[Mlir-commits] [mlir] 9cd4128 - [mlir][sparse] add a 3-d block and fiber test (#78529)
llvmlistbot at llvm.org
llvmlistbot at llvm.org
Thu Jan 18 07:52:46 PST 2024
Author: Aart Bik
Date: 2024-01-18T07:52:42-08:00
New Revision: 9cd41289989f07d08f14d8a67ccc2d6445cc7d43
URL: https://github.com/llvm/llvm-project/commit/9cd41289989f07d08f14d8a67ccc2d6445cc7d43
DIFF: https://github.com/llvm/llvm-project/commit/9cd41289989f07d08f14d8a67ccc2d6445cc7d43.diff
LOG: [mlir][sparse] add a 3-d block and fiber test (#78529)
Added:
mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_block3d.mlir
Modified:
Removed:
################################################################################
diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_block3d.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_block3d.mlir
new file mode 100755
index 00000000000000..df12a6e042dde0
--- /dev/null
+++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_block3d.mlir
@@ -0,0 +1,122 @@
+//--------------------------------------------------------------------------------------------------
+// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
+//
+// Set-up that's shared across all tests in this directory. In principle, this
+// config could be moved to lit.local.cfg. However, there are downstream users that
+// do not use these LIT config files. Hence why this is kept inline.
+//
+// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
+// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
+// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
+// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
+// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
+// DEFINE: %{run_opts} = -e main -entry-point-result=void
+// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
+// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
+//
+// DEFINE: %{env} =
+//--------------------------------------------------------------------------------------------------
+
+// RUN: %{compile} | %{run} | FileCheck %s
+//
+// Do the same run, but now with direct IR generation.
+// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true
+// RUN: %{compile} | %{run} | FileCheck %s
+//
+// Do the same run, but now with direct IR generation and vectorization.
+// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true vl=2 reassociate-fp-reductions=true enable-index-optimizations=true
+// RUN: %{compile} | %{run} | FileCheck %s
+//
+// Do the same run, but now with direct IR generation and VLA vectorization.
+// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %}
+
+#Sparse1 = #sparse_tensor.encoding<{
+ map = (i, j, k) -> (
+ i : compressed,
+ j : compressed,
+ k : compressed
+ )
+}>
+
+#Sparse2 = #sparse_tensor.encoding<{
+ map = (i, j, k) -> (
+ i floordiv 2 : compressed,
+ j floordiv 2 : compressed,
+ k floordiv 2 : compressed,
+ i mod 2 : dense,
+ j mod 2 : dense,
+ k mod 2 : dense)
+}>
+
+module {
+
+ //
+ // Main driver that tests sparse tensor storage.
+ //
+ func.func @main() {
+ %c0 = arith.constant 0 : index
+ %i0 = arith.constant 0 : i32
+
+ // Setup input dense tensor and convert to two sparse tensors.
+ %d = arith.constant dense <[
+ [ // i=0
+ [ 1, 0, 0, 0 ],
+ [ 0, 0, 0, 0 ],
+ [ 0, 0, 0, 0 ],
+ [ 0, 0, 5, 0 ] ],
+ [ // i=1
+ [ 2, 0, 0, 0 ],
+ [ 0, 0, 0, 0 ],
+ [ 0, 0, 0, 0 ],
+ [ 0, 0, 6, 0 ] ],
+ [ //i=2
+ [ 3, 0, 0, 0 ],
+ [ 0, 0, 0, 0 ],
+ [ 0, 0, 0, 0 ],
+ [ 0, 0, 7, 0 ] ],
+ //i=3
+ [ [ 4, 0, 0, 0 ],
+ [ 0, 0, 0, 0 ],
+ [ 0, 0, 0, 0 ],
+ [ 0, 0, 8, 0 ] ]
+ ]> : tensor<4x4x4xi32>
+
+ %a = sparse_tensor.convert %d : tensor<4x4x4xi32> to tensor<4x4x4xi32, #Sparse1>
+ %b = sparse_tensor.convert %d : tensor<4x4x4xi32> to tensor<4x4x4xi32, #Sparse2>
+
+ //
+ // If we store the two "fibers" [1,2,3,4] starting at index (0,0,0) and
+ // ending at index (3,0,0) and [5,6,7,8] starting at index (0,3,2) and
+ // ending at index (3,3,2)) with a “DCSR-flavored” along (j,k) with
+ // dense “fibers” in the i-dim, we end up with 8 stored entries.
+ //
+ // CHECK: 8
+ // CHECK-NEXT: ( 1, 5, 2, 6, 3, 7, 4, 8 )
+ //
+ %na = sparse_tensor.number_of_entries %a : tensor<4x4x4xi32, #Sparse1>
+ vector.print %na : index
+ %ma = sparse_tensor.values %a: tensor<4x4x4xi32, #Sparse1> to memref<?xi32>
+ %va = vector.transfer_read %ma[%c0], %i0: memref<?xi32>, vector<8xi32>
+ vector.print %va : vector<8xi32>
+
+ //
+ // If we store full 2x2x2 3-D blocks in the original index order
+ // in a compressed fashion, we end up with 4 blocks to incorporate
+ // all the nonzeros, and thus 32 stored entries.
+ //
+ // CHECK: 32
+ // CHECK-NEXT: ( 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 5, 0, 0, 0, 6, 0, 3, 0, 0, 0, 4, 0, 0, 0, 0, 0, 7, 0, 0, 0, 8, 0 )
+ //
+ %nb = sparse_tensor.number_of_entries %b : tensor<4x4x4xi32, #Sparse2>
+ vector.print %nb : index
+ %mb = sparse_tensor.values %b: tensor<4x4x4xi32, #Sparse2> to memref<?xi32>
+ %vb = vector.transfer_read %mb[%c0], %i0: memref<?xi32>, vector<32xi32>
+ vector.print %vb : vector<32xi32>
+
+ // Release the resources.
+ bufferization.dealloc_tensor %a : tensor<4x4x4xi32, #Sparse1>
+ bufferization.dealloc_tensor %b : tensor<4x4x4xi32, #Sparse2>
+
+ return
+ }
+}
More information about the Mlir-commits
mailing list