[Mlir-commits] [mlir] [MLIR][Presburger] Implement function to evaluate the number of terms in a generating function. (PR #78078)
Arjun P
llvmlistbot at llvm.org
Sun Jan 14 10:01:49 PST 2024
================
@@ -245,3 +245,215 @@ QuasiPolynomial mlir::presburger::detail::getCoefficientInRationalFunction(
}
return coefficients[power].simplify();
}
+
+/// We have a generating function of the form
+/// f_p(x) = \sum_i sign_i * (x^n_i(p)) / (\prod_j (1 - x^d_{ij})
+///
+/// where sign_i is ±1,
+/// n_i \in Q^p -> Q^d is a d-vector of affine functions on p parameters, and
+/// d_{ij} \in Q^d are vectors.
+///
+/// We need to find the number of terms of the form x^t in the expansion of
+/// this function, for which we substitute x = (1, ..., 1).
+/// However, direct substitution causes the denominator to become zero.
+///
+/// We therefore use the following procedure instead:
+/// 1. Substitute x_i = (s+1)^μ_i for some vector μ. This makes the generating
+/// a function of a scalar s.
+/// 2. Write each term in this function as P(s)/Q(s), where P and Q are
+/// polynomials. P has coefficients as quasipolynomials in d parameters, while
+/// Q has coefficients as scalars.
+/// 3. Find the constant term in the expansion of each term P(s)/Q(s). This is
+/// equivalent to substituting s = 0, which by step 1's substitution is
+/// equivalent to letting x = (1, ..., 1).
+/// In this step, we cancel the factor with root zero from the numerator and
+/// denominator, thus preventing the denominator from becoming zero.
+/// Step (1) We need to find a μ_i such that we can substitute x_i =
+/// (s+1)^μ_i. After this substitution, the exponent of (s+1) in the
+/// denominator is (μ_i • d_{ij}) in each term. Clearly, this cannot become
+/// zero. Thus we find a vector μ that is not orthogonal to any of the
+/// d_{ij} and substitute x accordingly.
+///
+/// Step (2) We need to express the terms in the function as quotients of
+/// polynomials. Each term is now of the form
+/// sign_i * (s+1)^n_i / (\prod_j (1 - (s+1)^d'_{ij}))
+/// For the i'th term, we first convert all the d'_{ij} to their
+/// absolute values by multiplying and dividing by (s+1)^(-d'_{ij}) if it is
+/// negative. We change the sign accordingly.
+/// Then, we replace each (1 - (s+1)^(d'_{ij})) with
+/// (-s)(\sum_{0 ≤ k < d'_{ij}} (s+1)^k).
+/// Thus the term overall has now the form
+/// sign'_i * (s+1)^n'_i / (s^r * \prod_j (\sum_k (s+1)^k)).
+/// This means that
+/// the numerator is a polynomial in s, with coefficients as
+/// quasipolynomials (given by binomial coefficients), and the denominator
+/// is polynomial in s, with fractional coefficients (given by taking the
+/// convolution over all j).
+///
+/// Step (3) We need to find the constant term in the expansion of each
+/// term. Since each term has s^r as a factor in the denominator, we avoid
+/// substituting s = 0 directly; instead, we find the coefficient of s^r in
+/// sign'_i * (s+1)^n'_i / (\prod_j (\sum_k (s+1)^k)),
+/// for which we use the `getCoefficientInRationalFunction()` function.
+///
+/// Verdoolaege, Sven, et al. "Counting integer points in parametric
+/// polytopes using Barvinok's rational functions." Algorithmica 48 (2007):
+/// 37-66.
+
+QuasiPolynomial
+mlir::presburger::detail::computeNumTerms(const GeneratingFunction &gf) {
+ std::vector<Point> allDenominators;
+ for (ArrayRef<Point> den : gf.getDenominators())
+ allDenominators.insert(allDenominators.end(), den.begin(), den.end());
+ Point mu = getNonOrthogonalVector(allDenominators);
+
+ unsigned numParams = gf.getNumParams();
+ unsigned numDims = mu.size();
+ unsigned numTerms = gf.getDenominators().size();
+
+ QuasiPolynomial totalTerm(numParams, 0);
+ for (unsigned i = 0; i < numTerms; ++i) {
+ int sign = gf.getSigns()[i];
+ ParamPoint v = gf.getNumerators()[i];
+ std::vector<Point> ds = gf.getDenominators()[i];
+
+ // Substitute x_i = (s+1)^μ_i
+ // Then the exponent in the numerator becomes
+ // - (μ • u_1) * (floor(first col of v))
+ // - (μ • u_2) * (floor(second col of v)) - ...
+ // - (μ • u_d) * (floor(d'th col of v))
+ // So we store the negation of the dot produts.
+
+ // We have d terms, each of whose coefficient is the negative dot product,
+ SmallVector<Fraction> coefficients;
+ coefficients.reserve(numDims);
+ for (const Point &d : ds)
+ coefficients.push_back(-dotProduct(mu, d));
+
+ // and whose affine fn is a single floor expression, given by the
+ // corresponding column of v.
+ std::vector<std::vector<SmallVector<Fraction>>> affine;
+ affine.reserve(numDims);
+ for (unsigned j = 0; j < numDims; ++j)
+ affine.push_back({SmallVector<Fraction>(v.transpose().getRow(j))});
+
+ QuasiPolynomial num(numParams, coefficients, affine);
+ num = num.simplify();
+
+ // Now the numerator is (s+1)^num.
+
+ std::vector<Fraction> dens;
+ dens.reserve(ds.size());
+ // Similarly, each term in the denominator has exponent
+ // given by the dot product of μ with u_i.
+ for (const Point &d : ds)
+ dens.push_back(dotProduct(d, mu));
----------------
Superty wrote:
Create a new function for substitution. You can assert there than the denom doesn't become zero.
https://github.com/llvm/llvm-project/pull/78078
More information about the Mlir-commits
mailing list