 0, l1_hint = cached, l2_hint = uncached} : !xegpu.tensor_desc<8x16xf16> -> vector<4x16x2xf16>
+  return
+}
+
+// CHECK-LABEL: func @test_load_nd_simd_bf16({{.*}}) {
+func.func @test_load_nd_simd_bf16(%src: ui64, %w : index, %h : index, %x : index, %y : index) {
+  %c1 = arith.constant 1 : index
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{arg[0-9]}}, %{{arg[0-9]}}], [%{{arg[0-9]}}, %{{arg[0-9]}}], [%{{arg[0-9]}}, %{{c[0-9]}}]
+  // CHECK-SAME: {mode = #xegpu<mode_kind vc>} : ui64 -> !xegpu.tensor_desc<8x16xbf16>
+  %1 = xegpu.create_nd_tdesc %src[%x, %y], [%h, %w], [%w, %c1] {mode = vc} : ui64 -> !xegpu.tensor_desc<8x16xbf16>
+  // CHECK: xegpu.load_nd %{{[0-9]}}
+  // CHECK-SAME: {l1_hint = #xegpu<cache_kind cached>, l2_hint = #xegpu<cache_kind uncached>, mode = #xegpu<mode_kind vc>, vnni_axis = 1 : i64} 
+  // CHECK-SAME: !xegpu.tensor_desc<8x16xbf16> -> vector<8x8x2xbf16>
+  %2 = xegpu.load_nd %1 {mode=vc, vnni_axis = 1, l1_hint = cached, l2_hint = uncached} : !xegpu.tensor_desc<8x16xbf16> -> vector<8x8x2xbf16>
+
+  return
+}
+
+// CHECK-LABEL: func @test_load_nd_block_array_simd_f16({{.*}}) {
+func.func @test_load_nd_block_array_simd_f16(%src: memref<8x32xf16>) {
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[0, 0] {mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: memref<8x32xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.tdesc_attr<array_length = 2>>
+  %1 = xegpu.create_nd_tdesc %src[0, 0] {mode = vc}
+      : memref<8x32xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.tdesc_attr<array_length = 2>>
+
+  // CHECK: xegpu.load_nd %{{[0-9]}}
+  // CHECK-SAME: {l1_hint = #xegpu<cache_kind cached>, l2_hint = #xegpu<cache_kind uncached>, mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: !xegpu.tensor_desc<8x16xf16, #xegpu.tdesc_attr<array_length = 2>> -> vector<2x8x16xf16>
+  %2 = xegpu.load_nd %1 {mode = vc, l1_hint = cached, l2_hint = uncached}
+              : !xegpu.tensor_desc<8x16xf16, #xegpu.tdesc_attr<array_length = 2>> -> vector<2x8x16xf16>
+  return
+}
diff --git a/mlir/test/Dialect/XeGPU/IR/prefetch_nd_vc.mlir b/mlir/test/Dialect/XeGPU/IR/prefetch_nd_vc.mlir
new file mode 100644
index 00000000000000..6e2cb4de4ce1d4
--- /dev/null
+++ b/mlir/test/Dialect/XeGPU/IR/prefetch_nd_vc.mlir
@@ -0,0 +1,62 @@
+// RUN: mlir-opt %s | FileCheck %s
+// Verify the printed output can be parsed.
+// RUN: mlir-opt %s | mlir-opt | FileCheck %s
+// Verify the generic form can be parsed.
+// RUN: mlir-opt -mlir-print-op-generic %s | mlir-opt | FileCheck %s
+// CHECK-LABEL: func @test_prefetch_nd_tdesc_vc_0({{.*}}) {
+func.func @test_prefetch_nd_tdesc_vc_0(%src: memref<24x32xf32>) {
+  %c0 = arith.constant 2 : index
+  %c1 = arith.constant 4 : index
+
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{c[0-9]}}, %{{c[0-9]}}] {mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf32>
+  %1 = xegpu.create_nd_tdesc %src[%c0, %c1] {mode = vc} : memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf32>
+
+  // CHECK: xegpu.prefetch_nd %{{[0-9]}} {mode = #xegpu<mode_kind vc>} : !xegpu.tensor_desc<8x16xf32>
+  xegpu.prefetch_nd %1 {mode = vc} : !xegpu.tensor_desc<8x16xf32>
+
+  return
+}
+
+// CHECK-LABEL: func @test_prefetch_nd_tdesc_vc_1({{.*}}) {
+func.func @test_prefetch_nd_tdesc_vc_1(%src: memref<24x32xf16>, %x : index, %y : index) {
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{arg[0-9]}}, %{{arg[0-9]}}] 
+  // CHECK-SAME: {mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16>
+  %1 = xegpu.create_nd_tdesc %src[%x, %y] {mode = vc} : memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16>
+
+  // CHECK: xegpu.prefetch_nd %{{[0-9]}} 
+  // CHECK-SAME: {l1_hint = #xegpu<cache_kind cached>, l2_hint = #xegpu<cache_kind uncached>, mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: !xegpu.tensor_desc<8x16xf16>
+  xegpu.prefetch_nd %1 {mode = vc, l1_hint = cached, l2_hint = uncached}: !xegpu.tensor_desc<8x16xf16>
+  return
+}
+
+
+// CHECK-LABEL: func @test_prefetch_nd_tdesc_vc_i8({{.*}}) {
+func.func @test_prefetch_nd_tdesc_vc_i8(%src: memref<24x32xi8>) {
+  %c0 = arith.constant 2 : index
+  %c1 = arith.constant 4 : index
+
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{c[0-9]}}, %{{c[0-9]}}] {mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: memref<24x32xi8> -> !xegpu.tensor_desc<8x16xi8>
+  %1 = xegpu.create_nd_tdesc %src[%c0, %c1] {mode = vc} : memref<24x32xi8> -> !xegpu.tensor_desc<8x16xi8>
+
+  // CHECK: xegpu.prefetch_nd %{{[0-9]}} {mode = #xegpu<mode_kind vc>} : !xegpu.tensor_desc<8x16xi8>
+  xegpu.prefetch_nd %1 {mode = vc} : !xegpu.tensor_desc<8x16xi8>
+
+  return
+}
+
+// CHECK-LABEL: func @test_prefetch_nd_tdesc_vc_bf16({{.*}}) {
+func.func @test_prefetch_nd_tdesc_vc_bf16(%src: memref<24x32xbf16>, %x : index, %y : index) {
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{arg[0-9]}}, %{{arg[0-9]}}]
+  // CHECK-SAME: {mode = #xegpu<mode_kind vc>} : memref<24x32xbf16> -> !xegpu.tensor_desc<8x16xbf16>
+  %1 = xegpu.create_nd_tdesc %src[%x, %y] {mode = vc}
+      : memref<24x32xbf16> -> !xegpu.tensor_desc<8x16xbf16>
+  // CHECK: xegpu.prefetch_nd %{{[0-9]}}
+  // CHECK-SAME: {l1_hint = #xegpu<cache_kind uncached>, l2_hint = #xegpu<cache_kind cached>, mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: !xegpu.tensor_desc<8x16xbf16>
+  xegpu.prefetch_nd %1 {mode = vc, l1_hint = uncached, l2_hint = cached}: !xegpu.tensor_desc<8x16xbf16>
+  return
+}
diff --git a/mlir/test/Dialect/XeGPU/IR/simple_gemm.mlir b/mlir/test/Dialect/XeGPU/IR/simple_gemm.mlir
new file mode 100644
index 00000000000000..ff6f31c77064af
--- /dev/null
+++ b/mlir/test/Dialect/XeGPU/IR/simple_gemm.mlir
@@ -0,0 +1,71 @@
+// RUN: mlir-opt %s | FileCheck %s
+// Verify the printed output can be parsed.
+// RUN: mlir-opt %s | mlir-opt | FileCheck %s
+// Verify the generic form can be parsed.
+// RUN: mlir-opt -mlir-print-op-generic %s | mlir-opt | FileCheck %s
+
+// ---- BF16 ------
+
+#sg_map_fp16_a = #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 2]>
+#sg_map_fp16_b = #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>
+#sg_map_fp16_c = #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>
+// CHECK-LABEL: func @test_gemm_bf16({{.*}}) {
+func.func @test_gemm_bf16(%a : memref<1024x1024xbf16>, %b: memref<1024x1024xbf16>, %c: memref<1024x1024xf32>) {
+  %c0 = arith.constant 0 : index
+  %c1 = arith.constant 1 : index
+  %c8 = arith.constant 8 : index
+  %c16 = arith.constant 16 : index
+  %c1024 = arith.constant 1024 : index
+
+  %c0_1 = arith.constant 0 : i32
+  %c1_1 = arith.constant 1 : i32
+
+
+  scf.for %i= %c0 to %c1024 step %c8 {
+    scf.for %j= %c0 to %c1024 step %c16 {
+      // CHECK: xegpu.create_nd_tdesc
+      // CHECK-SAME: memref<1024x1024xbf16>
+      // CHECK-SAME: -> !xegpu.tensor_desc<8x16xbf16, #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 2]>>
+      %1 = xegpu.create_nd_tdesc %a[%i, %c0] : memref<1024x1024xbf16> -> !xegpu.tensor_desc<8x16xbf16, #sg_map_fp16_a>
+
+      // CHECK: xegpu.create_nd_tdesc
+      // CHECK-SAME: memref<1024x1024xbf16>
+      // CHECK-SAME: -> !xegpu.tensor_desc<16x16xbf16, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
+      %2 = xegpu.create_nd_tdesc %b[%c0, %j] : memref<1024x1024xbf16> -> !xegpu.tensor_desc<16x16xbf16, #sg_map_fp16_b>
+
+      %3 = arith.constant dense<0.0> : vector<8x1xf32>
+
+      %tmp0, %tmp1, %result = scf.for %k= %c0 to %c1024 step %c16 iter_args(%subA = %1, %subB = %2, %subC = %3)
+              -> (!xegpu.tensor_desc<8x16xbf16, #sg_map_fp16_a>, !xegpu.tensor_desc<16x16xbf16, #sg_map_fp16_b>, vector<8x1xf32>) {
+        // CHECK: xegpu.load_nd
+        // CHECK-SAME: vector<4x1x2xbf16>
+        %4 = xegpu.load_nd %subA {vnni_axis = 1} : !xegpu.tensor_desc<8x16xbf16, #sg_map_fp16_a> -> vector<4x1x2xbf16>
+
+        // CHECK: xegpu.load_nd
+        // CHECK-SAME: vector<8x1x2xbf16>
+        %5 = xegpu.load_nd %subB {vnni_axis = 0} : !xegpu.tensor_desc<16x16xbf16, #sg_map_fp16_b> -> vector<8x1x2xbf16>
+
+        // CHECK: xegpu.dpas
+        // CHECK-SAME: vector<4x1x2xbf16>, vector<8x1x2xbf16>, vector<8x1xf32> -> vector<8x1xf32>
+        %6 = xegpu.dpas %4, %5, %subC  : vector<4x1x2xbf16>, vector<8x1x2xbf16>, vector<8x1xf32> -> vector<8x1xf32>
+
+        %7 = xegpu.update_nd_offset %subA, [%c0, %c16] : !xegpu.tensor_desc<8x16xbf16, #sg_map_fp16_a>
+            -> !xegpu.tensor_desc<8x16xbf16, #sg_map_fp16_a>
+
+        %8 = xegpu.update_nd_offset %subB, [%c16, %c0] : !xegpu.tensor_desc<16x16xbf16, #sg_map_fp16_b>
+            -> !xegpu.tensor_desc<16x16xbf16, #sg_map_fp16_b>
+
+        scf.yield %7, %8, %6: !xegpu.tensor_desc<8x16xbf16, #sg_map_fp16_a>, !xegpu.tensor_desc<16x16xbf16, #sg_map_fp16_b>, vector<8x1xf32>
+      }
+
+      // CHECK: xegpu.create_nd_tdesc
+      // CHECK-SAME: memref<1024x1024xf32>
+      %9 = xegpu.create_nd_tdesc %c[%i, %j] : memref<1024x1024xf32> -> !xegpu.tensor_desc<8x16xf32, #sg_map_fp16_c>
+
+      // CHECK: xegpu.store_nd
+      // CHECK-SAME: vector<8x1xf32>
+      xegpu.store_nd %result, %9 : vector<8x1xf32>, !xegpu.tensor_desc<8x16xf32, #sg_map_fp16_c>
+    }
+  }
+  return
+}
diff --git a/mlir/test/Dialect/XeGPU/IR/simple_gemm_vc.mlir b/mlir/test/Dialect/XeGPU/IR/simple_gemm_vc.mlir
new file mode 100644
index 00000000000000..794a6b6f1afb9c
--- /dev/null
+++ b/mlir/test/Dialect/XeGPU/IR/simple_gemm_vc.mlir
@@ -0,0 +1,65 @@
+// RUN: mlir-opt %s | FileCheck %s
+// Verify the printed output can be parsed.
+// RUN: mlir-opt %s | mlir-opt | FileCheck %s
+// Verify the generic form can be parsed.
+// RUN: mlir-opt -mlir-print-op-generic %s | mlir-opt | FileCheck %s
+
+// ---- BF16 VC ------
+
+// CHECK-LABEL: func @test_gemm_vc_bf16({{.*}}) {
+func.func @test_gemm_vc_bf16(%a : memref<1024x1024xbf16>, %b: memref<1024x1024xbf16>, %c: memref<1024x1024xf32>) {
+  %c0 = arith.constant 0 : index
+  %c1 = arith.constant 1 : index
+  %c8 = arith.constant 8 : index
+  %c16 = arith.constant 16 : index
+  %c1024 = arith.constant 1024 : index
+
+  %c0_1 = arith.constant 0 : i32
+  %c1_1 = arith.constant 1 : i32
+
+
+  scf.for %i= %c0 to %c1024 step %c8 {
+    scf.for %j= %c0 to %c1024 step %c16 {
+      // CHECK: xegpu.create_nd_tdesc
+      // CHECK-SAME: memref<1024x1024xbf16> -> !xegpu.tensor_desc<8x16xbf16>
+      %1 = xegpu.create_nd_tdesc %a[%i, %c0] {mode = vc} : memref<1024x1024xbf16> -> !xegpu.tensor_desc<8x16xbf16>
+
+      // CHECK: xegpu.create_nd_tdesc
+      // CHECK-SAME: memref<1024x1024xbf16> -> !xegpu.tensor_desc<16x16xbf16>
+      %2 = xegpu.create_nd_tdesc %b[%c0, %j] {mode = vc} : memref<1024x1024xbf16> -> !xegpu.tensor_desc<16x16xbf16>
+
+      %3 = arith.constant dense<0.0> : vector<8x16xf32>
+
+      %tmp0, %tmp1, %result = scf.for %k= %c0 to %c1024 step %c16
+                                iter_args(%subA = %1, %subB = %2, %subC = %3)
+                                  -> (!xegpu.tensor_desc<8x16xbf16>, !xegpu.tensor_desc<16x16xbf16>, vector<8x16xf32>) {
+        // CHECK: xegpu.load_nd
+        // CHECK-SAME: !xegpu.tensor_desc<8x16xbf16> -> vector<8x8x2xbf16>
+        %4 = xegpu.load_nd %subA {mode = vc, vnni_axis = 1} : !xegpu.tensor_desc<8x16xbf16> -> vector<8x8x2xbf16>
+
+        // CHECK: xegpu.load_nd
+        // CHECK-SAME: !xegpu.tensor_desc<16x16xbf16> -> vector<8x16x2xbf16>
+        %5 = xegpu.load_nd %subB {mode = vc, vnni_axis = 0} : !xegpu.tensor_desc<16x16xbf16> -> vector<8x16x2xbf16>
+
+        // CHECK: xegpu.dpas
+        // CHECK-SAME: vector<8x8x2xbf16>, vector<8x16x2xbf16>, vector<8x16xf32> -> vector<8x16xf32>
+        %6 = xegpu.dpas %4, %5, %subC {mode = vc} : vector<8x8x2xbf16>, vector<8x16x2xbf16>, vector<8x16xf32> -> vector<8x16xf32>
+
+        %7 = xegpu.update_nd_offset %subA, [%c0, %c16] {mode = vc} : !xegpu.tensor_desc<8x16xbf16> -> !xegpu.tensor_desc<8x16xbf16>
+
+        %8 = xegpu.update_nd_offset %subB, [%c16, %c0] {mode = vc} : !xegpu.tensor_desc<16x16xbf16> -> !xegpu.tensor_desc<16x16xbf16>
+
+        scf.yield %7, %8, %6: !xegpu.tensor_desc<8x16xbf16>, !xegpu.tensor_desc<16x16xbf16>, vector<8x16xf32>
+      }
+
+      // CHECK: xegpu.create_nd_tdesc
+      // CHECK-SAME: memref<1024x1024xf32> -> !xegpu.tensor_desc<8x16xf32>
+      %9 = xegpu.create_nd_tdesc %c[%i, %j] {mode = vc} : memref<1024x1024xf32> -> !xegpu.tensor_desc<8x16xf32>
+
+      // CHECK: xegpu.store_nd
+      // CHECK-SAME: vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32>
+      xegpu.store_nd %result, %9 {mode = vc}: vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32>
+    }
+  }
+  return
+}
diff --git a/mlir/test/Dialect/XeGPU/IR/store_nd_vc.mlir b/mlir/test/Dialect/XeGPU/IR/store_nd_vc.mlir
new file mode 100644
index 00000000000000..170b3a9fe81474
--- /dev/null
+++ b/mlir/test/Dialect/XeGPU/IR/store_nd_vc.mlir
@@ -0,0 +1,83 @@
+// RUN: mlir-opt %s | FileCheck %s
+// Verify the printed output can be parsed.
+// RUN: mlir-opt %s | mlir-opt | FileCheck %s
+// Verify the generic form can be parsed.
+// RUN: mlir-opt -mlir-print-op-generic %s | mlir-opt | FileCheck %s
+
+// CHECK-LABEL: func @test_store_nd_vc_bf16({{.*}}) {
+func.func @test_store_nd_vc_bf16(%src: memref<24x32xbf16>, %dst: memref<24x32xbf16>) {
+  %c0 = arith.constant 2 : index
+  %c1 = arith.constant 4 : index
+
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{c[0-9]}}, %{{c[0-9]}}] {mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: memref<24x32xbf16> -> !xegpu.tensor_desc<8x16xbf16>
+  %1 = xegpu.create_nd_tdesc %src[%c0, %c1] {mode = vc} : memref<24x32xbf16> -> !xegpu.tensor_desc<8x16xbf16>
+
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{c[0-9]}}, %{{c[0-9]}}] {mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: memref<24x32xbf16> -> !xegpu.tensor_desc<8x16xbf16>
+  %2 = xegpu.create_nd_tdesc %dst[%c0, %c1] {mode = vc} : memref<24x32xbf16> -> !xegpu.tensor_desc<8x16xbf16>
+
+  // CHECK: xegpu.load_nd %{{[0-9]}}
+  // CHECK-SAME: {l1_hint = #xegpu<cache_kind cached>, l2_hint = #xegpu<cache_kind uncached>, mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: !xegpu.tensor_desc<8x16xbf16> -> vector<8x16xbf16>
+  %3 = xegpu.load_nd %1 {mode = vc, l1_hint = cached, l2_hint = uncached}: !xegpu.tensor_desc<8x16xbf16> -> vector<8x16xbf16>
+
+  // CHECK: xegpu.store_nd %{{[0-9]}}, %{{[0-9]}}
+  // CHECK-SAME: {l1_hint = #xegpu<cache_kind write_back>, l2_hint = #xegpu<cache_kind uncached>, mode = #xegpu<mode_kind vc>} 
+  // CHECK-SAME: vector<8x16xbf16>, !xegpu.tensor_desc<8x16xbf16>
+  xegpu.store_nd %3, %2 {mode = vc, l1_hint = write_back, l2_hint = uncached}: vector<8x16xbf16>, !xegpu.tensor_desc<8x16xbf16>
+  return
+}
+
+// CHECK-LABEL: func @test_store_nd_vc_f64({{.*}}) {
+func.func @test_store_nd_vc_f64(%src: memref<24x32xf64>, %dst: memref<24x32xf64>) {
+  %c0 = arith.constant 2 : index
+  %c1 = arith.constant 4 : index
+
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{c[0-9]}}, %{{c[0-9]}}] {mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: memref<24x32xf64> -> !xegpu.tensor_desc<8x16xf64>
+  %1 = xegpu.create_nd_tdesc %src[%c0, %c1] {mode = vc} : memref<24x32xf64> -> !xegpu.tensor_desc<8x16xf64>
+
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{c[0-9]}}, %{{c[0-9]}}] {mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: memref<24x32xf64> -> !xegpu.tensor_desc<8x16xf64>
+  %2 = xegpu.create_nd_tdesc %dst[%c0, %c1] {mode = vc}
+      : memref<24x32xf64> -> !xegpu.tensor_desc<8x16xf64>
+
+  // CHECK: xegpu.load_nd %{{[0-9]}}
+  // CHECK-SAME: {l1_hint = #xegpu<cache_kind cached>, l2_hint = #xegpu<cache_kind uncached>, mode = #xegpu<mode_kind vc>} 
+  // CHECK-SAME: !xegpu.tensor_desc<8x16xf64> -> vector<8x16xf64>
+  %3 = xegpu.load_nd %1 {mode = vc, l1_hint = cached, l2_hint = uncached}: !xegpu.tensor_desc<8x16xf64> -> vector<8x16xf64>
+
+  // CHECK: xegpu.store_nd %{{[0-9]}}, %{{[0-9]}}
+  // CHECK-SAME: {l1_hint = #xegpu<cache_kind write_back>, l2_hint = #xegpu<cache_kind uncached>, mode = #xegpu<mode_kind vc>} 
+  // CHECK-SAME: vector<8x16xf64>, !xegpu.tensor_desc<8x16xf64>
+  xegpu.store_nd %3, %2 {mode = vc, l1_hint = write_back, l2_hint = uncached}: vector<8x16xf64>, !xegpu.tensor_desc<8x16xf64>
+  return
+}
+
+// CHECK-LABEL: func @test_store_nd_vc_i8({{.*}}) {
+func.func @test_store_nd_vc_i8(%src: memref<24x32xi8>, %dst: memref<24x32xi8>) {
+  %c0 = arith.constant 2 : index
+  %c1 = arith.constant 4 : index
+
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{c[0-9]}}, %{{c[0-9]}}] {mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: memref<24x32xi8> -> !xegpu.tensor_desc<8x16xi8>
+  %1 = xegpu.create_nd_tdesc %src[%c0, %c1] {mode = vc}
+      : memref<24x32xi8> -> !xegpu.tensor_desc<8x16xi8>
+
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{c[0-9]}}, %{{c[0-9]}}] {mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: memref<24x32xi8> -> !xegpu.tensor_desc<8x16xi8>
+  %2 = xegpu.create_nd_tdesc %dst[%c0, %c1] {mode = vc}
+      : memref<24x32xi8> -> !xegpu.tensor_desc<8x16xi8>
+
+  // CHECK: xegpu.load_nd %{{[0-9]}}
+  // CHECK-SAME: {l1_hint = #xegpu<cache_kind cached>, l2_hint = #xegpu<cache_kind uncached>, mode = #xegpu<mode_kind vc>} 
+  // CHECK-SAME: !xegpu.tensor_desc<8x16xi8> -> vector<8x16xi8>
+  %3 = xegpu.load_nd %1 {mode = vc, l1_hint = cached, l2_hint = uncached}: !xegpu.tensor_desc<8x16xi8> -> vector<8x16xi8>
+
+  // CHECK: xegpu.store_nd %{{[0-9]}}, %{{[0-9]}}
+  // CHECK-SAME: {l1_hint = #xegpu<cache_kind write_back>, l2_hint = #xegpu<cache_kind uncached>, mode = #xegpu<mode_kind vc>} 
+  // CHECK-SAME: vector<8x16xi8>, !xegpu.tensor_desc<8x16xi8>
+  xegpu.store_nd %3, %2 {mode = vc, l1_hint = write_back, l2_hint = uncached}: vector<8x16xi8>, !xegpu.tensor_desc<8x16xi8>
+  return
+}
diff --git a/mlir/test/Dialect/XeGPU/IR/store_scatter.mlir b/mlir/test/Dialect/XeGPU/IR/store_scatter.mlir
new file mode 100644
index 00000000000000..6d98ac3950c31f
--- /dev/null
+++ b/mlir/test/Dialect/XeGPU/IR/store_scatter.mlir
@@ -0,0 +1,29 @@
+// RUN: mlir-opt %s | FileCheck %s
+// Verify the printed output can be parsed.
+// RUN: mlir-opt %s | mlir-opt | FileCheck %s
+// Verify the generic form can be parsed.
+// RUN: mlir-opt -mlir-print-op-generic %s | mlir-opt | FileCheck %s
+
+// CHECK-LABEL: func @test_store_scatter({{.*}}) {
+func.func @test_store_scatter(%src: ui64, %offsets : vector<16xindex>, %dst: ui64) {
+  %0 = arith.constant dense<true>: vector<16xi1>
+  // CHECK: xegpu.create_tdesc %{{arg[0-9]}}, %{{arg[0-9]}} {mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: ui64, vector<16xindex> -> !xegpu.tensor_desc<16xf32, #xegpu.scattered>
+  %1 = xegpu.create_tdesc %src, %offsets {mode = vc}
+          : ui64, vector<16xindex> -> !xegpu.tensor_desc<16xf32, #xegpu.scattered>
+
+  // CHECK: xegpu.create_tdesc %{{arg[0-9]}}, %{{arg[0-9]}} {mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: ui64, vector<16xindex> -> !xegpu.tensor_desc<16xf32, #xegpu.scattered>
+  %2 = xegpu.create_tdesc %dst, %offsets {mode = vc}
+                : ui64, vector<16xindex> -> !xegpu.tensor_desc<16xf32, #xegpu.scattered>
+
+  // CHECK: xegpu.load %{{[0-9]}}, %{{.*}} {l1_hint = #xegpu<cache_kind cached>, l2_hint = #xegpu<cache_kind uncached>, mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: !xegpu.tensor_desc<16xf32, #xegpu.scattered>, vector<16xi1> -> vector<16xf32>
+  %3 = xegpu.load %1, %0 {mode = vc, l1_hint = cached, l2_hint = uncached}
+                  : !xegpu.tensor_desc<16xf32, #xegpu.scattered>, vector<16xi1> -> vector<16xf32>
+  // CHECK: xegpu.store %{{[0-9]}}, %{{[0-9]}}, %{{.*}} {l1_hint = #xegpu<cache_kind write_back>, l2_hint = #xegpu<cache_kind uncached>, mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: vector<16xf32>, !xegpu.tensor_desc<16xf32, #xegpu.scattered>, vector<16xi1>
+  xegpu.store %3, %2, %0 {mode = vc, l1_hint = write_back, l2_hint = uncached}
+                  : vector<16xf32>, !xegpu.tensor_desc<16xf32, #xegpu.scattered>, vector<16xi1>
+  return
+}
diff --git a/mlir/test/Dialect/XeGPU/IR/store_scatter_vc.mlir b/mlir/test/Dialect/XeGPU/IR/store_scatter_vc.mlir
new file mode 100644
index 00000000000000..c1a51712e70037
--- /dev/null
+++ b/mlir/test/Dialect/XeGPU/IR/store_scatter_vc.mlir
@@ -0,0 +1,29 @@
+// RUN: mlir-opt %s | FileCheck %s
+// Verify the printed output can be parsed.
+// RUN: mlir-opt %s | mlir-opt | FileCheck %s
+// Verify the generic form can be parsed.
+// RUN: mlir-opt -mlir-print-op-generic %s | mlir-opt | FileCheck %s
+
+// CHECK-LABEL: func @test_store_scatter_vc({{.*}}) {
+func.func @test_store_scatter_vc(%src: ui64, %offsets : vector<16 x index>, %dst: ui64) {
+  %0 = arith.constant dense<1>: vector<16xi1>
+  // CHECK: xegpu.create_tdesc %{{arg[0-9]}}, %{{arg[0-9]}} {mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: ui64, vector<16xindex> -> !xegpu.tensor_desc<16xf32, #xegpu.scattered>
+  %1 = xegpu.create_tdesc %src, %offsets {mode = vc}
+          : ui64, vector<16 x index> -> !xegpu.tensor_desc<16xf32, #xegpu.scattered>
+
+  // CHECK: xegpu.create_tdesc %{{arg[0-9]}}, %{{arg[0-9]}} {mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: ui64, vector<16xindex> -> !xegpu.tensor_desc<16xf32, #xegpu.scattered>
+  %2 = xegpu.create_tdesc %dst, %offsets {mode = vc}
+          : ui64, vector<16 x index> -> !xegpu.tensor_desc<16xf32, #xegpu.scattered>
+
+  // CHECK: xegpu.load %{{[0-9]}}, %{{.*}} {l1_hint = #xegpu<cache_kind cached>, l2_hint = #xegpu<cache_kind uncached>, mode = #xegpu<mode_kind vc>} 
+  // CHECK-SAME: !xegpu.tensor_desc<16xf32, #xegpu.scattered>, vector<16xi1> -> vector<16xf32>
+  %3 = xegpu.load %1, %0 {mode = vc, l1_hint = cached, l2_hint = uncached}
+                : !xegpu.tensor_desc<16xf32, #xegpu.scattered>, vector<16xi1> -> vector<16xf32>
+  // CHECK: xegpu.store %{{[0-9]}}, %{{[0-9]}}, %{{.*}} {l1_hint = #xegpu<cache_kind write_back>, l2_hint = #xegpu<cache_kind uncached>, mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: vector<16xf32>, !xegpu.tensor_desc<16xf32, #xegpu.scattered>, vector<16xi1> 
+  xegpu.store %3, %2, %0 {mode = vc, l1_hint = write_back, l2_hint = uncached}
+                : vector<16xf32>, !xegpu.tensor_desc<16xf32, #xegpu.scattered>, vector<16xi1>
+  return
+}
diff --git a/mlir/test/Dialect/XeGPU/IR/update_nd_offset.mlir b/mlir/test/Dialect/XeGPU/IR/update_nd_offset.mlir
new file mode 100644
index 00000000000000..1b97be77a2d79f
--- /dev/null
+++ b/mlir/test/Dialect/XeGPU/IR/update_nd_offset.mlir
@@ -0,0 +1,27 @@
+// RUN: mlir-opt %s | FileCheck %s
+// Verify the printed output can be parsed.
+// RUN: mlir-opt %s | mlir-opt | FileCheck %s
+// Verify the generic form can be parsed.
+// RUN: mlir-opt -mlir-print-op-generic %s | mlir-opt | FileCheck %s
+// CHECK-LABEL: func @test_update_nd_offset_vc_0({{.*}}) {
+func.func @test_update_nd_offset_vc_0(%src: memref<24x32xf32>) {
+  %c0 = arith.constant 2 : index
+  %c1 = arith.constant 4 : index
+
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{c[0-9]}}, %{{c[0-9]}}]
+  // CHECK-SAME: {mode = #xegpu<mode_kind vc>} : memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf32>
+  %1 = xegpu.create_nd_tdesc %src[%c0, %c1] {mode = vc}
+      : memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf32>
+
+  // CHECK: xegpu.load_nd %{{[0-9]}}
+  // CHECK-SAME: {l1_hint = #xegpu<cache_kind cached>, l2_hint = #xegpu<cache_kind uncached>, mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: !xegpu.tensor_desc<8x16xf32> -> vector<8x16xf32>
+  %2 = xegpu.load_nd %1 {mode = vc, l1_hint = cached, l2_hint = uncached}
+              : !xegpu.tensor_desc<8x16xf32> -> vector<8x16xf32>
+
+  // CHECK: xegpu.update_nd_offset %{{[0-9]}}, [%{{c[0-9]}}, %{{c[0-9]}}] {mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: !xegpu.tensor_desc<8x16xf32> -> !xegpu.tensor_desc<8x16xf32>
+  %3 = xegpu.update_nd_offset %1, [%c0, %c1] {mode = vc} : !xegpu.tensor_desc<8x16xf32> -> !xegpu.tensor_desc<8x16xf32>
+
+  return
+}
diff --git a/mlir/test/Dialect/XeGPU/IR/update_offset_vc.mlir b/mlir/test/Dialect/XeGPU/IR/update_offset_vc.mlir
new file mode 100644
index 00000000000000..05b0092d2379b7
--- /dev/null
+++ b/mlir/test/Dialect/XeGPU/IR/update_offset_vc.mlir
@@ -0,0 +1,29 @@
+// RUN: mlir-opt %s | FileCheck %s
+// Verify the printed output can be parsed.
+// RUN: mlir-opt %s | mlir-opt | FileCheck %s
+// Verify the generic form can be parsed.
+// RUN: mlir-opt -mlir-print-op-generic %s | mlir-opt | FileCheck %s
+
+// CHECK-LABEL: func @test_update_offset_VC({{.*}}) {
+func.func @test_update_offset_VC(%src: ui64, %offsets : vector<16 x index>) {
+  %0 = arith.constant dense<1>: vector<16xi1>
+  // CHECK: xegpu.create_tdesc %{{arg[0-9]}}, %{{arg[0-9]}} {mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: ui64, vector<16xindex> -> !xegpu.tensor_desc<16xf32, #xegpu.scattered>
+  %1 = xegpu.create_tdesc %src, %offsets {mode = vc}
+              : ui64, vector<16 x index> -> !xegpu.tensor_desc<16xf32, #xegpu.scattered>
+
+  // CHECK: xegpu.load %{{[0-9]}}, %{{.*}} {l1_hint = #xegpu<cache_kind cached>, l2_hint = #xegpu<cache_kind uncached>, mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: !xegpu.tensor_desc<16xf32, #xegpu.scattered>, vector<16xi1> -> vector<16xf32>
+  %2 = xegpu.load %1, %0 {mode = vc, l1_hint = cached, l2_hint = uncached}
+        : !xegpu.tensor_desc<16xf32, #xegpu.scattered>, vector<16xi1> -> vector<16xf32>
+
+  %3 = arith.constant dense<16>: vector<16 x index>
+  %4 = arith.addi %offsets, %3: vector<16 x index>
+
+  // CHECK: xegpu.update_offset %{{[0-9]}}, %{{[0-9]}} {mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: !xegpu.tensor_desc<16xf32, #xegpu.scattered>, vector<16xindex> -> !xegpu.tensor_desc<16xf32, #xegpu.scattered>
+  %5 = xegpu.update_offset %1, %4 {mode = vc}
+      : !xegpu.tensor_desc<16xf32, #xegpu.scattered>, vector<16 x index> -> !xegpu.tensor_desc<16xf32, #xegpu.scattered>
+
+  return
+}

>From 9cac285ed21833ac88773809816515156d7fcb89 Mon Sep 17 00:00:00 2001
From: Chao Chen <chao.chen at intel.com>
Date: Thu, 18 Jan 2024 10:15:30 -0600
Subject: [PATCH 2/2] update testcases

---
 mlir/test/Dialect/XeGPU/IR/atomic_rmw.mlir    | 43 -------------------
 mlir/test/Dialect/XeGPU/IR/atomic_rmw_vc.mlir | 12 ++++--
 .../Dialect/XeGPU/IR/create_nd_tdesc.mlir     | 22 +++++-----
 .../Dialect/XeGPU/IR/create_nd_tdesc_vc.mlir  | 31 ++++++-------
 mlir/test/Dialect/XeGPU/IR/create_tdesc.mlir  | 11 -----
 mlir/test/Dialect/XeGPU/IR/simple_gemm.mlir   | 32 +++++++-------
 .../test/Dialect/XeGPU/IR/simple_gemm_vc.mlir | 18 +++++---
 mlir/test/Dialect/XeGPU/IR/store_scatter.mlir | 29 -------------
 8 files changed, 60 insertions(+), 138 deletions(-)
 delete mode 100644 mlir/test/Dialect/XeGPU/IR/atomic_rmw.mlir
 delete mode 100644 mlir/test/Dialect/XeGPU/IR/create_tdesc.mlir
 delete mode 100644 mlir/test/Dialect/XeGPU/IR/store_scatter.mlir

diff --git a/mlir/test/Dialect/XeGPU/IR/atomic_rmw.mlir b/mlir/test/Dialect/XeGPU/IR/atomic_rmw.mlir
deleted file mode 100644
index f80df161a543ac..00000000000000
--- a/mlir/test/Dialect/XeGPU/IR/atomic_rmw.mlir
+++ /dev/null
@@ -1,43 +0,0 @@
-// RUN: mlir-opt %s | FileCheck %s
-// Verify the printed output can be parsed.
-// RUN: mlir-opt %s | mlir-opt | FileCheck %s
-// Verify the generic form can be parsed.
-// RUN: mlir-opt -mlir-print-op-generic %s | mlir-opt | FileCheck %s
-
-// CHECK-LABEL: func @test_atomic_rmw({{.*}}) {
-func.func @test_atomic_rmw(%src: ui64, %offsets : vector<16 x index>, %value : vector<16xf32>, %mask : vector<16xi1>) {
-  %1 = xegpu.create_tdesc %src, %offsets {mode=vc}: ui64, vector<16 x index> -> !xegpu.tensor_desc<16xf32, #xegpu.scattered>
-
-  // CHECK: xegpu.atomic_rmw
-  // CHECK-SAME: !xegpu.tensor_desc<16xf32, #xegpu.scattered>, vector<16xi1>, vector<16xf32>
-  xegpu.atomic_rmw #xegpu<atomic_rmw_kind addf> %1, %mask, %value {mode=vc}
-        : !xegpu.tensor_desc<16xf32, #xegpu.scattered>, vector<16xi1>, vector<16xf32> -> vector<16xf32>
-
-  return
-}
-
-// CHECK-LABEL: func @test_atomic_rmw_0({{.*}}) {
-func.func @test_atomic_rmw_0(%src: ui64, %offsets : vector<16 x index>, %value : vector<16x2xf32>, %mask : vector<16xi1>) {
-  %1 = xegpu.create_tdesc %src, %offsets {chunk_size_per_lane = 2, mode=vc}
-        : ui64, vector<16 x index> -> !xegpu.tensor_desc<16x2xf32, #xegpu.scattered>
-
-  // CHECK: xegpu.atomic_rmw
-  // CHECK-SAME: tensor_desc<16x2xf32, #xegpu.scattered>, vector<16xi1>, vector<16x2xf32> -> vector<16x2xf32>
-  xegpu.atomic_rmw mulf %1, %mask, %value {mode=vc}
-        : !xegpu.tensor_desc<16x2xf32, #xegpu.scattered>, vector<16xi1>, vector<16x2xf32> -> vector<16x2xf32>
-
-  return
-}
-
-// CHECK-LABEL: func @test_atomic_rmw_1({{.*}}) {
-func.func @test_atomic_rmw_1(%src: ui64, %offsets : vector<16 x index>, %value : vector<16x2xi32>, %mask : vector<16xi1>) {
-  %1 = xegpu.create_tdesc %src, %offsets {chunk_size_per_lane = 2, mode=vc}
-        : ui64, vector<16 x index> -> !xegpu.tensor_desc<16x2xi32, #xegpu.scattered>
-
-  // CHECK: xegpu.atomic_rmw
-  // CHECK-SAME: !xegpu.tensor_desc<16x2xi32, #xegpu.scattered>, vector<16xi1>, vector<16x2xi32> -> vector<16x2xf32>
-  xegpu.atomic_rmw andi %1, %mask, %value {mode=vc}
-        : !xegpu.tensor_desc<16x2xi32, #xegpu.scattered>, vector<16xi1>, vector<16x2xi32> -> vector<16x2xf32>
-
-  return
-}
diff --git a/mlir/test/Dialect/XeGPU/IR/atomic_rmw_vc.mlir b/mlir/test/Dialect/XeGPU/IR/atomic_rmw_vc.mlir
index 0f7229a02aa180..90df2a7c80ac5a 100644
--- a/mlir/test/Dialect/XeGPU/IR/atomic_rmw_vc.mlir
+++ b/mlir/test/Dialect/XeGPU/IR/atomic_rmw_vc.mlir
@@ -6,9 +6,11 @@
 
 // CHECK-LABEL: func @test_atomic_rmw({{.*}}) {
 func.func @test_atomic_rmw(%src: ui64, %offsets : vector<16 x index>, %value : vector<16x1xf32>, %mask : vector<16xi1>) {
+  // CHECK: xegpu.create_tdesc %{{arg[0-9]}}, %{{arg[0-9]}} {mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: ui64, vector<16xindex> -> !xegpu.tensor_desc<16xf32, #xegpu.scattered>
   %1 = xegpu.create_tdesc %src, %offsets {mode = vc} : ui64, vector<16 x index> -> !xegpu.tensor_desc<16xf32, #xegpu.scattered>
 
-  // CHECK: xegpu.atomic_rmw
+  // CHECK: xegpu.atomic_rmw addf %{{[0-9]}}, %{{arg[0-9]}}, %{{arg[0-9]}} {mode = #xegpu<mode_kind vc>} 
   // CHECK-SAME: !xegpu.tensor_desc<16xf32, #xegpu.scattered>, vector<16xi1>, vector<16x1xf32>
   xegpu.atomic_rmw addf %1, %mask, %value {mode = vc} : !xegpu.tensor_desc<16xf32, #xegpu.scattered>, vector<16xi1>, vector<16x1xf32> -> vector<16x1xf32>
 
@@ -17,9 +19,11 @@ func.func @test_atomic_rmw(%src: ui64, %offsets : vector<16 x index>, %value : v
 
 // CHECK-LABEL: func @test_atomic_rmw_0({{.*}}) {
 func.func @test_atomic_rmw_0(%src: ui64, %offsets : vector<16 x index>, %value : vector<16x2xf32>, %mask : vector<16xi1>) {
+  // CHECK: xegpu.create_tdesc %{{arg[0-9]}}, %{{arg[0-9]}} {chunk_size_per_lane = 2 : i64, mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: ui64, vector<16xindex> -> !xegpu.tensor_desc<16x2xf32, #xegpu.scattered>
   %1 = xegpu.create_tdesc %src, %offsets {mode = vc, chunk_size_per_lane = 2}: ui64, vector<16 x index> -> !xegpu.tensor_desc<16x2xf32, #xegpu.scattered>
 
-  // CHECK: xegpu.atomic_rmw
+  // CHECK: xegpu.atomic_rmw mulf %{{[0-9]}}, %{{arg[0-9]}}, %{{arg[0-9]}} {mode = #xegpu<mode_kind vc>}
   // CHECK-SAME: !xegpu.tensor_desc<16x2xf32, #xegpu.scattered>, vector<16xi1>, vector<16x2xf32>
   xegpu.atomic_rmw mulf %1, %mask, %value {mode = vc} : !xegpu.tensor_desc<16x2xf32, #xegpu.scattered>, vector<16xi1>, vector<16x2xf32> -> vector<16x2xf32>
 
@@ -28,9 +32,11 @@ func.func @test_atomic_rmw_0(%src: ui64, %offsets : vector<16 x index>, %value :
 
 // CHECK-LABEL: func @test_atomic_rmw_1({{.*}}) {
 func.func @test_atomic_rmw_1(%src: ui64, %offsets : vector<16 x index>, %value : vector<16x2xi32>, %mask : vector<16xi1>) {
+  // CHECK: xegpu.create_tdesc %{{arg[0-9]}}, %{{arg[0-9]}} {chunk_size_per_lane = 2 : i64, mode = #xegpu<mode_kind vc>}
+  // CHECK-SAME: ui64, vector<16xindex> -> !xegpu.tensor_desc<16x2xi32, #xegpu.scattered>
   %1 = xegpu.create_tdesc %src, %offsets {mode = vc, chunk_size_per_lane = 2}: ui64, vector<16 x index> -> !xegpu.tensor_desc<16x2xi32, #xegpu.scattered>
 
-  // CHECK: xegpu.atomic_rmw
+  // CHECK: xegpu.atomic_rmw andi %{{[0-9]}}, %{{arg[0-9]}}, %{{arg[0-9]}} {mode = #xegpu<mode_kind vc>}
   // CHECK-SAME: !xegpu.tensor_desc<16x2xi32, #xegpu.scattered>, vector<16xi1>, vector<16x2xi32>
   xegpu.atomic_rmw andi %1, %mask, %value {mode = vc} : !xegpu.tensor_desc<16x2xi32, #xegpu.scattered>, vector<16xi1>, vector<16x2xi32> -> vector<16x2xf32>
 
diff --git a/mlir/test/Dialect/XeGPU/IR/create_nd_tdesc.mlir b/mlir/test/Dialect/XeGPU/IR/create_nd_tdesc.mlir
index cebf59f12939da..8284d730d4089c 100644
--- a/mlir/test/Dialect/XeGPU/IR/create_nd_tdesc.mlir
+++ b/mlir/test/Dialect/XeGPU/IR/create_nd_tdesc.mlir
@@ -10,12 +10,12 @@ func.func @test_create_nd_tdesc_0(%src: memref<24x32xf16>) {
   %c0 = arith.constant 2 : index
   %c1 = arith.constant 4 : index
 
-  // CHECK:  xegpu.create_nd_tdesc
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{c[0-9]}}, %{{c[0-9]}}]
   // CHECK-SAME: memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 2]>>
   %1 = xegpu.create_nd_tdesc %src[%c0, %c1]
       : memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16, #sg_map_fp16>
 
-  // CHECK: xegpu.create_nd_tdesc
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[2, 4]
   // CHECK-SAME: memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 2]>>
   %2 = xegpu.create_nd_tdesc %src[2, 4]
       : memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16, #sg_map_fp16>
@@ -25,7 +25,7 @@ func.func @test_create_nd_tdesc_0(%src: memref<24x32xf16>) {
 
 // CHECK-LABEL: func @test_create_nd_tdesc_1({{.*}}) {
 func.func @test_create_nd_tdesc_1(%src: memref<24x32xf16>, %x : index, %y : index) {
-  // CHECK: xegpu.create_nd_tdesc
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{arg[0-9]}}, %{{arg[0-9]}}]
   // CHECK-SAME: memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 2]>>
   %1 = xegpu.create_nd_tdesc %src[%x, %y]
       : memref<24x32xf16> -> !xegpu.tensor_desc<8x16xf16, #sg_map_fp16>
@@ -35,7 +35,7 @@ func.func @test_create_nd_tdesc_1(%src: memref<24x32xf16>, %x : index, %y : inde
 // CHECK-LABEL: func @test_create_nd_tdesc_2({{.*}}) {
 func.func @test_create_nd_tdesc_2(%src: ui64, %w : index, %h : index, %x : index, %y : index) {
   %c1 = arith.constant 1 : index
-  // CHECK: xegpu.create_nd_tdesc
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{arg[0-9]}}, %{{arg[0-9]}}], [%{{arg[0-9]}}, %{{arg[0-9]}}], [%{{arg[0-9]}}, %{{c[0-9]}}]
   // CHECK-SAME: ui64 -> !xegpu.tensor_desc<8x16xf16, #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 2]>>
   %1 = xegpu.create_nd_tdesc %src[%x, %y], [%h, %w], [%w, %c1]  : ui64 -> !xegpu.tensor_desc<8x16xf16, #sg_map_fp16>
   return
@@ -44,7 +44,7 @@ func.func @test_create_nd_tdesc_2(%src: ui64, %w : index, %h : index, %x : index
 // CHECK-LABEL: func @test_create_nd_tdesc_3({{.*}}) {
 func.func @test_create_nd_tdesc_3(%src: memref<?x?xf16>, %w : index, %h : index, %x : index, %y : index) {
   %c1 = arith.constant 1 : index
-  // CHECK: xegpu.create_nd_tdesc
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{arg[0-9]}}, %{{arg[0-9]}}], [%{{arg[0-9]}}, %{{arg[0-9]}}], [%{{arg[0-9]}}, %{{c[0-9]}}]
   // CHECK-SAME: memref<?x?xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 2]>>
   %1 = xegpu.create_nd_tdesc %src[%x, %y], [%h, %w], [%w, %c1]  : memref<?x?xf16> -> !xegpu.tensor_desc<8x16xf16, #sg_map_fp16>
   return
@@ -54,7 +54,7 @@ func.func @test_create_nd_tdesc_3(%src: memref<?x?xf16>, %w : index, %h : index,
 // CHECK-LABEL: func @test_create_nd_tdesc_4({{.*}}) {
 func.func @test_create_nd_tdesc_4(%src: memref<?x?xf16>, %w : index, %h : index, %x : index, %y : index) {
   %c1 = arith.constant 1 : index
-  // CHECK: xegpu.create_nd_tdesc
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{arg[0-9]}}, %{{arg[0-9]}}], [%{{arg[0-9]}}, %{{arg[0-9]}}], [%{{arg[0-9]}}, %{{c[0-9]}}]
   // CHECK-SAME: memref<?x?xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 2]>>
   %1 = xegpu.create_nd_tdesc %src[%x, %y], [%h, %w], [%w, %c1]
           : memref<?x?xf16> -> !xegpu.tensor_desc<8x16xf16, #sg_map_fp16>
@@ -64,7 +64,7 @@ func.func @test_create_nd_tdesc_4(%src: memref<?x?xf16>, %w : index, %h : index,
 // CHECK-LABEL: func @test_create_nd_tdesc_5({{.*}}) {
 func.func @test_create_nd_tdesc_5(%src: memref<?x?xf16>, %w : index, %h : index, %x : index, %y : index) {
   %c1 = arith.constant 1 : index
-  // CHECK: xegpu.create_nd_tdesc
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{arg[0-9]}}, %{{arg[0-9]}}], [%{{arg[0-9]}}, %{{arg[0-9]}}], [%{{arg[0-9]}}, %{{c[0-9]}}]
   // CHECK-SAME: memref<?x?xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.tdesc_attr<memory_scope = slm, map = <wi_layout = [2, 8], wi_data = [1, 2]>>>
   %1 = xegpu.create_nd_tdesc %src[%x, %y], [%h, %w], [%w, %c1]
                                   : memref<?x?xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.tdesc_attr<memory_scope = slm, map = #sg_map_fp16>>
@@ -74,7 +74,7 @@ func.func @test_create_nd_tdesc_5(%src: memref<?x?xf16>, %w : index, %h : index,
 // CHECK-LABEL: func @test_create_nd_tdesc_6({{.*}}) {
 func.func @test_create_nd_tdesc_6(%src: memref<?x?xf16>, %w : index, %h : index, %x : index, %y : index) {
   %c1 = arith.constant 1 : index
-  // CHECK: xegpu.create_nd_tdesc
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{arg[0-9]}}, %{{arg[0-9]}}], [%{{arg[0-9]}}, %{{arg[0-9]}}], [%{{arg[0-9]}}, %{{c[0-9]}}]
   // CHECK-SAME: memref<?x?xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.tdesc_attr<memory_scope = slm, map = <wi_layout = [2, 8], wi_data = [1, 2]>>>
   %1 = xegpu.create_nd_tdesc %src[%x, %y], [%h, %w], [%w, %c1]
                             : memref<?x?xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.tdesc_attr<memory_scope = slm, map = #sg_map_fp16>>
@@ -83,7 +83,7 @@ func.func @test_create_nd_tdesc_6(%src: memref<?x?xf16>, %w : index, %h : index,
 
 // CHECK-LABEL: func @test_create_nd_tdesc_7({{.*}}) {
 func.func @test_create_nd_tdesc_7(%src: memref<1024xf16>, %offset : index) {
-  // CHECK: xegpu.create_nd_tdesc
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{arg[0-9]}}]
   // CHECK-SAME: memref<1024xf16> -> !xegpu.tensor_desc<16xf16, #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 2]>>
   %1 = xegpu.create_nd_tdesc %src[%offset] : memref<1024xf16> -> !xegpu.tensor_desc<16xf16, #sg_map_fp16>
   return
@@ -93,7 +93,7 @@ func.func @test_create_nd_tdesc_7(%src: memref<1024xf16>, %offset : index) {
 // CHECK-LABEL: func @test_create_nd_tdesc_8({{.*}}) {
 func.func @test_create_nd_tdesc_8(%src: memref<?x?xf16>, %w : index, %h : index, %x : index) {
   %c1 = arith.constant 1 : index
-  // CHECK: xegpu.create_nd_tdesc
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[8, %{{arg[0-9]}}], [%{{arg[0-9]}}, %{{arg[0-9]}}], [%{{arg[0-9]}}, %c1]
   // CHECK-SAME: memref<?x?xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.tdesc_attr<memory_scope = slm, map = <wi_layout = [2, 8], wi_data = [1, 2]>>>
   %1 = xegpu.create_nd_tdesc %src[8, %x], [%h, %w], [%w, %c1]
                                     : memref<?x?xf16> -> !xegpu.tensor_desc<8x16xf16, #xegpu.tdesc_attr<memory_scope = slm, map = #sg_map_fp16>>
@@ -103,7 +103,7 @@ func.func @test_create_nd_tdesc_8(%src: memref<?x?xf16>, %w : index, %h : index,
 // CHECK-LABEL: func @test_create_nd_tdesc_9({{.*}}) {
 func.func @test_create_nd_tdesc_9(%src: memref<?x?xf16>, %w : index, %h : index, %x : index) {
   %c1 = arith.constant 1 : index
-  // CHECK: xegpu.create_nd_tdesc
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[8, %{{arg[0-9]}}], [%{{arg[0-9]}}, %{{arg[0-9]}}], [%{{arg[0-9]}}, %c1]
   // CHECK-SAME: memref<?x?xf16> -> !xegpu.tensor_desc<64x128xf16, #xegpu.tdesc_attr<memory_scope = slm, map = <wi_layout = [2, 8], wi_data = [1, 2]>>>
   %1 = xegpu.create_nd_tdesc %src[8, %x], [%h, %w], [%w, %c1] : memref<?x?xf16>
             -> !xegpu.tensor_desc<64x128xf16, #xegpu.tdesc_attr<memory_scope = slm, map = #sg_map_fp16>>
diff --git a/mlir/test/Dialect/XeGPU/IR/create_nd_tdesc_vc.mlir b/mlir/test/Dialect/XeGPU/IR/create_nd_tdesc_vc.mlir
index a21bf792fe0792..34cd66c9c69a4e 100644
--- a/mlir/test/Dialect/XeGPU/IR/create_nd_tdesc_vc.mlir
+++ b/mlir/test/Dialect/XeGPU/IR/create_nd_tdesc_vc.mlir
@@ -10,12 +10,12 @@ func.func @test_create_nd_tdesc_vc_0(%src: memref<24x32xf32>) {
   %c0 = arith.constant 2 : index
   %c1 = arith.constant 4 : index
 
-  // CHECK: xegpu.create_nd_tdesc
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{c[0-9]}}, %{{c[0-9]}}] {mode = #xegpu<mode_kind vc>}
   // CHECK-SAME: memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf32>
   %1 = xegpu.create_nd_tdesc %src[%c0, %c1] {mode = vc}
       : memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf32>
 
-  // CHECK: xegpu.create_nd_tdesc
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[2, 4] {mode = #xegpu<mode_kind vc>}
   // CHECK-SAME: memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf32>
   %2 = xegpu.create_nd_tdesc %src[2, 4] {mode = vc}
       : memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf32>
@@ -25,19 +25,16 @@ func.func @test_create_nd_tdesc_vc_0(%src: memref<24x32xf32>) {
 
 // CHECK-LABEL: func @test_create_nd_tdesc_vc_1({{.*}}) {
 func.func @test_create_nd_tdesc_vc_1(%src: memref<24x32xf32>, %x : index, %y : index) {
-  // CHECK: xegpu.create_nd_tdesc
-  // CHECK-SAME: %arg0[%arg1, %arg2]
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{arg[0-9]}}, %{{arg[0-9]}}] {mode = #xegpu<mode_kind vc>}
   // CHECK-SAME: memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf32>
-  %1 = xegpu.create_nd_tdesc %src[%x, %y] {mode = vc}
-      : memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf32>
+  %1 = xegpu.create_nd_tdesc %src[%x, %y] {mode = vc} : memref<24x32xf32> -> !xegpu.tensor_desc<8x16xf32>
   return
 }
 
 // CHECK-LABEL: func @test_create_nd_tdesc_vc_2({{.*}}) {
 func.func @test_create_nd_tdesc_vc_2(%src: ui64, %w : index, %h : index, %x : index, %y : index) {
   %c1 = arith.constant 1 : index
-  // CHECK: xegpu.create_nd_tdesc
-  // CHECK-SAME: %arg0[%arg3, %arg4], [%arg2, %arg1], [%arg1, %c1]
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{arg[0-9]}}, %{{arg[0-9]}}], [%{{arg[0-9]}}, %{{arg[0-9]}}], [%{{arg[0-9]}}, %{{c[0-9]}}] {mode = #xegpu<mode_kind vc>}
   // CHECK-SAME: ui64 -> !xegpu.tensor_desc<8x16xf32>
   %1 = xegpu.create_nd_tdesc %src[%x, %y], [%h, %w], [%w, %c1] {mode = vc} : ui64 -> !xegpu.tensor_desc<8x16xf32>
   return
@@ -46,8 +43,7 @@ func.func @test_create_nd_tdesc_vc_2(%src: ui64, %w : index, %h : index, %x : in
 // CHECK-LABEL: func @test_create_nd_tdesc_vc_3({{.*}}) {
 func.func @test_create_nd_tdesc_vc_3(%src: memref<?x?xf32>, %w : index, %h : index, %x : index, %y : index) {
   %c1 = arith.constant 1 : index
-  // CHECK: xegpu.create_nd_tdesc
-  // CHECK-SAME: %arg0[%arg3, %arg4], [%arg2, %arg1], [%arg1, %c1]
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{arg[0-9]}}, %{{arg[0-9]}}], [%{{arg[0-9]}}, %{{arg[0-9]}}], [%{{arg[0-9]}}, %{{c[0-9]}}] {mode = #xegpu<mode_kind vc>}
   // CHECK-SAME: memref<?x?xf32> -> !xegpu.tensor_desc<8x16xf32>
   %1 = xegpu.create_nd_tdesc %src[%x, %y], [%h, %w], [%w, %c1] {mode = vc} : memref<?x?xf32> -> !xegpu.tensor_desc<8x16xf32>
   return
@@ -57,8 +53,7 @@ func.func @test_create_nd_tdesc_vc_3(%src: memref<?x?xf32>, %w : index, %h : ind
 // CHECK-LABEL: func @test_create_nd_tdesc_vc_4({{.*}}) {
 func.func @test_create_nd_tdesc_vc_4(%src: memref<?x?xf32>, %w : index, %h : index, %x : index, %y : index) {
   %c1 = arith.constant 1 : index
-  // CHECK: xegpu.create_nd_tdesc
-  // CHECK-SAME: %arg0[%arg3, %arg4], [%arg2, %arg1], [%arg1, %c1]
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{arg[0-9]}}, %{{arg[0-9]}}], [%{{arg[0-9]}}, %{{arg[0-9]}}], [%{{arg[0-9]}}, %{{c[0-9]}}] {mode = #xegpu<mode_kind vc>}
   // CHECK-SAME: memref<?x?xf32> -> !xegpu.tensor_desc<8x16xf32>
   %1 = xegpu.create_nd_tdesc %src[%x, %y], [%h, %w], [%w, %c1] {mode = vc} : memref<?x?xf32> -> !xegpu.tensor_desc<8x16xf32>
   return
@@ -67,8 +62,7 @@ func.func @test_create_nd_tdesc_vc_4(%src: memref<?x?xf32>, %w : index, %h : ind
 // CHECK-LABEL: func @test_create_nd_tdesc_vc_5({{.*}}) {
 func.func @test_create_nd_tdesc_vc_5(%src: memref<?x?xf32>, %w : index, %h : index, %x : index, %y : index) {
   %c1 = arith.constant 1 : index
-  // CHECK: xegpu.create_nd_tdesc
-  // CHECK-SAME: %arg0[%arg3, %arg4], [%arg2, %arg1], [%arg1, %c1]
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{arg[0-9]}}, %{{arg[0-9]}}], [%{{arg[0-9]}}, %{{arg[0-9]}}], [%{{arg[0-9]}}, %{{c[0-9]}}] {mode = #xegpu<mode_kind vc>}
   // CHECK-SAME: memref<?x?xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.tdesc_attr<memory_scope = slm>>
   %1 = xegpu.create_nd_tdesc %src[%x, %y], [%h, %w], [%w, %c1] {mode = vc}
                                   : memref<?x?xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.tdesc_attr<memory_scope = slm>>
@@ -78,8 +72,7 @@ func.func @test_create_nd_tdesc_vc_5(%src: memref<?x?xf32>, %w : index, %h : ind
 // CHECK-LABEL: func @test_create_nd_tdesc_vc_6({{.*}}) {
 func.func @test_create_nd_tdesc_vc_6(%src: memref<?x?xf32>, %w : index, %h : index, %x : index, %y : index) {
   %c1 = arith.constant 1 : index
-  // CHECK: xegpu.create_nd_tdesc
-  // CHECK-SAME: %arg0[%arg3, %arg4], [%arg2, %arg1], [%arg1, %c1]
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{arg[0-9]}}, %{{arg[0-9]}}], [%{{arg[0-9]}}, %{{arg[0-9]}}], [%{{arg[0-9]}}, %{{c[0-9]}}] {mode = #xegpu<mode_kind vc>}
   // CHECK-SAME: memref<?x?xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.tdesc_attr<memory_scope = slm>>
   %1 = xegpu.create_nd_tdesc %src[%x, %y], [%h, %w], [%w, %c1] {mode = vc}
                             : memref<?x?xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.tdesc_attr<memory_scope = slm>>
@@ -89,7 +82,7 @@ func.func @test_create_nd_tdesc_vc_6(%src: memref<?x?xf32>, %w : index, %h : ind
 
 // CHECK-LABEL: func @test_create_nd_tdesc_vc_7({{.*}}) {
 func.func @test_create_nd_tdesc_vc_7(%src: memref<1024xf32>, %offset : index) {
-  // CHECK: xegpu.create_nd_tdesc
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{arg[0-9]}}] {mode = #xegpu<mode_kind vc>}
   // CHECK-SAME: memref<1024xf32> -> !xegpu.tensor_desc<16xf32>
   %1 = xegpu.create_nd_tdesc %src[%offset] {mode = vc} : memref<1024xf32> -> !xegpu.tensor_desc<16xf32>
   return
@@ -99,7 +92,7 @@ func.func @test_create_nd_tdesc_vc_7(%src: memref<1024xf32>, %offset : index) {
 // CHECK-LABEL: func @test_create_nd_tdesc_vc_8({{.*}}) {
 func.func @test_create_nd_tdesc_vc_8(%src: memref<?x?xf32>, %w : index, %h : index, %x : index) {
   %c1 = arith.constant 1 : index
-  // CHECK: xegpu.create_nd_tdesc
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[8, %{{arg[0-9]}}], [%{{arg[0-9]}}, %{{arg[0-9]}}], [%{{arg[0-9]}}, %c1] {mode = #xegpu<mode_kind vc>}
   // CHECK-SAME: memref<?x?xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.tdesc_attr<memory_scope = slm>>
   %1 = xegpu.create_nd_tdesc %src[8, %x], [%h, %w], [%w, %c1] {mode = vc}
                                     : memref<?x?xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.tdesc_attr<memory_scope = slm>>
@@ -108,7 +101,7 @@ func.func @test_create_nd_tdesc_vc_8(%src: memref<?x?xf32>, %w : index, %h : ind
 
 // CHECK-LABEL: func @test_create_nd_tdesc_vc_9({{.*}}) {
 func.func @test_create_nd_tdesc_vc_9(%src: memref<8x32xf32>) {
-  // CHECK: xegpu.create_nd_tdesc
+  // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[0, 0]
   // CHECK-SAME: memref<8x32xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.tdesc_attr<memory_scope = slm, array_length = 2>>
   %1 = xegpu.create_nd_tdesc %src[0, 0] {mode = vc} : memref<8x32xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.tdesc_attr<memory_scope = slm, array_length = 2>>
   return
diff --git a/mlir/test/Dialect/XeGPU/IR/create_tdesc.mlir b/mlir/test/Dialect/XeGPU/IR/create_tdesc.mlir
deleted file mode 100644
index 8fb5ac824ddb27..00000000000000
--- a/mlir/test/Dialect/XeGPU/IR/create_tdesc.mlir
+++ /dev/null
@@ -1,11 +0,0 @@
-// RUN: mlir-opt %s | FileCheck %s
-// Verify the printed output can be parsed.
-// RUN: mlir-opt %s | mlir-opt | FileCheck %s
-// Verify the generic form can be parsed.
-// RUN: mlir-opt -mlir-print-op-generic %s | mlir-opt | FileCheck %s
-
-// CHECK-LABEL: func @test_create_tdesc_vc({{.*}}) {
-func.func @test_create_tdesc_vc(%src: ui64, %offsets : vector<16 x index>) {
-  %1 = xegpu.create_tdesc %src, %offsets {mode=vc} : ui64, vector<16 x index> -> !xegpu.tensor_desc<16xf32, #xegpu.scattered>
-  return
-}
\ No newline at end of file
diff --git a/mlir/test/Dialect/XeGPU/IR/simple_gemm.mlir b/mlir/test/Dialect/XeGPU/IR/simple_gemm.mlir
index ff6f31c77064af..8df22fb78996a5 100644
--- a/mlir/test/Dialect/XeGPU/IR/simple_gemm.mlir
+++ b/mlir/test/Dialect/XeGPU/IR/simple_gemm.mlir
@@ -23,12 +23,12 @@ func.func @test_gemm_bf16(%a : memref<1024x1024xbf16>, %b: memref<1024x1024xbf16
 
   scf.for %i= %c0 to %c1024 step %c8 {
     scf.for %j= %c0 to %c1024 step %c16 {
-      // CHECK: xegpu.create_nd_tdesc
+      // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{arg[0-9]}}, %{{c[0-9]}}]
       // CHECK-SAME: memref<1024x1024xbf16>
       // CHECK-SAME: -> !xegpu.tensor_desc<8x16xbf16, #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 2]>>
       %1 = xegpu.create_nd_tdesc %a[%i, %c0] : memref<1024x1024xbf16> -> !xegpu.tensor_desc<8x16xbf16, #sg_map_fp16_a>
 
-      // CHECK: xegpu.create_nd_tdesc
+      // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{c[0-9]}}, %{{arg[0-9]}}]
       // CHECK-SAME: memref<1024x1024xbf16>
       // CHECK-SAME: -> !xegpu.tensor_desc<16x16xbf16, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
       %2 = xegpu.create_nd_tdesc %b[%c0, %j] : memref<1024x1024xbf16> -> !xegpu.tensor_desc<16x16xbf16, #sg_map_fp16_b>
@@ -37,33 +37,35 @@ func.func @test_gemm_bf16(%a : memref<1024x1024xbf16>, %b: memref<1024x1024xbf16
 
       %tmp0, %tmp1, %result = scf.for %k= %c0 to %c1024 step %c16 iter_args(%subA = %1, %subB = %2, %subC = %3)
               -> (!xegpu.tensor_desc<8x16xbf16, #sg_map_fp16_a>, !xegpu.tensor_desc<16x16xbf16, #sg_map_fp16_b>, vector<8x1xf32>) {
-        // CHECK: xegpu.load_nd
-        // CHECK-SAME: vector<4x1x2xbf16>
+        // CHECK: xegpu.load_nd %{{arg[0-9]}} {vnni_axis = 1 : i64} 
+        // CHECK-SAME: !xegpu.tensor_desc<8x16xbf16, #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 2]>> -> vector<4x1x2xbf16>
         %4 = xegpu.load_nd %subA {vnni_axis = 1} : !xegpu.tensor_desc<8x16xbf16, #sg_map_fp16_a> -> vector<4x1x2xbf16>
 
-        // CHECK: xegpu.load_nd
-        // CHECK-SAME: vector<8x1x2xbf16>
+        // CHECK: xegpu.load_nd %{{arg[0-9]}} {vnni_axis = 0 : i64}
+        // CHECK-SAME: !xegpu.tensor_desc<16x16xbf16, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>> -> vector<8x1x2xbf16>
         %5 = xegpu.load_nd %subB {vnni_axis = 0} : !xegpu.tensor_desc<16x16xbf16, #sg_map_fp16_b> -> vector<8x1x2xbf16>
 
-        // CHECK: xegpu.dpas
+        // CHECK: xegpu.dpas %{{[0-9]}}, %{{[0-9]}}, %{{arg[0-9]}}
         // CHECK-SAME: vector<4x1x2xbf16>, vector<8x1x2xbf16>, vector<8x1xf32> -> vector<8x1xf32>
         %6 = xegpu.dpas %4, %5, %subC  : vector<4x1x2xbf16>, vector<8x1x2xbf16>, vector<8x1xf32> -> vector<8x1xf32>
 
-        %7 = xegpu.update_nd_offset %subA, [%c0, %c16] : !xegpu.tensor_desc<8x16xbf16, #sg_map_fp16_a>
-            -> !xegpu.tensor_desc<8x16xbf16, #sg_map_fp16_a>
+        // CHECK: xegpu.update_nd_offset %{{arg[0-9]}}, [%{{c[0-9]}}, %{{c[0-9]+}}]
+        // CHECK-SAME: !xegpu.tensor_desc<8x16xbf16, #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 2]>> -> !xegpu.tensor_desc<8x16xbf16, #xegpu.sg_map<wi_layout = [2, 8], wi_data = [1, 2]>>
+        %7 = xegpu.update_nd_offset %subA, [%c0, %c16] : !xegpu.tensor_desc<8x16xbf16, #sg_map_fp16_a> -> !xegpu.tensor_desc<8x16xbf16, #sg_map_fp16_a>
 
-        %8 = xegpu.update_nd_offset %subB, [%c16, %c0] : !xegpu.tensor_desc<16x16xbf16, #sg_map_fp16_b>
-            -> !xegpu.tensor_desc<16x16xbf16, #sg_map_fp16_b>
+        // CHECK: xegpu.update_nd_offset %{{arg[0-9]}}, [%{{c[0-9]+}}, %{{c[0-9]}}]
+        // CHECK-SAME: !xegpu.tensor_desc<16x16xbf16, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>> -> !xegpu.tensor_desc<16x16xbf16, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
+        %8 = xegpu.update_nd_offset %subB, [%c16, %c0] : !xegpu.tensor_desc<16x16xbf16, #sg_map_fp16_b> -> !xegpu.tensor_desc<16x16xbf16, #sg_map_fp16_b>
 
         scf.yield %7, %8, %6: !xegpu.tensor_desc<8x16xbf16, #sg_map_fp16_a>, !xegpu.tensor_desc<16x16xbf16, #sg_map_fp16_b>, vector<8x1xf32>
       }
 
-      // CHECK: xegpu.create_nd_tdesc
-      // CHECK-SAME: memref<1024x1024xf32>
+      // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[{{%arg[0-9]}}, %{{arg[0-9]}}]
+      // CHECK-SAME: memref<1024x1024xf32> -> !xegpu.tensor_desc<8x16xf32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
       %9 = xegpu.create_nd_tdesc %c[%i, %j] : memref<1024x1024xf32> -> !xegpu.tensor_desc<8x16xf32, #sg_map_fp16_c>
 
-      // CHECK: xegpu.store_nd
-      // CHECK-SAME: vector<8x1xf32>
+      // CHECK: xegpu.store_nd %{{[0-9]#2}}, %{{[0-9]}}
+      // CHECK-SAME: vector<8x1xf32>, !xegpu.tensor_desc<8x16xf32, #xegpu.sg_map<wi_layout = [1, 16], wi_data = [1, 1]>>
       xegpu.store_nd %result, %9 : vector<8x1xf32>, !xegpu.tensor_desc<8x16xf32, #sg_map_fp16_c>
     }
   }
diff --git a/mlir/test/Dialect/XeGPU/IR/simple_gemm_vc.mlir b/mlir/test/Dialect/XeGPU/IR/simple_gemm_vc.mlir
index 794a6b6f1afb9c..62b972ad189fde 100644
--- a/mlir/test/Dialect/XeGPU/IR/simple_gemm_vc.mlir
+++ b/mlir/test/Dialect/XeGPU/IR/simple_gemm_vc.mlir
@@ -20,11 +20,11 @@ func.func @test_gemm_vc_bf16(%a : memref<1024x1024xbf16>, %b: memref<1024x1024xb
 
   scf.for %i= %c0 to %c1024 step %c8 {
     scf.for %j= %c0 to %c1024 step %c16 {
-      // CHECK: xegpu.create_nd_tdesc
+      // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{arg[0-9]}}, %{{c[0-9]}}] {mode = #xegpu<mode_kind vc>}
       // CHECK-SAME: memref<1024x1024xbf16> -> !xegpu.tensor_desc<8x16xbf16>
       %1 = xegpu.create_nd_tdesc %a[%i, %c0] {mode = vc} : memref<1024x1024xbf16> -> !xegpu.tensor_desc<8x16xbf16>
 
-      // CHECK: xegpu.create_nd_tdesc
+      // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[%{{c[0-9]}}, %{{arg[0-9]}}] {mode = #xegpu<mode_kind vc>}
       // CHECK-SAME: memref<1024x1024xbf16> -> !xegpu.tensor_desc<16x16xbf16>
       %2 = xegpu.create_nd_tdesc %b[%c0, %j] {mode = vc} : memref<1024x1024xbf16> -> !xegpu.tensor_desc<16x16xbf16>
 
@@ -33,30 +33,34 @@ func.func @test_gemm_vc_bf16(%a : memref<1024x1024xbf16>, %b: memref<1024x1024xb
       %tmp0, %tmp1, %result = scf.for %k= %c0 to %c1024 step %c16
                                 iter_args(%subA = %1, %subB = %2, %subC = %3)
                                   -> (!xegpu.tensor_desc<8x16xbf16>, !xegpu.tensor_desc<16x16xbf16>, vector<8x16xf32>) {
-        // CHECK: xegpu.load_nd
+        // CHECK: xegpu.load_nd %{{arg[0-9]}} {mode = #xegpu<mode_kind vc>, vnni_axis = 1 : i64}
         // CHECK-SAME: !xegpu.tensor_desc<8x16xbf16> -> vector<8x8x2xbf16>
         %4 = xegpu.load_nd %subA {mode = vc, vnni_axis = 1} : !xegpu.tensor_desc<8x16xbf16> -> vector<8x8x2xbf16>
 
-        // CHECK: xegpu.load_nd
+        // CHECK: xegpu.load_nd %{{arg[0-9]}} {mode = #xegpu<mode_kind vc>, vnni_axis = 0 : i64}
         // CHECK-SAME: !xegpu.tensor_desc<16x16xbf16> -> vector<8x16x2xbf16>
         %5 = xegpu.load_nd %subB {mode = vc, vnni_axis = 0} : !xegpu.tensor_desc<16x16xbf16> -> vector<8x16x2xbf16>
 
-        // CHECK: xegpu.dpas
+        // CHECK: xegpu.dpas %{{[0-9]}}, %{{[0-9]}}, %{{arg[0-9]}} {mode = #xegpu<mode_kind vc>}
         // CHECK-SAME: vector<8x8x2xbf16>, vector<8x16x2xbf16>, vector<8x16xf32> -> vector<8x16xf32>
         %6 = xegpu.dpas %4, %5, %subC {mode = vc} : vector<8x8x2xbf16>, vector<8x16x2xbf16>, vector<8x16xf32> -> vector<8x16xf32>
 
+        // CHECK: xegpu.update_nd_offset %{{arg[0-9]}}, [%{{c[0-9]}}, %{{c[0-9]+}}] {mode = #xegpu<mode_kind vc>}
+        // CHECK-SAME: !xegpu.tensor_desc<8x16xbf16> -> !xegpu.tensor_desc<8x16xbf16>
         %7 = xegpu.update_nd_offset %subA, [%c0, %c16] {mode = vc} : !xegpu.tensor_desc<8x16xbf16> -> !xegpu.tensor_desc<8x16xbf16>
 
+        // CHECK: xegpu.update_nd_offset %{{arg[0-9]}}, [%{{c[0-9]+}}, %{{c[0-9]}}] {mode = #xegpu<mode_kind vc>} 
+        // CHECK-SAME: !xegpu.tensor_desc<16x16xbf16> -> !xegpu.tensor_desc<16x16xbf16>
         %8 = xegpu.update_nd_offset %subB, [%c16, %c0] {mode = vc} : !xegpu.tensor_desc<16x16xbf16> -> !xegpu.tensor_desc<16x16xbf16>
 
         scf.yield %7, %8, %6: !xegpu.tensor_desc<8x16xbf16>, !xegpu.tensor_desc<16x16xbf16>, vector<8x16xf32>
       }
 
-      // CHECK: xegpu.create_nd_tdesc
+      // CHECK: xegpu.create_nd_tdesc %{{arg[0-9]}}[{{%arg[0-9]}}, %{{arg[0-9]}}] {mode = #xegpu<mode_kind vc>}
       // CHECK-SAME: memref<1024x1024xf32> -> !xegpu.tensor_desc<8x16xf32>
       %9 = xegpu.create_nd_tdesc %c[%i, %j] {mode = vc} : memref<1024x1024xf32> -> !xegpu.tensor_desc<8x16xf32>
 
-      // CHECK: xegpu.store_nd
+      // CHECK: xegpu.store_nd %{{[0-9]#2}}, %{{[0-9]}} {mode = #xegpu<mode_kind vc>}
       // CHECK-SAME: vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32>
       xegpu.store_nd %result, %9 {mode = vc}: vector<8x16xf32>, !xegpu.tensor_desc<8x16xf32>
     }
diff --git a/mlir/test/Dialect/XeGPU/IR/store_scatter.mlir b/mlir/test/Dialect/XeGPU/IR/store_scatter.mlir
deleted file mode 100644
index 6d98ac3950c31f..00000000000000
--- a/mlir/test/Dialect/XeGPU/IR/store_scatter.mlir
+++ /dev/null
@@ -1,29 +0,0 @@
-// RUN: mlir-opt %s | FileCheck %s
-// Verify the printed output can be parsed.
-// RUN: mlir-opt %s | mlir-opt | FileCheck %s
-// Verify the generic form can be parsed.
-// RUN: mlir-opt -mlir-print-op-generic %s | mlir-opt | FileCheck %s
-
-// CHECK-LABEL: func @test_store_scatter({{.*}}) {
-func.func @test_store_scatter(%src: ui64, %offsets : vector<16xindex>, %dst: ui64) {
-  %0 = arith.constant dense<true>: vector<16xi1>
-  // CHECK: xegpu.create_tdesc %{{arg[0-9]}}, %{{arg[0-9]}} {mode = #xegpu<mode_kind vc>}
-  // CHECK-SAME: ui64, vector<16xindex> -> !xegpu.tensor_desc<16xf32, #xegpu.scattered>
-  %1 = xegpu.create_tdesc %src, %offsets {mode = vc}
-          : ui64, vector<16xindex> -> !xegpu.tensor_desc<16xf32, #xegpu.scattered>
-
-  // CHECK: xegpu.create_tdesc %{{arg[0-9]}}, %{{arg[0-9]}} {mode = #xegpu<mode_kind vc>}
-  // CHECK-SAME: ui64, vector<16xindex> -> !xegpu.tensor_desc<16xf32, #xegpu.scattered>
-  %2 = xegpu.create_tdesc %dst, %offsets {mode = vc}
-                : ui64, vector<16xindex> -> !xegpu.tensor_desc<16xf32, #xegpu.scattered>
-
-  // CHECK: xegpu.load %{{[0-9]}}, %{{.*}} {l1_hint = #xegpu<cache_kind cached>, l2_hint = #xegpu<cache_kind uncached>, mode = #xegpu<mode_kind vc>}
-  // CHECK-SAME: !xegpu.tensor_desc<16xf32, #xegpu.scattered>, vector<16xi1> -> vector<16xf32>
-  %3 = xegpu.load %1, %0 {mode = vc, l1_hint = cached, l2_hint = uncached}
-                  : !xegpu.tensor_desc<16xf32, #xegpu.scattered>, vector<16xi1> -> vector<16xf32>
-  // CHECK: xegpu.store %{{[0-9]}}, %{{[0-9]}}, %{{.*}} {l1_hint = #xegpu<cache_kind write_back>, l2_hint = #xegpu<cache_kind uncached>, mode = #xegpu<mode_kind vc>}
-  // CHECK-SAME: vector<16xf32>, !xegpu.tensor_desc<16xf32, #xegpu.scattered>, vector<16xi1>
-  xegpu.store %3, %2, %0 {mode = vc, l1_hint = write_back, l2_hint = uncached}
-                  : vector<16xf32>, !xegpu.tensor_desc<16xf32, #xegpu.scattered>, vector<16xi1>
-  return
-}



More information about the Mlir-commits mailing list