[Mlir-commits] [mlir] [MLIR][Presburger] Helper functions to compute the constant term of a generating function (PR #77819)
Arjun P
llvmlistbot at llvm.org
Sat Jan 13 05:09:29 PST 2024
================
@@ -144,3 +145,107 @@ GeneratingFunction mlir::presburger::detail::unimodularConeGeneratingFunction(
std::vector({numerator}),
std::vector({denominator}));
}
+
+/// We use an iterative procedure to find a vector not orthogonal
+/// to a given set, ignoring the null vectors.
+/// Let the inputs be {x_1, ..., x_k}, all vectors of length n.
+///
+/// In the following,
+/// vs[:i] means the elements of vs up to and including the i'th one,
+/// <vs, us> means the dot product of vs and us,
+/// vs ++ [v] means the vector vs with the new element v appended to it.
+///
+/// We proceed iteratively; for steps d = 0, ... n-1, we construct a vector
+/// which is not orthogonal to any of {x_1[:d], ..., x_n[:d]}, ignoring
+/// the null vectors.
+/// At step d = 0, we let vs = [1]. Clearly this is not orthogonal to
+/// any vector in the set {x_1[0], ..., x_n[0]}, except the null ones,
+/// which we ignore.
+/// At step d > 0 , we need a number v
+/// s.t. <x_i[:d], vs++[v]> != 0 for all i.
+/// => <x_i[:d-1], vs> + x_i[d]*v != 0
+/// => v != - <x_i[:d-1], vs> / x_i[d]
+/// We compute this value for all x_i, and then
+/// set v to be the maximum element of this set plus one. Thus
+/// v is outside the set as desired, and we append it to vs
+/// to obtain the result of the d'th step.
+Point mlir::presburger::detail::getNonOrthogonalVector(
+ std::vector<Point> vectors) {
+ unsigned dim = vectors[0].size();
+
+ SmallVector<Fraction> newPoint = {Fraction(1, 1)};
+ std::vector<Fraction> lowerDimDotProducts;
+ Fraction dotProduct;
+ Fraction maxDisallowedValue = Fraction(-1, 0),
+ disallowedValue = Fraction(0, 1);
+ Fraction newValue;
+
+ for (unsigned d = 1; d < dim; ++d) {
+ lowerDimDotProducts.clear();
+
+ // Compute the set of dot products <x_i[:d-1], vs> for each i.
+ for (const Point &vector : vectors) {
+ dotProduct = Fraction(0, 1);
+ for (unsigned i = 0; i < d; i++)
+ dotProduct = dotProduct + vector[i] * newPoint[i];
+ lowerDimDotProducts.push_back(dotProduct);
+ }
+
+ // Compute - <x_i[:d-1], vs> / x_i[d] for each i,
+ // and find the biggest such value.
+ for (unsigned i = 0, e = vectors.size(); i < e; ++i) {
+ if (vectors[i][d] == 0)
+ continue;
+ disallowedValue = -lowerDimDotProducts[i] / vectors[i][d];
+ if (maxDisallowedValue < disallowedValue)
+ maxDisallowedValue = disallowedValue;
+ }
+
+ newValue = Fraction(ceil(maxDisallowedValue + Fraction(1, 1)), 1);
+ newPoint.append(1, newValue);
+ }
+ return newPoint;
+}
+
+/// We use the following recursive formula to find the coefficient of
+/// s^power in the rational function given by P(s)/Q(s).
+///
+/// Let P[i] denote the coefficient of s^i in the polynomial P(s).
+/// (P/Q)[r] =
+/// if (r == 0) then
+/// P[0]/Q[0]
+/// else
+/// (P[r] - {Σ_{i=1}^r (P/Q)[r-i] * Q[i])}/(Q[0])
+/// We therefore recursively call `getCoefficientInRationalFunction` on
+/// all i \in [0, power).
+///
+/// https://math.ucdavis.edu/~deloera/researchsummary/
+/// barvinokalgorithm-latte1.pdf, p. 1285
+QuasiPolynomial mlir::presburger::detail::getCoefficientInRationalFunction(
+ unsigned power, ArrayRef<QuasiPolynomial> num, ArrayRef<Fraction> den) {
+ assert(den.size() != 0 && "division by empty denominator in rational function!");
+
+ unsigned numParam = num[0].getNumInputs();
+ for (const QuasiPolynomial &qp : num)
+ assert(numParam == qp.getNumInputs() &&
+ "the quasipolynomials should all belong to the same space!");
+
+ std::vector<QuasiPolynomial> coefficients(power + 1,
+ QuasiPolynomial(numParam, 0));
+
+ coefficients[0] = num[0] / den[0];
+
----------------
Superty wrote:
You don't need so many blank lines :)
https://github.com/llvm/llvm-project/pull/77819
More information about the Mlir-commits
mailing list