[Mlir-commits] [mlir] [mlir][linalg] Generate `vector.transfer_read` for contiguous `tensor.extract` loads (PR #76436)

Prathamesh Tagore llvmlistbot at llvm.org
Sat Jan 13 12:36:26 PST 2024


https://github.com/meshtag updated https://github.com/llvm/llvm-project/pull/76436

>From 6a6755ada157b9b7facc49699d1be521ae56b74c Mon Sep 17 00:00:00 2001
From: meshtag <prathameshtagore at gmail.com>
Date: Mon, 25 Dec 2023 07:56:44 +0000
Subject: [PATCH] Add first draft

---
 .../Linalg/Transforms/Vectorization.cpp       | 191 ++++++------
 .../Linalg/vectorize-tensor-extract.mlir      | 284 +++++++++++++++---
 2 files changed, 336 insertions(+), 139 deletions(-)

diff --git a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
index c21d007c931b9b..74a17e2ed8df18 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
@@ -26,6 +26,7 @@
 #include "mlir/IR/PatternMatch.h"
 #include "mlir/Support/LLVM.h"
 #include "mlir/Transforms/RegionUtils.h"
+#include "llvm/ADT/ArrayRef.h"
 #include "llvm/ADT/STLExtras.h"
 #include "llvm/ADT/Sequence.h"
 #include "llvm/ADT/SmallVector.h"
@@ -788,11 +789,8 @@ enum VectorMemoryAccessKind { ScalarBroadcast, Contiguous, Gather };
 static bool isLoopInvariantIdx(LinalgOp &linalgOp, Value &val) {
 
   auto targetShape = linalgOp.getStaticLoopRanges();
-  assert(((llvm::count_if(targetShape,
-                          [](int64_t dimSize) { return dimSize > 1; }) == 1)) &&
-         "n-D vectors are not yet supported");
   assert(targetShape.back() != 1 &&
-         "1-D vectors with the trailing dim eqaual 1 are not yet supported");
+         "1-D vectors with the trailing dim equal to 1 are not yet supported");
 
   // Blocks outside _this_ linalg.generic are effectively loop invariant.
   // However, analysing block arguments for _this_ linalg.generic Op is a bit
@@ -806,16 +804,24 @@ static bool isLoopInvariantIdx(LinalgOp &linalgOp, Value &val) {
   Operation *defOp = val.getDefiningOp();
   assert(defOp && "This is neither a block argument nor an operation result");
 
-  // IndexOp is loop invariant as long as its result remains constant across
-  // iterations. Given the assumptions on the loop ranges above, only the
-  // trailing loop dim ever changes.
-  auto trailingLoopDim = linalgOp.getStaticLoopRanges().size() - 1;
-  if (auto indexOp = dyn_cast<linalg::IndexOp>(defOp))
-    return (indexOp.getDim() != trailingLoopDim);
+  if (auto indexOp = dyn_cast<linalg::IndexOp>(defOp)) {
+    // If target shape is of the form 1x1x1x..x1..xn and val is obtained from a
+    // linalg.index op, it will be loop invariant only if index op's dim is not
+    // the trailing dimension.
+    if (llvm::count_if(targetShape,
+                       [](int64_t dimSize) { return dimSize > 1; }) == 1 &&
+        targetShape.back() != 1) {
+      auto trailingLoopDim = linalgOp.getStaticLoopRanges().size() - 1;
+      return indexOp.getDim() != trailingLoopDim;
+    }
+    // val will be loop variant in most other cases.
+    // TODO: Relax this condition
+    return false;
+  }
 
   auto *ancestor = block->findAncestorOpInBlock(*defOp);
 
-  // Values define outside `linalgOp` are loop invariant.
+  // Values defined outside `linalgOp` are loop invariant.
   if (!ancestor)
     return true;
 
@@ -830,50 +836,52 @@ static bool isLoopInvariantIdx(LinalgOp &linalgOp, Value &val) {
   return result;
 }
 
-/// Check whether \p val could be used for calculating the trailing index for a
-/// contiguous load operation.
-///
-/// There are currently 3 types of values that are allowed here:
-///   1. loop-invariant values,
-///   2. values that increment by 1 with every loop iteration,
-///   3. results of basic arithmetic operations (linear and continuous)
-///      involving 1., 2. and 3.
-/// This method returns True if indeed only such values are used in calculating
-/// \p val.
-///
-/// Additionally, the trailing index for a contiguous load operation should
-/// increment by 1 with every loop iteration, i.e. be based on:
-///   * `linalg.index <dim>` ,
-/// where <dim> is the trailing dim of the iteration space. \p foundIndexOp is
-/// updated to `true` when such an op is found.
-static bool isContiguousLoadIdx(LinalgOp &linalgOp, Value &val,
-                                bool &foundIndexOp) {
-
+// Determine if the \p val is obtained from a linalg.index op for the dimension
+// at which it is used to extract a value from the tensor and if it could be
+// used for contigous memory access. For example:
+//    %val1 = lingalg.index 0 : index
+//    %e1 = tensor.extract %arg0[%val1, ..] : tensor<3x3xf32> would return true
+// while the following case
+//    %val1 = lingalg.index 0 : index
+//    %e1 = tensor.extract %arg0[.., %val1] : tensor<3x3xf32> would return false
+// TODO: Relax this requirement to cover cases for contiguous access where inner
+// dimensions of the tensor vary using linalg.generic while outer dimensions are
+// kept constant.
+// Ex. %c0 = arith.constant 0 : index
+//     %val1 = linalg.index 0 : index
+//     %e1 = tensor.extract %arg0[%c0, %val1] : tensor<3x3xf32>
+static bool isProperLinalgIdx(LinalgOp &linalgOp, Value &val,
+                              uint64_t valuePosInExtract) {
   auto targetShape = linalgOp.getStaticLoopRanges();
-  assert(((llvm::count_if(targetShape,
-                          [](int64_t dimSize) { return dimSize > 1; }) == 1)) &&
-         "n-D vectors are not yet supported");
   assert(targetShape.back() != 1 &&
          "1-D vectors with the trailing dim 1 are not yet supported");
 
-  // Blocks outside _this_ linalg.generic are effectively loop invariant.
-  // However, analysing block arguments for _this_ linalg.generic Op is a bit
-  // tricky. Just bail out in the latter case.
-  // TODO: We could try analysing the corresponding affine map here.
+  // val can't be a result of linalg.index for this linalg.generic if it is a
+  // block argument.
   auto *block = linalgOp.getBlock();
   if (isa<BlockArgument>(val))
-    return llvm::all_of(block->getArguments(),
-                        [&val](Value v) { return (v != val); });
+    return false;
 
   Operation *defOp = val.getDefiningOp();
-  assert(defOp && "This is neither a block argument nor an operation result");
+  assert(defOp && "This is not an operation result");
 
-  // Given the assumption on the loop ranges above, only the trailing loop
-  // index is not constant.
-  auto trailingLoopDim = linalgOp.getStaticLoopRanges().size() - 1;
   if (auto indexOp = dyn_cast<linalg::IndexOp>(defOp)) {
-    foundIndexOp = (indexOp.getDim() == trailingLoopDim);
-    return true;
+    // If target shape is of the form 1x1x1x..x1..xn and val is obtained from a
+    // linalg.index op, it can be used for contiguous access only when it is
+    // obtained for the trailing dimension.
+    if (llvm::count_if(targetShape,
+                       [](int64_t dimSize) { return dimSize > 1; }) == 1 &&
+        targetShape.back() != 1) {
+      auto trailingLoopDim = linalgOp.getStaticLoopRanges().size() - 1;
+
+      // This is for special handling of the case when n dimensional tensor is
+      // accessed like [p, ..p.., p, c, ..c.., c, idx_for_trailing_loop_dim]
+      // where:
+      // p = properLinalgIdx with its indexOp.getDim() == valuePosInExtract
+      // c = loopInvariantIdx
+      return indexOp.getDim() == trailingLoopDim;
+    }
+    return indexOp.getDim() == valuePosInExtract;
   }
 
   auto *ancestor = block->findAncestorOpInBlock(*defOp);
@@ -882,14 +890,14 @@ static bool isContiguousLoadIdx(LinalgOp &linalgOp, Value &val,
     return false;
 
   // Conservatively reject Ops that could lead to indices with stride other
-  // than 1.
+  // than 1 after processing the result of linalg.index.
   if (!isa<arith::AddIOp, arith::SubIOp, arith::ConstantOp, linalg::IndexOp>(
           ancestor))
     return false;
 
   bool result = false;
   for (auto op : ancestor->getOperands())
-    result |= isContiguousLoadIdx(linalgOp, op, foundIndexOp);
+    result |= isProperLinalgIdx(linalgOp, op, valuePosInExtract);
 
   return result;
 }
@@ -915,67 +923,59 @@ getTensorExtractMemoryAccessPattern(tensor::ExtractOp extractOp,
   if (linalgOp.hasDynamicShape())
     return VectorMemoryAccessKind::Gather;
 
-  // 1. Assume that it's a gather load when reading _into_:
-  //    * an n-D vector, like`tensor<1x2x4xi32` or`tensor<2x1x4xi32>`, or
-  //    * a 1-D vector with the trailing dim equal 1, e.g. `tensor<1x4x1xi32`.
-  // TODO: Relax these conditions.
+  // 1. Assume that it's a gather load when reading _into_ a 1-D vector with the
+  // trailing dim equal 1, e.g. `vector<1x4x1xi32>`.
+  // TODO: Relax this condition.
   // FIXME: This condition assumes non-dynamic sizes.
-  if ((llvm::count_if(targetShape,
-                      [](int64_t dimSize) { return dimSize > 1; }) != 1) ||
-      targetShape.back() == 1)
+  if (targetShape.back() == 1)
     return VectorMemoryAccessKind::Gather;
 
   // 2. Assume that it's a gather load when reading _from_ a tensor for which
   // the trailing dimension is 1, e.g. `tensor<1x4x1xi32>`.
   // TODO: Relax this condition.
+  // FIXME: This condition assumes non-dynamic sizes.
   if (inputShape.getShape().back() == 1)
     return VectorMemoryAccessKind::Gather;
 
-  bool leadingIdxsLoopInvariant = true;
+  bool isLoopInvariantLoad = true;
+  bool isProperLinalgIdxLoad = true;
 
-  // 3. Analyze the leading indices of `extractOp`.
+  // 3. Analyze the indices of `extractOp`.
   // Look at the way each index is calculated and decide whether it is suitable
-  // for a contiguous load, i.e. whether it's loop invariant.
+  // for a contiguous load.
   auto indices = extractOp.getIndices();
-  auto leadIndices = indices.drop_back(1);
-
-  for (auto [i, indexVal] : llvm::enumerate(leadIndices)) {
+  for (auto [i, indexVal] : llvm::enumerate(indices)) {
     if (inputShape.getShape()[i] == 1)
       continue;
 
-    leadingIdxsLoopInvariant &= isLoopInvariantIdx(linalgOp, indexVal);
-  }
-
-  if (!leadingIdxsLoopInvariant) {
-    LDBG("Found gather load: " << extractOp);
-    return VectorMemoryAccessKind::Gather;
+    isLoopInvariantLoad &= isLoopInvariantIdx(linalgOp, indexVal);
+    isProperLinalgIdxLoad &= !isLoopInvariantLoad
+                                 ? isProperLinalgIdx(linalgOp, indexVal, i)
+                                 : isProperLinalgIdxLoad;
+
+    // 4a. The load can't be scalar broadcast or contiguous if one of the
+    //     indices is not
+    //     i.  Loop invariant
+    //     ii. Not obtained from a linalg.index with its dimension attribute
+    //         appropriate for the dimension at which this indice was used in
+    //         `extractOp`.
+    if (!isLoopInvariantLoad && !isProperLinalgIdxLoad) {
+      LDBG("Found gather load: " << extractOp);
+      return VectorMemoryAccessKind::Gather;
+    }
   }
 
-  // 4. Analyze the trailing index for `extractOp`.
-  // At this point we know that the leading indices are loop invariant. This
-  // means that is potentially a scalar or a contiguous load. We can decide
-  // based on the trailing idx.
-  auto extractOpTrailingIdx = indices.back();
-
-  // 4a. Scalar broadcast load
-  // If the trailing index is loop invariant then this is a scalar load.
-  if (leadingIdxsLoopInvariant &&
-      isLoopInvariantIdx(linalgOp, extractOpTrailingIdx)) {
+  if (isLoopInvariantLoad) {
+    // 4b. It is a scalar broadcast load if all indices of `extractOp` are loop
+    //     invariant.
     LDBG("Found scalar broadcast load: " << extractOp);
-
     return VectorMemoryAccessKind::ScalarBroadcast;
-  }
-
-  // 4b. Contiguous loads
-  // The trailing `extractOp` index should increment with every loop iteration.
-  // This effectively means that it must be based on the trailing loop index.
-  // This is what the following bool captures.
-  bool foundIndexOp = false;
-  bool isContiguousLoad =
-      isContiguousLoadIdx(linalgOp, extractOpTrailingIdx, foundIndexOp);
-  isContiguousLoad &= foundIndexOp;
-
-  if (isContiguousLoad) {
+  } else if (!isLoopInvariantLoad && isProperLinalgIdxLoad) {
+    // 4c. It is a contiguous load if
+    //     i.  Some indices are not loop invariant and
+    //     ii. Those indices are obtained from `linalg.index` ops with
+    //         their dimension attributes appropriate for the dimension at which
+    //         they were used in `extractOp`.
     LDBG("Found contigous load: " << extractOp);
     return VectorMemoryAccessKind::Contiguous;
   }
@@ -1048,9 +1048,6 @@ vectorizeTensorExtract(RewriterBase &rewriter, VectorizationState &state,
   //   * for vector indices (e.g. `vector<1x1x4xindex>`) - extract the bottom
   //    (0th) element and use that.
   SmallVector<Value> transferReadIdxs;
-  auto resTrailingDim = resultType.getShape().back();
-  auto zero = rewriter.create<arith::ConstantOp>(
-      loc, rewriter.getI32Type(), rewriter.getZeroAttr(rewriter.getI32Type()));
   for (size_t i = 0; i < extractOp.getIndices().size(); i++) {
     auto idx = bvm.lookup(extractOp.getIndices()[i]);
     if (idx.getType().isIndex()) {
@@ -1058,11 +1055,11 @@ vectorizeTensorExtract(RewriterBase &rewriter, VectorizationState &state,
       continue;
     }
 
-    auto indexAs1dVector = rewriter.create<vector::ShapeCastOp>(
-        loc, VectorType::get({resTrailingDim}, rewriter.getIndexType()),
-        bvm.lookup(extractOp.getIndices()[i]));
-    transferReadIdxs.push_back(
-        rewriter.create<vector::ExtractElementOp>(loc, indexAs1dVector, zero));
+    auto idxShapedType = dyn_cast<ShapedType>(idx.getType());
+    SmallVector<int64_t> extractIndicesVec(idxShapedType.getRank(), 0);
+
+    transferReadIdxs.push_back(rewriter.create<vector::ExtractOp>(
+        loc, idx, ArrayRef<int64_t>(extractIndicesVec)));
   }
 
   // `tensor.extract_element` is always in-bounds, hence the following holds.
diff --git a/mlir/test/Dialect/Linalg/vectorize-tensor-extract.mlir b/mlir/test/Dialect/Linalg/vectorize-tensor-extract.mlir
index 3fd4fcd536624c..2515ad4fd9c07d 100644
--- a/mlir/test/Dialect/Linalg/vectorize-tensor-extract.mlir
+++ b/mlir/test/Dialect/Linalg/vectorize-tensor-extract.mlir
@@ -92,17 +92,19 @@ func.func @vectorize_nd_tensor_extract_transfer_read_basic(%arg0: tensor<3x3x3xf
 
 // CHECK-LABEL: func.func @vectorize_nd_tensor_extract_transfer_read_basic
 // CHECK-SAME: %[[ARG0:.*]]: tensor<3x3x3xf32>
-// CHECK-SAME: %[[ARG1:.*]]: tensor<1x1x3xf32>
-// CHECK:   %[[CST:.*]] = arith.constant dense<0> : vector<1x1x3xindex>
-// CHECK:   %[[C0_i32:.*]] = arith.constant 0 : i32
-// CHECK:   %[[C0:.*]] = arith.constant 0 : index
-// CHECK:   %[[CST_0:.*]] = arith.constant 0.000000e+00 : f32
-// CHECK:   %[[IDX_VEC0:.*]] = vector.shape_cast %[[CST]] : vector<1x1x3xindex> to vector<3xindex>
-// CHECK:   %[[IDX1:.*]] = vector.extractelement %[[IDX_VEC0]][%[[C0_i32]] : i32] : vector<3xindex>
-// CHECK:   %[[IDX_VEC:.*]] = vector.shape_cast %[[CST]] : vector<1x1x3xindex> to vector<3xindex>
-// CHECK:   %[[IDX2:.*]] = vector.extractelement %[[IDX_VEC]][%[[C0_i32]] : i32] : vector<3xindex>
-// CHECK:   %[[READ:.*]] = vector.transfer_read %[[ARG0]][%[[IDX1]], %[[IDX2]], %[[C0:.*]]], %[[CST_0]] {in_bounds = [true, true, true]} : tensor<3x3x3xf32>, vector<1x1x3xf32>
-// CHECK:   vector.transfer_write %[[READ]], %[[ARG1]][%[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true, true, true]} : vector<1x1x3xf32>, tensor<1x1x3xf32>
+// CHECK-SAME: %[[ARG1:.*]]: tensor<1x1x3xf32>) -> tensor<1x1x3xf32> {
+//      CHECK: %[[CST:.*]] = arith.constant dense<0> : vector<1xindex>
+//      CHECK: %[[CST_0:.*]] = arith.constant dense<[0, 1, 2]> : vector<3xindex>
+//      CHECK: %[[CST_1:.*]] = arith.constant 0.000000e+00 : f32
+//      CHECK: %[[C0:.*]] = arith.constant 0 : index
+//      CHECK: %[[E0:.*]] = vector.extract %[[CST]][0] : index from vector<1xindex>
+//      CHECK: %[[E1:.*]] = vector.extract %[[CST]][0] : index from vector<1xindex>
+//      CHECK: %[[E2:.*]] = vector.extract %[[CST_0]][0] : index from vector<3xindex>
+//      CHECK: %[[R1:.*]] = vector.transfer_read %[[ARG0]][%[[E0]], %[[E1]], %[[E2]]], %[[CST_1]] {in_bounds = [true, true, true]} : tensor<3x3x3xf32>, vector<1x1x3xf32>
+//      CHECK: %[[RES:.*]] = vector.transfer_write %[[R1]], %[[ARG1]][%[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true, true, true]} : vector<1x1x3xf32>, tensor<1x1x3xf32>
+//      CHECK: return %[[RES]] : tensor<1x1x3xf32>
+//      CHECK: }
+
 
 module attributes {transform.with_named_sequence} {
   transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
@@ -113,7 +115,7 @@ module attributes {transform.with_named_sequence} {
   }
 }
 
- // -----
+// -----
 
 func.func @vectorize_nd_tensor_extract_transfer_read_complex(%6: tensor<45x80x16xf32>, %arg0: index, %arg2: index, %arg1: index, %arg4: index, %extracted_slice : tensor<1x4xf32>) -> tensor<1x4xf32> {
   %c79 = arith.constant 79 : index
@@ -134,26 +136,21 @@ func.func @vectorize_nd_tensor_extract_transfer_read_complex(%6: tensor<45x80x16
   return %25 : tensor<1x4xf32>
 }
 
-
-// CHECK-LABEL:   func.func @vectorize_nd_tensor_extract_transfer_read_complex(
+/// CHECK-LABEL:   func.func @vectorize_nd_tensor_extract_transfer_read_complex(
 // CHECK-SAME:      %[[VAL_0:.*]]: tensor<45x80x16xf32>,
 // CHECK-SAME:      %[[VAL_1:.*]]: index, %[[VAL_2:.*]]: index, %[[VAL_3:.*]]: index, %[[VAL_4:.*]]: index,
 // CHECK-SAME:      %[[VAL_5:.*]]: tensor<1x4xf32>) -> tensor<1x4xf32> {
 // CHECK:           %[[VAL_6:.*]] = arith.constant dense<[0, 1, 2, 3]> : vector<4xindex>
-// CHECK:           %[[VAL_7:.*]] = arith.constant 0 : i32
 // CHECK:           %[[VAL_8:.*]] = arith.constant 0.000000e+00 : f32
 // CHECK:           %[[VAL_9:.*]] = arith.constant 0 : index
 // CHECK:           %[[VAL_10:.*]] = arith.constant 79 : index
 // CHECK:           %[[VAL_11:.*]] = arith.addi %[[VAL_1]], %[[VAL_2]] : index
-// CHECK:           %[[VAL_12:.*]] = vector.broadcast %[[VAL_11]] : index to vector<1x4xindex>
 // CHECK:           %[[VAL_13:.*]] = vector.broadcast %[[VAL_3]] : index to vector<4xindex>
 // CHECK:           %[[VAL_14:.*]] = arith.addi %[[VAL_13]], %[[VAL_6]] : vector<4xindex>
 // CHECK:           %[[VAL_15:.*]] = vector.broadcast %[[VAL_4]] : index to vector<4xindex>
 // CHECK:           %[[VAL_16:.*]] = arith.addi %[[VAL_14]], %[[VAL_15]] : vector<4xindex>
-// CHECK:           %[[VAL_17:.*]] = vector.shape_cast %[[VAL_12]] : vector<1x4xindex> to vector<4xindex>
-// CHECK:           %[[VAL_18:.*]] = vector.extractelement %[[VAL_17]]{{\[}}%[[VAL_7]] : i32] : vector<4xindex>
-// CHECK:           %[[VAL_19:.*]] = vector.extractelement %[[VAL_16]]{{\[}}%[[VAL_7]] : i32] : vector<4xindex>
-// CHECK:           %[[VAL_20:.*]] = vector.transfer_read %[[VAL_0]]{{\[}}%[[VAL_18]], %[[VAL_10]], %[[VAL_19]]], %[[VAL_8]] {in_bounds = [true, true]} : tensor<45x80x16xf32>, vector<1x4xf32>
+// CHECK:           %[[VAL_18:.*]] = vector.extract %[[VAL_16]][0] : index from vector<4xindex>
+// CHECK:           %[[VAL_20:.*]] = vector.transfer_read %[[VAL_0]]{{\[}}%[[VAL_11]], %[[VAL_10]], %[[VAL_18]]], %[[VAL_8]] {in_bounds = [true, true]} : tensor<45x80x16xf32>, vector<1x4xf32>
 // CHECK:           %[[VAL_21:.*]] = vector.transfer_write %[[VAL_20]], %[[VAL_5]]{{\[}}%[[VAL_9]], %[[VAL_9]]] {in_bounds = [true, true]} : vector<1x4xf32>, tensor<1x4xf32>
 // CHECK:           return %[[VAL_21]] : tensor<1x4xf32>
 // CHECK:         }
@@ -239,19 +236,21 @@ func.func @vectorize_nd_tensor_extract_contiguous_and_gather(%arg0: tensor<6xf32
 // CHECK-LABEL:   func.func @vectorize_nd_tensor_extract_contiguous_and_gather(
 // CHECK-SAME:                    %[[VAL_0:.*]]: tensor<6xf32>
 // CHECK-SAME:                    %[[VAL_1:.*]]: tensor<5xi32>
-// CHECK:           %[[VAL_2:.*]] = arith.constant 0 : index
+// CHECK:           %[[CST:.*]] = arith.constant dense<[0, 1, 2, 3, 4]> : vector<5xindex>
 // CHECK:           %[[VAL_3:.*]] = arith.constant 0 : i32
 // CHECK:           %[[VAL_4:.*]] = arith.constant dense<0> : vector<5xindex>
 // CHECK:           %[[VAL_5:.*]] = arith.constant dense<5> : vector<5xindex>
 // CHECK:           %[[VAL_6:.*]] = arith.constant dense<true> : vector<5xi1>
 // CHECK:           %[[VAL_7:.*]] = arith.constant dense<0.000000e+00> : vector<5xf32>
+// CHECK:           %[[C0:.*]] = arith.constant 0 : index
 // CHECK:           %[[VAL_8:.*]] = tensor.empty() : tensor<5xf32>
-// CHECK:           %[[VAL_9:.*]] = vector.transfer_read %[[VAL_1]]{{\[}}%[[VAL_2]]], %[[VAL_3]] {in_bounds = [true]} : tensor<5xi32>, vector<5xi32>
+// CHECK:           %[[E0:.*]] = vector.extract %[[CST]][0] : index from vector<5xindex>
+// CHECK:           %[[VAL_9:.*]] = vector.transfer_read %[[VAL_1]]{{\[}}%[[E0]]], %[[VAL_3]] {in_bounds = [true]} : tensor<5xi32>, vector<5xi32>
 // CHECK:           %[[VAL_10:.*]] = arith.index_cast %[[VAL_9]] : vector<5xi32> to vector<5xindex>
 // CHECK:           %[[VAL_11:.*]] = arith.maxsi %[[VAL_10]], %[[VAL_4]] : vector<5xindex>
 // CHECK:           %[[VAL_12:.*]] = arith.minsi %[[VAL_11]], %[[VAL_5]] : vector<5xindex>
-// CHECK:           %[[VAL_13:.*]] = vector.gather %[[VAL_0]]{{\[}}%[[VAL_2]]] {{\[}}%[[VAL_12]]], %[[VAL_6]], %[[VAL_7]] : tensor<6xf32>, vector<5xindex>, vector<5xi1>, vector<5xf32> into vector<5xf32>
-// CHECK:           %[[VAL_14:.*]] = vector.transfer_write %[[VAL_13]], %[[VAL_8]]{{\[}}%[[VAL_2]]] {in_bounds = [true]} : vector<5xf32>, tensor<5xf32>
+// CHECK:           %[[VAL_13:.*]] = vector.gather %[[VAL_0]]{{\[}}%[[C0]]] {{\[}}%[[VAL_12]]], %[[VAL_6]], %[[VAL_7]] : tensor<6xf32>, vector<5xindex>, vector<5xi1>, vector<5xf32> into vector<5xf32>
+// CHECK:           %[[VAL_14:.*]] = vector.transfer_write %[[VAL_13]], %[[VAL_8]]{{\[}}%[[C0]]] {in_bounds = [true]} : vector<5xf32>, tensor<5xf32>
 // CHECK:           return %[[VAL_14]] : tensor<5xf32>
 
 module attributes {transform.with_named_sequence} {
@@ -286,13 +285,12 @@ func.func @vectorize_nd_tensor_extract_with_affine_apply_contiguous(%6: tensor<8
 // CHECK-SAME:                                                                        %[[VAL_1:.*]]: index,
 // CHECK-SAME:                                                                        %[[VAL_2:.*]]: tensor<1x4xf32>) -> tensor<1x4xf32> {
 // CHECK:           %[[VAL_3:.*]] = arith.constant dense<[0, 1, 2, 3]> : vector<4xindex>
-// CHECK:           %[[VAL_4:.*]] = arith.constant 0 : i32
 // CHECK:           %[[VAL_5:.*]] = arith.constant 0.000000e+00 : f32
 // CHECK:           %[[VAL_6:.*]] = arith.constant 0 : index
 // CHECK:           %[[VAL_7:.*]] = arith.constant 79 : index
 // CHECK:           %[[VAL_8:.*]] = vector.broadcast %[[VAL_1]] : index to vector<4xindex>
 // CHECK:           %[[VAL_9:.*]] = arith.addi %[[VAL_8]], %[[VAL_3]] : vector<4xindex>
-// CHECK:           %[[VAL_10:.*]] = vector.extractelement %[[VAL_9]]{{\[}}%[[VAL_4]] : i32] : vector<4xindex>
+// CHECK:           %[[VAL_10:.*]] = vector.extract %[[VAL_9]][0] : index from vector<4xindex>
 // CHECK:           %[[VAL_11:.*]] = vector.transfer_read %[[VAL_0]]{{\[}}%[[VAL_7]], %[[VAL_10]]], %[[VAL_5]] {in_bounds = [true, true]} : tensor<80x16xf32>, vector<1x4xf32>
 // CHECK:           %[[VAL_12:.*]] = vector.transfer_write %[[VAL_11]], %[[VAL_2]]{{\[}}%[[VAL_6]], %[[VAL_6]]] {in_bounds = [true, true]} : vector<1x4xf32>, tensor<1x4xf32>
 // CHECK:           return %[[VAL_12]] : tensor<1x4xf32>
@@ -331,16 +329,31 @@ func.func @vectorize_nd_tensor_extract_with_tensor_extract(%input_1: tensor<1x20
 }
 
 // CHECK-LABEL:   func.func @vectorize_nd_tensor_extract_with_tensor_extract(
-// CHECK-SAME:      %[[INPUT_1:.*]]: tensor<1x20xi32>,
-// CHECK-SAME:      %[[INPUT_2:.*]]: tensor<257x24xf32>,
-// CHECK:           %[[EXTRACTED_0_IDX_0:.*]] = arith.constant 0 : index
-// CHECK:           %[[EXTRACTED_0_IDX_1:.*]] = vector.extractelement %{{.*}}[%{{.*}} : i32] : vector<4xindex>
-// First `tensor.extract` from the generic Op - loop invariant scalar load.
-// CHECK:           tensor.extract %[[INPUT_1]][%[[EXTRACTED_0_IDX_0]], %[[EXTRACTED_0_IDX_1]]] : tensor<1x20xi32>
-// The following `tensor.extract` from the generic Op s a contiguous load (all Ops used
-// for address calculation also satisfy the required conditions).
-// CHECK:           vector.transfer_read %[[INPUT_2]][%{{.*}}, %{{.*}}, %{{.*}} {in_bounds = [true, true]} : tensor<257x24xf32>, vector<1x4xf32>
-
+// CHECK-SAME:        %[[ARG0:.*]]: tensor<1x20xi32>, %[[ARG1:.*]]: tensor<257x24xf32>, %[[ARG2:.*]]: index, %[[ARG3:.*]]: index, %[[ARG4:.*]]: index, %[[ARG5:.*]]: index) -> tensor<1x1x4xf32> {
+//      CHECK:    %[[CST:.*]] = arith.constant dense<0> : vector<1x1x4xindex>
+//      CHECK:    %[[CST0:.*]] = arith.constant dense<[0, 1, 2, 3]> : vector<4xindex>
+//      CHECK:    %[[CST1:.*]] = arith.constant dense<256> : vector<1x1x4xindex>
+//      CHECK:    %[[CST2:.*]] = arith.constant 0.000000e+00 : f32
+//      CHECK:    %[[C0:.*]] = arith.constant 0 : index
+//      CHECK:    %[[VAL0:.*]] = tensor.empty() : tensor<1x1x4xf32>
+//      CHECK:    %[[VAL1:.*]] = arith.addi %[[ARG2]], %[[ARG4]] : index
+//      CHECK:    %[[VAL2:.*]] = vector.broadcast %[[ARG3]] : index to vector<1x1x4xindex>
+//      CHECK:    %[[VAL3:.*]] = vector.broadcast %[[CST0]] : vector<4xindex> to vector<1x1x4xindex>
+//      CHECK:    %[[VAL4:.*]] = arith.addi %[[VAL2]], %[[VAL3]] : vector<1x1x4xindex>
+//      CHECK:    %[[VAL5:.*]] = vector.broadcast %[[ARG5]] : index to vector<1x1x4xindex>
+//      CHECK:    %[[VAL6:.*]] = arith.addi %[[VAL4]], %[[VAL5]] : vector<1x1x4xindex>
+//      CHECK:    %[[EXTRACTED:.*]] = tensor.extract %[[ARG0]][%[[C0]], %[[VAL1]]] : tensor<1x20xi32>
+//      CHECK:    %[[VAL7:.*]] = arith.index_cast %[[EXTRACTED]] : i32 to index
+//      CHECK:    %[[VAL8:.*]] = vector.broadcast %[[VAL7]] : index to vector<1x1x4xindex>
+//      CHECK:    %[[VAL9:.*]] = arith.maxsi %[[VAL8]], %[[CST]] : vector<1x1x4xindex>
+//      CHECK:    %[[VAL10:.*]] = arith.minsi %[[VAL9]], %[[CST1]] : vector<1x1x4xindex>
+//      CHECK:    %[[VAL11:.*]] = vector.extract %[[VAL10]][0, 0, 0] : index from vector<1x1x4xindex>
+//      CHECK:    %[[VAL12:.*]] = vector.extract %[[VAL6]][0, 0, 0] : index from vector<1x1x4xindex>
+//      CHECK:    %[[VAL13:.*]] = vector.transfer_read %[[ARG1]][%[[VAL11]], %[[VAL12]]], %[[CST2]] {in_bounds = [true, true]} : tensor<257x24xf32>, vector<1x4xf32>
+//      CHECK:    %[[VAL14:.*]] = vector.broadcast %[[VAL13]] : vector<1x4xf32> to vector<1x1x4xf32>
+//      CHECK:    %[[VAL15:.*]] = vector.transfer_write %[[VAL14]], %[[VAL0]][%[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true, true, true]} : vector<1x1x4xf32>, tensor<1x1x4xf32>
+//      CHECK:    return %[[VAL15]] : tensor<1x1x4xf32>
+//      CHECK:  }
 
 module attributes {transform.with_named_sequence} {
   transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
@@ -461,13 +474,13 @@ func.func @vectorize_nd_tensor_extract_with_maxsi_contiguous(%arg0: tensor<80x16
 // CHECK-LABEL:   func.func @vectorize_nd_tensor_extract_with_maxsi_contiguous(
 // CHECK-SAME:                                                                 %[[VAL_0:.*]]: tensor<80x16xf32>,
 // CHECK-SAME:                                                                 %[[VAL_1:.*]]: tensor<1x4xf32>) -> tensor<1x4xf32> {
-// CHECK:           %[[VAL_2:.*]] = arith.constant dense<16> : vector<1x4xindex>
-// CHECK:           %[[VAL_3:.*]] = arith.constant 0 : i32
-// CHECK:           %[[VAL_4:.*]] = arith.constant 0 : index
+// CHECK:           %[[VAL_2:.*]] = arith.constant dense<16> : vector<4x1xindex>
+// CHECK:           %[[VAL_3:.*]] = arith.constant dense<[0, 1, 2, 3]> : vector<4xindex>
 // CHECK:           %[[VAL_5:.*]] = arith.constant 0.000000e+00 : f32
-// CHECK:           %[[VAL_6:.*]] = vector.shape_cast %[[VAL_2]] : vector<1x4xindex> to vector<4xindex>
-// CHECK:           %[[VAL_7:.*]] = vector.extractelement %[[VAL_6]]{{\[}}%[[VAL_3]] : i32] : vector<4xindex>
-// CHECK:           %[[VAL_8:.*]] = vector.transfer_read %[[VAL_0]]{{\[}}%[[VAL_7]], %[[VAL_4]]], %[[VAL_5]] {in_bounds = [true, true]} : tensor<80x16xf32>, vector<1x4xf32>
+// CHECK:           %[[VAL_4:.*]] = arith.constant 0 : index
+// CHECK:           %[[VAL_7:.*]] = vector.extract %[[VAL_2]][0, 0] : index from vector<4x1xindex>
+// CHECK:           %[[VAL_6:.*]] = vector.extract %[[VAL_3]][0] : index from vector<4xindex>
+// CHECK:           %[[VAL_8:.*]] = vector.transfer_read %[[VAL_0]]{{\[}}%[[VAL_7]], %[[VAL_6]]], %[[VAL_5]] {in_bounds = [true, true]} : tensor<80x16xf32>, vector<1x4xf32>
 // CHECK:           %[[VAL_9:.*]] = vector.transfer_write %[[VAL_8]], %[[VAL_1]]{{\[}}%[[VAL_4]], %[[VAL_4]]] {in_bounds = [true, true]} : vector<1x4xf32>, tensor<1x4xf32>
 // CHECK:           return %[[VAL_9]] : tensor<1x4xf32>
 // CHECK:         }
@@ -550,3 +563,190 @@ module attributes {transform.with_named_sequence} {
      transform.yield
    }
 }
+
+// -----
+
+func.func @vectorize_nd_tensor_extract_contigous(%arg0: tensor<80x16x17x18x19xf32>, %extracted_slice : tensor<4x5x6x7x8xf32>) -> tensor<4x5x6x7x8xf32> {
+  %1 = linalg.generic {
+    indexing_maps = [affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>],
+    iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel"]
+  } outs(%extracted_slice : tensor<4x5x6x7x8xf32>) {
+  ^bb0(%out: f32):
+    %2 = linalg.index 0 : index
+    %3 = linalg.index 1 : index
+    %4 = linalg.index 2 : index
+    %5 = linalg.index 3 : index
+    %6 = linalg.index 4 : index
+    %extracted = tensor.extract %arg0[%2, %3, %4, %5, %6] : tensor<80x16x17x18x19xf32>
+    linalg.yield %extracted : f32
+  } -> tensor<4x5x6x7x8xf32>
+  return %1 : tensor<4x5x6x7x8xf32>
+}
+
+// CHECK-LABEL:   func.func @vectorize_nd_tensor_extract_contigous(
+//  CHECK-SAME:     %[[ARG0:.*]]: tensor<80x16x17x18x19xf32>, %[[ARG1:.*]]: tensor<4x5x6x7x8xf32>) -> tensor<4x5x6x7x8xf32> {
+//       CHECK:    %[[CST:.*]] = arith.constant dense<[0, 1, 2, 3]> : vector<4xindex>
+//       CHECK:    %[[CST0:.*]] = arith.constant dense<[0, 1, 2, 3, 4]> : vector<5xindex>
+//       CHECK:    %[[CST1:.*]] = arith.constant dense<[0, 1, 2, 3, 4, 5]> : vector<6xindex>
+//       CHECK:    %[[CST2:.*]] = arith.constant dense<[0, 1, 2, 3, 4, 5, 6]> : vector<7xindex>
+//       CHECK:    %[[CST3:.*]] = arith.constant dense<[0, 1, 2, 3, 4, 5, 6, 7]> : vector<8xindex>
+//       CHECK:    %[[CST4:.*]] = arith.constant 0.000000e+00 : f32
+//       CHECK:    %[[C0:.*]] = arith.constant 0 : index
+//       CHECK:    %[[VAL0:.*]] = vector.extract %[[CST]][0] : index from vector<4xindex>
+//       CHECK:    %[[VAL1:.*]] = vector.extract %[[CST0]][0] : index from vector<5xindex>
+//       CHECK:    %[[VAL2:.*]] = vector.extract %[[CST1]][0] : index from vector<6xindex>
+//       CHECK:    %[[VAL3:.*]] = vector.extract %[[CST2]][0] : index from vector<7xindex>
+//       CHECK:    %[[VAL4:.*]] = vector.extract %[[CST3]][0] : index from vector<8xindex>
+//       CHECK:    %[[VAL5:.*]] = vector.transfer_read %[[ARG0]][%[[VAL0]], %[[VAL1]], %[[VAL2]], %[[VAL3]], %[[VAL4]]], %[[CST4]] {in_bounds = [true, true, true, true, true]} : tensor<80x16x17x18x19xf32>, vector<4x5x6x7x8xf32>
+//       CHECK:    %[[VAL6:.*]] = vector.transfer_write %[[VAL5]], %arg1[%[[C0]], %[[C0]], %[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true, true, true, true, true]} : vector<4x5x6x7x8xf32>, tensor<4x5x6x7x8xf32>
+//       CHECK:    return %[[VAL6]] : tensor<4x5x6x7x8xf32>
+//       CHECK:  }
+
+module attributes {transform.with_named_sequence} {
+  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
+     %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
+     %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
+     %2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op
+     transform.yield
+   }
+}
+
+// -----
+
+func.func @vectorize_nd_tensor_extract_gather(%arg0: tensor<80x16x17x18x19xf32>, %extracted_slice : tensor<4x5x6x7xf32>) -> tensor<4x5x6x7xf32> {
+  %1 = linalg.generic {
+    indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>],
+    iterator_types = ["parallel", "parallel", "parallel", "parallel"]
+  } outs(%extracted_slice : tensor<4x5x6x7xf32>) {
+  ^bb0(%out: f32):
+    %2 = linalg.index 0 : index
+    %3 = linalg.index 1 : index
+    %4 = linalg.index 2 : index
+    %5 = linalg.index 3 : index
+    %extracted = tensor.extract %arg0[%2, %3, %4, %5, %5] : tensor<80x16x17x18x19xf32>
+    linalg.yield %extracted : f32
+  } -> tensor<4x5x6x7xf32>
+  return %1 : tensor<4x5x6x7xf32>
+}
+
+// CHECK-LABEL:   func.func @vectorize_nd_tensor_extract_gather(
+//  CHECK-SAME:     %[[ARG0:.*]]: tensor<80x16x17x18x19xf32>, %[[ARG1:.*]]: tensor<4x5x6x7xf32>) -> tensor<4x5x6x7xf32> {
+//       CHECK:   %[[CST:.*]] = arith.constant dense<[0, 1, 2, 3]> : vector<4xindex>
+//       CHECK:   %[[C0:.*]] = arith.constant 0 : index
+//       CHECK:   %[[VAL:.*]] = vector.gather %[[ARG0]][%[[C0]], %[[C0]], %[[C0]], %[[C0]], %[[C0]]] [%{{.*}}], %{{.*}}, %{{.*}} : tensor<80x16x17x18x19xf32>, vector<4x5x6x7xindex>, vector<4x5x6x7xi1>, vector<4x5x6x7xf32> into vector<4x5x6x7xf32>
+//       CHECK:   %{{.*}} = vector.transfer_write %[[VAL]], %[[ARG1]][%[[C0]], %[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true, true, true, true]} : vector<4x5x6x7xf32>, tensor<4x5x6x7xf32>
+
+module attributes {transform.with_named_sequence} {
+  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
+     %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
+     %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
+     %2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op
+     transform.yield
+   }
+}
+
+// -----
+
+func.func @vectorize_nd_tensor_extract_gather_constant_indices(%arg0: tensor<80x16x17x18x19xf32>, %extracted_slice : tensor<6x7x8xf32>) -> tensor<6x7x8xf32> {
+  %c5 = arith.constant 5 : index
+  %1 = linalg.generic {
+    indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>],
+    iterator_types = ["parallel", "parallel", "parallel"]
+  } outs(%extracted_slice : tensor<6x7x8xf32>) {
+  ^bb0(%out: f32):
+    %2 = linalg.index 0 : index
+    %3 = linalg.index 1 : index
+    %4 = linalg.index 2 : index
+    %extracted = tensor.extract %arg0[%c5, %c5, %2, %3, %4] : tensor<80x16x17x18x19xf32>
+    linalg.yield %extracted : f32
+  } -> tensor<6x7x8xf32>
+  return %1 : tensor<6x7x8xf32>
+}
+
+// CHECK-LABEL:   func.func @vectorize_nd_tensor_extract_gather_constant_indices(
+//  CHECK-SAME:     %[[ARG0:.*]]: tensor<80x16x17x18x19xf32>, %[[ARG1:.*]]: tensor<6x7x8xf32>) -> tensor<6x7x8xf32> {
+//       CHECK:   %[[CST:.*]] = arith.constant dense<[0, 1, 2, 3, 4, 5]> : vector<6xindex>
+//       CHECK:   %[[C0:.*]] = arith.constant 0 : index
+//       CHECK:   %[[VAL:.*]] = vector.gather %[[ARG0]][%[[C0]], %[[C0]], %[[C0]], %[[C0]], %[[C0]]] [%{{.*}}], %{{.*}}, %{{.*}} : tensor<80x16x17x18x19xf32>, vector<6x7x8xindex>, vector<6x7x8xi1>, vector<6x7x8xf32> into vector<6x7x8xf32>
+//       CHECK:   %{{.*}} = vector.transfer_write %[[VAL]], %[[ARG1]][%[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true, true, true]} : vector<6x7x8xf32>, tensor<6x7x8xf32>
+
+module attributes {transform.with_named_sequence} {
+  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
+     %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
+     %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
+     %2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op
+     transform.yield
+   }
+}
+
+// -----
+
+func.func @vectorize_nd_tensor_extract_contigous_complex(%6: tensor<45x80x16x17xf32>, %arg0: index, %arg1: index, %arg2: index, %arg3: index, %extracted_slice : tensor<1x4x5x6xf32>) -> tensor<1x4x5x6xf32> {
+  %0 = linalg.generic {
+    indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>],
+    iterator_types = ["parallel", "parallel", "parallel", "parallel"]
+  } outs(%extracted_slice : tensor<1x4x5x6xf32>) {
+  ^bb0(%out: f32):
+    %1 = linalg.index 0 : index
+    %2 = linalg.index 1 : index
+    %3 = linalg.index 2 : index
+    %4 = linalg.index 3 : index
+    
+    %21 = arith.addi %arg0, %1 : index
+    %22 = arith.addi %21, %arg1 : index
+    
+    %23 = arith.addi %arg0, %2 : index
+    %24 = arith.addi %23, %arg2 : index
+
+    %25 = arith.addi %arg1, %3 : index
+    %26 = arith.addi %arg3, %25 : index
+
+    %27 = arith.addi %arg2, %4 : index
+    %28 = arith.addi %arg3, %27 : index
+
+    %extracted = tensor.extract %6[%22, %24, %26, %28] : tensor<45x80x16x17xf32>
+    linalg.yield %extracted : f32
+  } -> tensor<1x4x5x6xf32>
+  return %0 : tensor<1x4x5x6xf32>
+}
+
+// CHECK-LABEL:   func.func @vectorize_nd_tensor_extract_contigous_complex(
+//  CHECK-SAME:     %[[ARG0:.*]]: tensor<45x80x16x17xf32>, %[[ARG1:.*]]: index, %[[ARG2:.*]]: index, %[[ARG3:.*]]: index, %[[ARG4:.*]]: index, %[[ARG5:.*]]: tensor<1x4x5x6xf32>) -> tensor<1x4x5x6xf32> {
+//       CHECK:       %[[CST:.*]] = arith.constant dense<[0, 1, 2, 3]> : vector<4xindex>
+//       CHECK:       %[[CST0:.*]] = arith.constant dense<[0, 1, 2, 3, 4]> : vector<5xindex>
+//       CHECK:       %[[CST1:.*]] = arith.constant dense<[0, 1, 2, 3, 4, 5]> : vector<6xindex>
+//       CHECK:       %[[CST2:.*]] = arith.constant 0.000000e+00 : f32
+//       CHECK:       %[[C0:.*]] = arith.constant 0 : index
+//       CHECK:       %[[VAL0:.*]] = vector.broadcast %[[CST]] : vector<4xindex> to vector<1x6x5x4xindex>
+//       CHECK:       %[[VAL1:.*]] = vector.transpose %[[VAL0]], [0, 3, 2, 1] : vector<1x6x5x4xindex> to vector<1x4x5x6xindex>
+//       CHECK:       %[[VAL2:.*]] = vector.broadcast %[[CST0]] : vector<5xindex> to vector<1x4x6x5xindex>
+//       CHECK:       %[[VAL3:.*]] = vector.transpose %[[VAL2]], [0, 1, 3, 2] : vector<1x4x6x5xindex> to vector<1x4x5x6xindex>
+//       CHECK:       %[[VAL4:.*]] = arith.addi %[[ARG1]], %[[ARG2]] : index
+//       CHECK:       %[[VAL5:.*]] = vector.broadcast %[[ARG1]] : index to vector<1x4x5x6xindex>
+//       CHECK:       %[[VAL6:.*]] = arith.addi %[[VAL5]], %[[VAL1]] : vector<1x4x5x6xindex>
+//       CHECK:       %[[VAL7:.*]] = vector.broadcast %[[ARG3]] : index to vector<1x4x5x6xindex>
+//       CHECK:       %[[VAL8:.*]] = arith.addi %[[VAL6]], %[[VAL7]] : vector<1x4x5x6xindex>
+//       CHECK:       %[[VAL9:.*]] = vector.broadcast %[[ARG2]] : index to vector<1x4x5x6xindex>
+//       CHECK:       %[[VAL10:.*]] = arith.addi %[[VAL9]], %[[VAL3]] : vector<1x4x5x6xindex>
+//       CHECK:       %[[VAL11:.*]] = vector.broadcast %[[ARG4]] : index to vector<1x4x5x6xindex>
+//       CHECK:       %[[VAL12:.*]] = arith.addi %[[VAL11]], %[[VAL10]] : vector<1x4x5x6xindex>
+//       CHECK:       %[[VAL13:.*]] = vector.broadcast %[[ARG3]] : index to vector<6xindex>
+//       CHECK:       %[[VAL14:.*]] = arith.addi %[[VAL13]], %[[CST1]] : vector<6xindex>
+//       CHECK:       %[[VAL15:.*]] = vector.broadcast %[[ARG4]] : index to vector<6xindex>
+//       CHECK:       %[[VAL16:.*]] = arith.addi %[[VAL15]], %[[VAL14]] : vector<6xindex>
+//       CHECK:       %[[VAL17:.*]] = vector.extract %[[VAL8]][0, 0, 0, 0] : index from vector<1x4x5x6xindex>
+//       CHECK:       %[[VAL18:.*]] = vector.extract %[[VAL12]][0, 0, 0, 0] : index from vector<1x4x5x6xindex>
+//       CHECK:       %[[VAL19:.*]] = vector.extract %[[VAL16]][0] : index from vector<6xindex>
+//       CHECK:       %[[VAL20:.*]] = vector.transfer_read %[[ARG0]][%[[VAL4]], %[[VAL17]], %[[VAL18]], %[[VAL19]]], %[[CST2]] {in_bounds = [true, true, true, true]} : tensor<45x80x16x17xf32>, vector<1x4x5x6xf32>
+//       CHECK:       %[[VAL21:.*]] = vector.transfer_write %[[VAL20]], %[[ARG5]][%[[C0]], %[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true, true, true, true]} : vector<1x4x5x6xf32>, tensor<1x4x5x6xf32>
+//       CHECK:       return %[[VAL21]] : tensor<1x4x5x6xf32>
+//       CHECK:     }
+
+module attributes {transform.with_named_sequence} {
+  transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
+     %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
+     %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
+     %2 = transform.structured.vectorize_children_and_apply_patterns %1 { vectorize_nd_extract } : (!transform.any_op) -> !transform.any_op
+     transform.yield
+   }
+}



More information about the Mlir-commits mailing list